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Abstract. We develop an essentially algebraic method to study biharmonic curves
into an implicit surface. Although our method is rather general, it is especially suitable
to study curves in surfaces defined by a polynomial equation: In particular, we use it
to give a complete classification of biharmonic curves in real quadrics of the three-
dimensional Euclidean space.

2000 Mathematics Subject Classification. 58E20

1. Introduction. Biharmonic curves γ : I ⊂ � → (N, h) of a Riemannian
manifold are the solutions of the fourth-order differential equation

∇3
γ ′γ

′ − R(γ ′,∇γ ′γ ′)γ ′ = 0, (1.1)

where ∇ is the Levi–Civita connection on (N, h) and R is its curvature operator.
As we shall detail in the next section, these arise from a variational problem and

are a natural generalisation of geodesics. In the last decade, biharmonic curves have
been extensively studied and classified in several spaces by analytical inspection of
(1.1) (see, for example [1-6, 8, 9, 11, 15]).

Although much work has been done, the full understanding of biharmonic curves
in a surface of the Euclidean three-dimensional space is far from being achieved. As
yet, we have a clear picture of biharmonic curves in a surface only in the case that
the surface is invariant by the action of one parameter group of isometries of ambient
space. For example, in [3] it was proved that a biharmonic curve on a surface of
revolution in the Euclidean space (invariant by the action of SO(2)) must be a parallel,
that is, an orbit of the action of the group on the surface. This property was then
generalised to invariant surfaces in a three-dimensional manifold [15].

The main obstacle in trying to describe and classify biharmonic curves in a surface
by analytical methods is that (1.1) is the fourth-order differential equation, which is
very hard to tackle.

In this paper, we propose a scheme to classify biharmonic curves into a quadric
in the three-dimensional Euclidean space by using algebraic methods. The main point
is that a quadric can be described implicitly by a polynomial equation F(x, y, z) =
0, and we will show that the biharmonic candidates must be the intersection
of the given quadric with another specific algebraic surface G(x, y, z) = 0. The
latter property allows us to classify biharmonic curves into any non-degenerate
quadric.

https://doi.org/10.1017/S0017089514000172 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089514000172


132 S. MONTALDO AND A. RATTO

In the last section we give some examples to show how to use this approach for
other implicit surfaces.

2. Preliminaries. Harmonic maps are critical points of the energy functional

E(ϕ) = 1
2

∫
M

|dϕ|2 dvg, (2.1)

where ϕ : (M, g) → (N, h) is a smooth map between two Riemannian manifolds M
and N. In analytical terms, the condition of harmonicity is equivalent to the fact that
the map ϕ is a solution of the Euler–Lagrange equation associated with the energy
functional (2.1), i.e.

trace ∇dϕ = 0 . (2.2)

The left member of (2.2) is a vector field along the map ϕ, or, equivalently, a section
of the pull-back bundle ϕ−1 (TN): it is called tension field and denoted as τ (ϕ).

A related topic of growing interest deals with the study of the so-called biharmonic
maps: These maps, which provide a natural generalisation of harmonic maps, are the
critical points of bienergy functional (as suggested by Eells and Lemaire in [7]),

E2(ϕ) = 1
2

∫
M

|τ (ϕ)|2 dvg. (2.3)

Jiang in [12] derived the first variation and the second variation formulas for bienergy.
In particular, he showed that the Euler–Lagrange equation associated with E2(ϕ) is

τ2(ϕ) = −J (τ (ϕ)) = −�τ (ϕ) − traceRN(dϕ, τ (ϕ))dϕ = 0 , (2.4)

where J denotes (formally) the Jacobi operator of ϕ, � is the rough Laplacian on the
sections of ϕ−1 (TN) that, for a local orthonormal frame {ei}m

i=1 on M, is defined by

� = −
m∑

i=1

{∇ϕ
ei
∇ϕ

ei
− ∇ϕ

∇M
ei ei

},

and

RN(X, Y ) = ∇X∇Y − ∇Y∇X − ∇[X,Y ] (2.5)

is the curvature operator on (N, h).
We point out that (2.4) is the fourth-order semi-linear elliptic system of differential

equations. We also note that any harmonic map is an absolute minimum of bienergy,
and so it is trivially biharmonic. Therefore, a general working plan is to study the
existence of biharmonic maps which are not harmonic: these shall be referred to as
proper biharmonic maps. We refer to [14] for existence results and general properties of
biharmonic maps.
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Now, let γ : I → (N, h) be a curve parametrized by arc length from an open
interval I ⊂ � to a Riemannian manifold. In this case, putting T = γ ′, the tension
field becomes τ (γ ) = ∇T T and the biharmonic equation (2.4) reduces to

∇3
T T − R(T,∇T T)T = 0. (2.6)

In order to describe geometrically equation (2.6), let us recall the definition of the
Frenet frame.

DEFINITION 2.1 See, for example [13]. The Frenet frame {Fi}i=1,...,n associated with
a curve γ : I ⊂ � → (Nn, h), parametrized by arc length, is the orthonormalisation of
(n + 1)-uple {∇(k)

∂
∂t

dγ ( ∂
∂t )}k=0,...,n described by:

F1 = dγ (
∂

∂t
),

∇γ
∂
∂t

F1 = k1F2,

∇γ
∂
∂t

Fi = −ki−1Fi−1 + kiFi+1, ∀i = 2, . . . , n − 1,

∇γ
∂
∂t

Fn = −kn−1Fn−1 ,

where the functions {k1, k2, . . . , kn−1} are called the curvatures of γ , and ∇γ is the
Levi–Civita connection on the pull-back bundle γ −1(TN). Note that F1 = T = γ ′ is
the unit tangent vector field along the curve.

Using the Frenet frame, the biharmonic equation (2.6) reduces to a differential system
involving the curvatures of γ , and if we look for proper biharmonic solutions, that is
for biharmonic curves with k1 	= 0, we have

PROPOSITION 2.2 ([2]). Let γ : I ⊂ � → (Nn, h) (n ≥ 2) be a curve parametrized
by arc length from an open interval of � into an n-dimensional Riemannian manifold
(Nn, h). Then γ is proper biharmonic if and only if:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

k1 = constant 	= 0
k2

1 + k2
2 = R(F1, F2, F1, F2)

k′
2 = −R(F1, F2, F1, F3)

k2k3 = −R(F1, F2, F1, F4)
R(F1, F2, F1, Fj) = 0 j = 5, . . . , n

. (2.7)

As a special case of (2.7), if γ : I ⊂ � → (N2, h) is a curve into a surface, then γ

is proper biharmonic if and only if

{
k1 = constant 	= 0
k2

1 = K , (2.8)

where K is the Gaussian curvature of surface (N2, h).

3. Formulas for the curvatures of implicit surfaces and implicit curves. Let F :
�3 → � be a differentiable function: We shall assume that, for all p ∈ N2 = F−1(0),
(grad F)(p) 	= 0 so that N2 is a regular surface in �3. If we denote by CHF the cofactor
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matrix of the Hessian HF of F , the Gaussian curvature of the surface N2 is given by
(see, for example [10])

K = (grad F)(CHF )(grad F)�

‖ grad F‖4
. (3.1)

Let now F : �3 → � and G : �3 → � be two differentiable functions such that
F−1(0) and G−1(0) are, as above, two regular surfaces in �3, and also assume that at all
points p ∈ F−1(0) ∩ G−1(0), the gradients grad F and grad G are linearly independent.
Then F−1(0) ∩ G−1(0) defines the trace of a regular curve in �3 that locally can be
parametrized by arc length as γ (s) = (x(s), y(s), z(s)), s ∈ (a, b). The unit tangent vector
to γ is then

γ ′(s) = dγ

ds
= T = grad F ∧ grad G

‖ grad F‖‖ grad G‖ .

The curve γ can be seen as a curve of both F−1(0) and G−1(0). For each point
p = γ (s), s ∈ (a, b), we denote by kF

n (p) (respectively kG
n (p)) the normal curvature at p

of the surface F−1(0) (respectively G−1(0)) in the direction of T .
The curvature k(s) of the curve γ : (a, b) → �3 can be computed in terms of the

normal curvatures kF
n (p) and kG

n (p), p = γ (s), as

k2 = 1
sin2 ϑ

(
(kF

n )2 + (kG
n )2 − 2(kF

n )(kG
n ) cos ϑ

)
, (3.2)

where ϑ is the angle between (grad F)(p) and (grad G)(p), that is

cos ϑ = 〈grad F, grad G〉
‖ grad F‖‖ grad G‖ .

The proof of (3.2) is immediate. In fact, k(s) is the norm of γ ′′(s) = d2γ /ds2 which is
normal to T . Thus,

γ ′′ = α
grad F

‖ grad F‖ + β
grad G

‖ grad G‖
for some functions α, β : (a, b) → �, which, recalling that

kF
n =

〈
γ ′′,

grad F
‖ grad F‖

〉
, kG

n =
〈
γ ′′,

grad G
‖ grad G‖

〉
,

can be expressed by:

α = kF
n − kG

n cos ϑ

sin2 ϑ
, β = kG

n − kF
n cos ϑ

sin2 ϑ
.

Finally, looking at γ (s) as a curve in the surface F−1(0), at a point p = γ (s) the
geodesic curvature k1(s), the normal curvature kF

n (p) and the curvature k(s) are related
by the formula

k2 = k2
1 + (kF

n )2. (3.3)
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Thus, combining (3.2) and (3.3), we have the following proposition.

PROPOSITION 3.1. Let F : �3 → � and G : �3 → � be two differentiable functions
such that F−1(0) and G−1(0) are two regular surfaces in �3. Assume that at all points
p ∈ F−1(0) ∩ G−1(0) the gradients grad F and grad G are linearly independent. Then
the geodesic curvature k1 of the curve γ : (a, b) → F−1(0) ⊂ �3, with γ (s) ∈ F−1(0) ∩
G−1(0), for all s ∈ (a, b), is given by

k2
1 = (cos ϑkF

n − kG
n )2

sin2 ϑ
. (3.4)

Moreover, taking twice the derivative of F(γ (s)) = 0, we find

0 = d2F
ds2

= T(HF)T� + 〈grad F, γ ′′〉.

It follows that

kF
n = −T(HF)T�

‖ grad F‖ (3.5)

and, similarly,

kG
n = −T(HG)T�

‖ grad G‖ . (3.6)

The main point here is that in order to compute geodesic curvature of curve γ

defined as in Proposition 3.1, there is no need to parametrize the intersection curve
because (3.4) can be explicitly written in terms of grad F , grad G and the Hessian
matrices HF and HG.

4. Biharmonic curves into real quadrics. Let Q be a real, non-degenerate quadric
in �3. Then, with respect to an adapted orthonormal frame of �3, Q = F−1(0), where

F(x, y, z) = x2

a2
+ ξ

y2

b2
+ ζ

z2

c2
− 1, ξ, ζ = ±1 and a, b, c > 0 (4.1)

if Q is a quadric with centre, or

F(x, y, z) = x2

a2
+ η

y2

b2
− 2z, η = ±1 and a, b > 0, (4.2)

otherwise.
According to (2.8), the Gauss curvature of the surface along a proper biharmonic

curve must be a positive constant. If we compute the Gauss curvature of a quadric
using (3.1), we get

K = ξ ζ

a2 b2 c2

(
x2

a4
+ y2

b4
+ z2

c4

)2 (4.3)
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for the quadrics with centre and

K = η

a2b2

(
x2

a4
+ y2

b4
+ 1

)2 , (4.4)

otherwise. Thus, a quadric with centre can admit a proper biharmonic curve only
if ξ ζ > 0. If ξ = ζ = 1 and a = b = c, then the quadric is a sphere, and the proper
biharmonic curves are the circles of radius

√
2a/2, a result proved in [3]. In all other

cases, combining (2.8) and (4.3), we conclude that if there exists a proper biharmonic
curve, then it must be the intersection of the given quadric with an ellipsoid of the type

x2

a4
+ y2

b4
+ z2

c4
= d2, (4.5)

where d ∈ � . Similarly, a quadric without centre can admit a proper biharmonic curve
only if η > 0 . In this case, the biharmonic curve, if there exists, must be the intersection
of a given quadric with a cylinder of the type

x2

a4
+ y2

b4
= e2 − 1 , (4.6)

where e ∈ � .
We are now in the right position to state the main result of the paper.

THEOREM 4.1. Let Q be a non-degenerate quadric which is not a sphere (if ξ = ζ = 1
in (4.1), without loss of generality we assume a ≥ b > c).

(a) If Q is a quadric with centre (as in (4.1)), then Q admits a proper biharmonic
curve if and only if

ξ = ζ = 1 and a = b. (4.7)

Moreover, if (4.7) holds, the biharmonic curve is the intersection of quadric Q
with the ellipsoid (4.5) with d2 = 1/(ac).

(b) If Q is a quadric without centre (as in (4.2)), then Q does not admit any proper
biharmonic curve.

Proof. We shall begin considering quadrics with centre. As we proved above, if
there exists a proper biharmonic curve γ , it must be the intersection of Q with an
ellipsoid (4.5), i.e.

γ :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F(x, y, z) = x2

a2
+ ξ

y2

b2
+ ζ

z2

c2
− 1 = 0

G(x, y, z) = x2

a4
+ y2

b4
+ z2

c4
− d2 = 0

, (4.8)

with ξ ζ > 0. Suppose that ξ = ζ = 1: then, using (3.4), we can compute the
geodesic curvature of the intersection curve γ as a curve of quadric Q. A long, but
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straightforward, computation yields:

k2
1 = 1

d2

[
d2λ4 −

(
x2

a6 + y2

b6 + z2

c6

)
λ6

]2

λ2
8

[
d2

(
x2

a8 + y2

b8 + z2

c8

)
−

(
x2

a6 + y2

b6 + z2

c6

)2
] , (4.9)

where

λn = any2z2 (
b2 − c2)2 + bnx2z2 (

a2 − c2)2 + cnx2y2 (
a2 − b2)2

.

Now, since Q is not a sphere, we recall our hypothesis a ≥ b > c and also note that
the curve γ is a real curve with infinity points if and only if d2c2 − 1 > 0 . Under these
conditions the curve γ can be parametrized by

γ (u) =

⎧⎪⎪⎨
⎪⎪⎩

x(u) = r1 cos u
y(u) = r2 sin u

z(u) = c
√

1 − (r2
1 cos2 u)/a2 − (r2

2 sin2 u)/b2

, (4.10)

where

r1 = a2

√
1 − c2d2

a2 − c2
, r2 = b2

√
1 − c2d2

b2 − c2
.

Now, replacing (4.10) in (4.9), we obtain

k2
1 = 8

[
A + 4(c2d2 − 1)B cos 2u + (a2 − b2)(c2d2 − 1) cos 4u

]2

d2(c2d2 − 1)
[
C + 4D cos 2u − (a2 − b2)(c2d2 − 1) cos 4u

]3 , (4.11)

where A, B, C, D are real constants given by

A = −8a4b4d4 + 8a4b2d2 + 3a4c2d2 − 3a4 + 8a2b4d2 − 6a2b2c2d2 − 2a2b2

+ 3b4c2d2 − 3b4 ,

B = a4 (
2b2d2 − 1

) − 2a2b4d2 + b4 ,

C = −4a4b2d2 + a4c2d2 + 3a4 − 4a2b4d2 − 2a2b2c2d2 + 2a2b2 + b4c2d2 + 3b4 ,

D = a4 (
b2d2 − 1

) − a2b4d2 + b4 .

Next, by setting w = sin2 u in (4.11), it is easy to conclude that, in terms of this new
variable,

k2
1 = N(w)

D(w)
, (4.12)

where the numerator and the denominator of (4.12) are polynomials of degrees 8 and
12 respectively. At this stage, direct inspection of the leading terms shows that k1 can
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be a constant only if a = b. In this case, the condition that the curve γ is proper
biharmonic, that is k2

1 − K = 0, becomes

1 − a2c2d4

a4c2d4
(
c2d2 − 1

) = 0,

from which the desired result follows.
When ξ = ζ = −1, the computations are similar to the previous case. First, we

point out that in this case γ is a real curve with infinity points if and only if a2d2 − 1 > 0.
Moreover, by means of a computation similar to (4.11), we can conclude that, if the
geodesic curvature k1 of γ is constant, then b = c. Next, when b = c, the biharmonic
condition k2

1 − K = 0 now reads as

a2c2d4 + 1

a2c4d4
(
a2d2 − 1

) = 0,

which has no real solution, so ending the case of quadrics with centre.
When Q is a quadric without centre, as in (4.2), a proper biharmonic curve γ , if it

exists, must be, as we have remarked above, the intersection of Q with a cylinder, i.e.

γ :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F(x, y, z) = x2

a2
+ y2

b2
− 2z = 0 ,

G(x, y, z) = x2

a4
+ y2

b4
− e2 + 1 = 0,

(4.13)

where e2 > 1 . Now, our method leads us to the following expression for the geodesic
curvature k1 of γ :

k2
1 = (λ2

6 − a6b6e2λ4)2

e2
[
λ8 + x2y2(a2 − b2)2

]2
(a4b4e2λ8 − λ2

6)
, (4.14)

where

λn = bnx2 + any2 .

In this case, we propose a purely algebraic inspection of (4.14) to show that k2
1 is

constant if and only if a = b. First we observe that the points

P1 =
(

0, b2
√

e2 − 1,
b2

2
(e2 − 1)

)
, P2 =

(
a2

√
e2 − 1, 0,

a2

2
(e2 − 1)

)

belong to the connected curve γ . Next, direct substitution in (4.14) gives

k2
1(P1) =

(
b2e2 − a2

(
e2 − 1

))2

a8e2
(
e2 − 1

) , k2
1(P2) =

(
a2e2 − b2

(
e2 − 1

))2

b8e2
(
e2 − 1

) .

Condition k2
1(P1) = k2

1(P2) is equivalent to the second-degree equation in e2 which
admits no positive solution if a 	= b. Therefore, in this case k2

1 cannot be a constant
along γ . Conversely, if a = b, then λn = an(x2 + y2) = an+4(e2 − 1) and k2

1 is constant.
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Finally, under the hypothesis a = b, the biharmonicity condition, k2
1 − K = 0,

becomes

1

a4e4
(
e2 − 1

) = 0,

which has no solution. �

5. Applications to other types of implicit surfaces. In this section, we discuss two
examples where it is possible to apply the scheme used to classify biharmonic curves
into quadrics.

EXAMPLE 5.1. Consider the implicit surface N2 = F−1(0), where

F(x, y, z) = z2n

c2
+ (

x2 + y2)n − 1, c > 0, n ≥ 1.

Surface N2 is a surface of revolution that for n = 1 and c 	= 1 reduces to an ellipsoid.
In this case, the curves with constant Gauss curvature are the parallels given by the
intersection of surface N2 with the planes z = d = constant. Thus, unless N2 is a sphere
(i.e. n = 1 = c), the only possible biharmonic curves are

γ :

⎧⎪⎨
⎪⎩

F(x, y, z) = z2n

c2
+ (

x2 + y2
)n − 1 = 0, c > 0,

G(x, y, z) = z − d = 0, d < n
√

c.

(5.1)

Using (3.1) we can compute the Gauss curvature of N2 along γ :

K = c4(2n − 1)A2nd2n+2
(
c2An + d2n

)
(
c4d2A2n + Ad4n

)2 ,

where

A =
(

1 − d2n

c2

) 1
n

.

Next, computing the geodesic curvature of γ by means of (3.4), we find

k2
1 = c4A2nd4n

(c2 − d2n)2(c4d2A2n + Ad4n)
.

Finally, the condition of biharmonicity, that is k2
1 = K , for a parallel (5.1) becomes:

2c4(1 − n)d2n + d6n−2
(

1 − d2n

c2

) 1−2n
n

− c6(2n − 1)
(

1 − d2n

c2

)
= 0. (5.2)

Although it is not easy to write down the explicit solutions of (5.2) as a function
d = d(n, c), we point out that (5.2) admits a solution d0 ∈ [0, n

√
c) for any c > 0 and

n ≥ 1. To see this, we observe that the left-hand side of (5.2) is continuous in d, assumes
a negative value for d = 0 and diverges to +∞ as d tends to n

√
c .
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EXAMPLE 5.2. In this example we consider the case of graphs of revolution. Thus,
we assume that N2 = F−1(0) with

F(x, y, z) = z − f
(√

x2 + y2

)
,

for some differentiable function f . As in the previous example, the only curves such
that the restriction of the Gauss curvature of N2 is constant are the parallels z =
d = constant. If we put ρ =

√
x2 + y2, the Gauss curvature of N2 along a parallel

z = d = f (ρ) and the geodesic curvature are respectively

K = f ′(ρ)f ′′(ρ)

ρ
(
f ′(ρ)2 + 1

)2 , k2
1 = 1

ρ2
(
f ′(ρ)2 + 1

) .

It follows that a parallel ρ = ρ0 is biharmonic if and only if

f ′(ρ0)2 − ρ0f ′(ρ0)f ′′(ρ0) + 1 = 0. (5.3)

Moreover, if f is a solution of the ordinary differential equation (ODE)

f ′(ρ)2 − ρf ′(ρ)f ′′(ρ) + 1 = 0, (5.4)

then all the parallels are biharmonic. The solution of (5.4) can be explicitly computed,
and is given by

f (ρ) = 1
2

(
ρ
√

e2c1ρ2 − 1 − e−c1 log
(

2ec1

(√
e2c1ρ2 − 1 + ec1ρ

)))
+ c2, c1, c2 ∈ �.

(5.5)

We remark that the surface of revolution with the property that all its parallels are
biharmonic was already found in [3] using different methods, and afterwords Monterde
in [16] proved that it is the only surface in �3 with the property that all the level curves
of the Gauss curvature are proper biharmonic and the gradient lines of the Gauss
curvature are geodesics.
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