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If R is a ring and S is a semigroup, the corresponding semigroup ring is denoted by
R[S]. A ring is semiprime if it has no nonzero nilpotent ideals. A semigroup S is a
semilattice P of semigroups Sa if there exists a homomorphism <p of S onto the semilattice
P such that Sa = atp~x for each aeP.

In [4] J. Weissglass proves the following result.

THEOREM. Suppose that R is a commutative ring with identity element and that S is a
commutative semigroup such that a power of each element lies in a subgroup. Then R[S] is
semiprime if and only if S is a semilattice P of groups Sa, and R[Sa] is semiprime for each
aeP.

Then Weissglass asks [4, Question 9, page 477] if the commutativity of R can be
removed from the hypothesis of his theorem. The purpose of this note is to answer his
question affirmatively.

Given a ring R and a semigroup S, the support of x = £ rsse.R[S], denoted by
ssS

supp x, is defined to be the set {s 6 S | rs f 0}. For a set X, |X| denotes the cardinality of X.

LEMMA 1. Let R be a ring with identity element, and let S be a commutative semigroup.
Assume that the group G is an ideal of S and that every element of S has a power in G. Let
A be a nonzero ideal of R[S] such that A f~l R[G] = 0. Then there exists a nonzero element

n

y = Z r i s . e A (rf 6 R , st e S ) s u c h t h a t yrSj = 0 for e a c h r e R a n d e a c h j < n .

Proof. Let m = min{/ | Of x e A and |(supp x ) n ( S - G ) | = /}. Since AC\R[G] = 0,
n

then m > 1. Let y = X risi 6 A -{0} be chosen such that

{sl Js2 >.. . ,sm} = (suppy)n(S-G)

and

{s m + , , . . . , s n }cG if m<n.

Let k be a positive integer such that k < m, and consider the condition ys, = 0 for / < k.
This condition is vacuously satisfied when k = 1; so assume that the condition holds for
some k > l . Since a power, say s'k, of sk is in the ideal G of S, then ys^eJ^G]. But
ysJtEA, since ye A. Hence ys!< = 0. Thus there is a least nonnegative integer h such that
ys£+1 = 0. (If h = 0, let sl = leR for notational convenience.) Then by the choice of m
and h, we have that s,sjj, s2Sk,..., smsk are distinct elements of S-G, and s ^ e G for
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i > m. Since S is commutative,

^ )Shk=(i rls\slslh=yslslh = O
V i = l '

for / < k. Thus, if we replace sf by s,s^ in our original expression for y, we may assume that

y = Z r^j e A - {0}, Sj e S - G for i < m, sf e G for i > m, and ys; = 0 for y < k. By induc-

tion, we may assume that ys; = 0 for j < m. Since G is an ideal of S, we also have

ySj e A D R[G] = 0 for each j > m.
Let j e { 1 , . . . , n}. Write T = {s.-s,- | i = 1 , . . . , n} and, for each t e T, let J, = {i | s,s, = t).

Since ys, = 0, we have that, for all teT, Z r, = 0. Hence, for all reR,
is/,

/ \ " / " \

0 = L ( L ri)rt = L riKs,sJ) = I 2. nSijrSj = yrs,,
l eT V i e I , ' i = l M - l '

Let P be a semilattice whose natural order is indicated by <, and let S be a
semilattice P of semigroups Sa. Then there exist ideal extensions Da of Sa (a e P) and
homomorphisms <pa(3 :Sa - ^ D p ( /3^a) satisfying the following conditions:

(a) cpQ a is the identity map on Sa;

(c) if aj3>y, then for all aeSa and fceSp, [(a(paap)(b(ppap)](pap,y = (a(pay)(b<pp,y);
(d) S is the disjoint union of the Sa (aeP);
(e) if aeSa and b e Sp, then multiplication in S is determined by

ab = (a(paaP)(b(pPaP) e So3.

For more details, see Section III.7 of [2]. We note that each <pai/3 has a natural extension
to a ring homomorphism from R[Sa] to R[DP]\

Z rss-» I rs(s<pa>p).

We also denote this extension by <j>a>p for convenience.

LEMMA 2. Let R be a ring with identity element, and let S be a semilattice P of
n

commutative semigroups Sa. Let aeP and y = Z riSf € R ^ ] be such that yrs;- = 0 for each

reR and each y<n . Then the principal ideal B of R[S] generated by y satisfies B 2 = 0.

Proof. Every element of B2 is a sum of terms, each of which contains at least one of
the following factors: y2 or y. rs. y, where reR and seSa for some aeP.

n

But y 2 = Z vrisi = 0 by our choice of y. Moreover, if r e R and seSa then, since Saa
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is commutative and (paa(T is a homomorphism, we have

y . r s . y = Z r,s,).rs. Z nsA
v i = 1 M = 1 '

= Z '"irr/(si«p<7ia<7)(s«pa,ao.)(s/<po.jaa)

= Z r,rr,((sisJ)<po.,aCT)(s<pa,ao.)

- I (( £ ^i W W a a (scpa,a(T)

= £ (y(rrj)sj)<Pv,caT)\(s<pol,aJ = 0

by our choice of y.
It follows that B2 = 0 as desired.

LEMMA 3. Let R be a ring with identity element, and let S be a semilattice P of
commutative semigroups Sa. Let <x e P, and assume that the group G is an ideal of SCT. Let A
be a nilpotent ideal of RiS^] such that A2 = 0. Then the principal ideal C of R[S] generated
by any element of AD R[G] satisfies C2 = 0.

n

Proof. Let x = £ r^eA HR[G] with {s^, s2, • • •, sn}£ G, and let x generate C. Since

x2 — 0, then every element of C2 is a sum of terms, each of which contains a factor of the
form x. rs. x, where reR and seSa for some aeP. Let e be the identity element of G,
let r e R , and let seSa for some a e P. Since Saa. is commutative and <paaa. is a
homomorphism, we have

I r,sA. rs.l Z ^

= Z rirr;(S.(P-,ao-)(s<Pa,aa)(SJ<Pcr,aJ

= ( Z 'i'W>)<P<r,aa KS<Pcao-)

= ( £ '•jsj)(re)( £ /-s,.) (pCT,aCT. (scpa , aJ

^ (A2)<p„,,„„.. (s<pa,aa)

= 0.

It follows that C2 = 0 as desired.

We are now ready for our main result.
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THEOREM. Let R be a ring with identity element, and let S be a commutative semigroup
such that a power of each element of S lies in a subgroup. Then R[S] is semiprime if and
only if S is a semilattice P of groups Sa, and R[Sa] is semiprime for each as P.

Proof. By [1, §4.3, Exercise 5] the hypothesis on S forces S to be a semilattice P of
semigroups Sa, where each Sa contains a group ideal Ga such that SJGa is a nil
semigroup.

Let R[S] be semiprime. Suppose that there exists creP such that ^[S^] is not
semiprime. Then R ^ ] contains a nonzero nilpotent ideal A such that A 2 = 0. If
AD.R[Gcr] = 0, then R[S] has a nonzero nilpotent ideal B by Lemmas 1 and 2; if
Ar\R[Ga\i^Q, then R[S] has a nonzero nilpotent ideal C by Lemma 3. Consequently,
each R[Sa] must be semiprime to avoid a contradiction. It now follows from [4, Lemma 4]
that each Sa is a group.

The converse follows from [3, Theorem 1] or [4, Corollary 1].
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