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Abstract

In this paper we prove a conjecture relating the Whittaker function of a certain

generating function with the Whittaker function of the theta representation Θ
(n)
n . This

enables us to establish that a certain global integral is factorizable and hence deduce
the meromorphic continuation of the standard partial L function LS(s, π(n)). In fact we
prove that this partial L function has at most a simple pole at s = 1. Here, π(n) is a

genuine irreducible cuspidal representation of the group GL
(n)
r (A).

1. Introduction

Let A denote the ring of adeles of a global field F . Assume that F contains a full set of nth roots

of unity. Let GL
(n)
r (A) denote the n-fold metaplectic cover of the group GLr(A) as constructed

in [KP84]. Let π(n) denote a genuine irreducible cuspidal representation of GL
(n)
r (A). To this

representation one can attach the partial standard L function, denoted by LS(s, π(n)).
The first to consider convolutions of cuspidal representations with theta representations were

Bump and Hoffstein in [BH86, BH87]. In these papers they considered the global construction
involving the cubic theta representation and established that this construction represents an L
function. It was their idea that in order to study the properties of the above L functions, one
needs to start with the well-known Rankin–Selberg convolution of two cuspidal representations
of GLr(A) and GLn(A), and adjust this construction to the covering groups.

In detail, let π(n) be as defined above. Let Θ
(n)
n denote the global theta representation of the

group GL
(n)
n (A). The latter representation was constructed in [KP84]. Assume that r > n. Then

the proposed construction is given by∫
GLn(F )\GLn(A)

∫
Vr,n(F )\Vr,n(A)

φ

(
v

(
g

Ir−n

))
θ(g)ψVr,n(v)|det g|s−(r−n)/2 dv dg. (1)

Here φ is a vector in the space of π(n), and θ is a vector in the space of Θ
(n)
n . The group Vr,n and

the character ψVr,n are defined in § 4. This was the starting point of [BF99]. In fact in [BF99]
the authors concentrated on the case when r < n, but up to some modifications as explained
in [BF99, § 2], the idea is the same.

A straightforward unfolding implies that for Re(s) large, integral (1) is equal to∫
Vn(A)\GLn(A)

Wφ

(
g

Ir−n

)
Wθ(g)|det g|s−(r−n)/2 dg. (2)

Here Wφ denotes the Whittaker coefficient of φ, and we define Wθ similarly.
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Since in general the Whittaker coefficient Wφ is not factorizable, it is not obvious that the

above integral represents an Euler product. To show that it does, one needs to apply the method

referred to as the ‘new way’ which was developed in [PR88]. See [BF99] for a discussion of and

references for this method.

In our context, to deduce that integral (2) is Eulerian one proceeds in two steps. Let F denote

a local non-archimedean field containing a full set of nth roots of unity. Let π(n) denote a local

unramified representation, and let L(s, π(n)) denote the corresponding local L function. This

function is defined in equation (4). The first step is to find a generating function for L(s, π(n)).

In [BF99, p. 5], such a function was introduced and was denoted by ∆̃s. We give its definition

in § 2 right after equation (4).

The second step is to use this function to compute a local integral which is obtained from

integral (2), and to show that this local integral is independent of the choice of the local Whittaker

function of the representation π(n). This is done as follows. First, one proves identity (5). This

is done in [BF99, Proposition 1.1]. Here ωπ(n) , denoted by σ in [BF99], is the unique spherical

function attached to π(n). Then we apply the argument of [BF99, Proposition 2.1] to deduce the

identity

L(s, π(n)) =

∫
Vr\GLr

Wπ(n)(h)

∫
Vr

∆̃s(vh)ψVr(v) dv dh. (3)

Here Wπ(n)(h) is any local unramified Whittaker function associated with the representation

π(n), normalized to equal one at the identity. The group Vr is the maximal unipotent subgroup

of GLr, and ψVr is the Whittaker character defined on Vr. See equation (15).

Indeed, to obtain (3) from (5), we use the uniqueness of ωπ(n) . Thus, from this uniqueness

we have
∫
Kr
Wπ(n)(kh) dk = ωπ(n)(h)Wπ(n)(e) where Wπ(n) is any Whittaker function such that

Wπ(n)(e) 6= 0. Here Kr is the maximal compact subgroup of GLr, and if |n|F = 1 it can be

viewed as a subgroup of GL
(n)
r . See § 2. Assuming that Wπ(n)(e) = 1, we plug this into integral

(5), change variables in h, and we obtain integral (3).

Thus we are reduced to the computation of the Whittaker function of ∆̃s and relating this

computation to the local corresponding integral of (2). This is done in [BF99] for the cases r = 2, 3

and arbitrary n. The general case is conjectured in [BF99, Conjecture 1.2]. This conjecture is

stated in our notation as identities (20) when r < n, and (28) when r > n.

In this paper we prove these two identities, and hence prove [BF99, Conjecture 1.2]. To do

this we give a different realization for the function ∆̃s. This realization makes the proof of the

stated conjecture relatively simple. The new realization is described in § 2 and is given by a

certain unique functional defined on the local theta representation Θ
(n)
nr . This last representation

is defined on the group GL
(n)
nr . We then use this functional to define a function on the group

GL
(n)
nr , which we denote by W

(n)
nr (h). Here h ∈ GL

(n)
nr . Restricting to the group GL

(n)
r , we obtain

a function on that group which we use to give the new expression for ∆̃s. Thus our result

contains two parts. The first is to prove that the function W
(n)
nr (h) restricted to GL

(n)
r is indeed

the generating function for the standard L function. This we do in Proposition 2. The second,

and the main result of this paper, is to obtain the desired expression for the Whittaker function

of the generating function. This we do in Theorem 2, which is [BF99, Conjecture 1.2]. In both

cases the computations are quite straightforward and are done by a repeated application of

Lemma 1 and Corollary 1 stated and proved in § 2.1.

As mentioned above, the global result and some of the computations done in [BF99] assume

that r < n. This is just a technical point. The authors of [BF99] were well aware that their
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construction works for all r and n. To complete their result, in the last section we give some
details in the other two cases, that is, when r > n and r = n.

To summarize, combining [BF99] with our result, we have the following theorem.

Theorem 1. Let π(n) denote an irreducible cuspidal representation of the group GL
(n)
r (A). Then

the partial L function LS(s, π(n)) has a meromorphic continuation to the whole complex plane.
When r 6= n this partial L function is holomorphic. When r = n it can have at most a simple
pole at s = 1.

As a first remark we mention that in fact we do expect that the partial L function LS(s, π(n))
will also be holomorphic in the case when r = n. From the global integral given in § 4, see integral
(26), we deduce that if this L function has a simple pole at s = 1, then π(n) will be isomorphic

to Θ
(n)
n . This we believe cannot happen.

Second, it is worthwhile mentioning that one can extend the above global constructions in

two ways. First, one can replace the representation Θ
(n)
n by the representation Θ

(n)
n,χ. Here χ

is any global character of GL1(A) such that χ = χn1 for some character χ1 of GL1(A). This

last representation is defined as a residue of an Eisenstein series, and as Θ
(n)
n it has a unique

Whittaker function. A second extension is to replace Θ
(n)
n by a cuspidal theta representation Θ

(n)
n,χ

when it exists. Here χ is any global character of GL1(A) which is not of the form χ = χn1 . For
example, for n = 2 such cuspidal representations were constructed in [GP80, Fli80]. For n = 3,
see [PP84] for the construction of such cuspidal representations. In both of these extensions we

expect to get the twisted L function LS(s, π(n)⊗χ−1). In the first case, when Θ
(n)
n,χ is not cuspidal,

we expect this L function to be holomorphic in all cases. However, if Θ
(n)
n,χ is cuspidal, and r = n,

then we do expect a simple pole at s = 1 if π(n) = Θ
(n)
n,χ.

Finally, we mention that the result proved in this paper simplifies some of the proofs
in [FG16]. This is explained in detail in [FG16] before and after equation (1).

2. Generating functions

The main references for this section are [BF99, KP84]. Fix a positive integer n > 1. Let F denote

a local non-archimedean field which contains a full set of nth roots of unity. Let GL
(n)
r (F ) denote

the metaplectic n-fold cover of the group GLr(F ). We realize this group as pairs 〈g, ε〉, where
g ∈ GLr(F ) and ε is an nth root of unity. We shall assume that |n|F = 1. Let Kr denote the
standard maximal compact subgroup of GLr(F ). Then the group Kr splits under the covering,

and can be viewed as a subgroup of GL
(n)
r (F ). Henceforth, we shall omit the notation of the field

F . For example, we write GLr for GLr(F ). Let Br denote the standard Borel subgroup of GLr
consisting of all upper triangular matrices. Let Tr denote the subgroup of Br consisting of all
diagonal matrices, and let Vr denote the group of all upper unipotent matrices in Br.

Let π(n) denote an unramified representation of GL
(n)
r associated to a character χ of Tr. These

representations were defined in [KP84]. In detail, let T
(n)
r,n denote the center of T

(n)
r . This defines

a genuine character of T
(n)
r,n which we will denote by χ. Let T

(n)
r,0 denote any maximal abelian

subgroup of T
(n)
r which contains the group T

(n)
r,n . Choose any extension of the character χ from

T
(n)
r,n to T

(n)
r,0 . Extend the character χ trivially to Vr. Then, inducing this extension to GL

(n)
r , we

obtain the representation π(n) = IndGL
(n)
r

B
(n)
r

χδ
1/2
Br

. It follows from [KP84] that this representation

depends only on the character χ. See also [BF99, p. 5]. In this paper we choose the maximal
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abelian subgroup T
(n)
r,0 to be the following. It is the group generated by T

(n)
r,n and all elements

〈t, ε〉 ∈ T (n)
r such that all diagonal entries of t are units. Then it follows from [KP84] that T

(n)
r,0 is

a maximal abelian subgroup of T
(n)
r . The extension of χ that we choose is the trivial extension.

Assuming that χ is in general position, one can attach to π(n) the local L function which is
defined as

L(s, π(n)) =
1∏r

i=1(1− χni (p)q−s)
. (4)

Here p is a generator of the maximal ideal in the ring of integers of F , and q−1 = |p|F . Also, s
is a complex variable.

In [BF99, formula (1.4)] the function ∆̃s(h) is defined. This function is a function of GL
(n)
r

and is defined as follows. It is an anti-genuine Kr bi-invariant function, and hence it is enough to
define ∆̃s(h) on elements h = 〈t, 1〉 where t = diag(pn1 , pn2 , . . . , pnr) ∈ Tr. On such an element
h, ∆̃s(h) = 0 unless all ni are non-negative integers, each one divisible by n. Finally, if all ni are
non-negative integers, and each one of them is divisible by n, then

∆̃s(〈t, 1〉) = |det(t)|s/n+(r−1)/2nδ
(n−1)/2n
Br

(t).

Proposition 1.1 in [BF99] states that for Re(s) large,∫
GLr

ωπ(n)(h)∆̃s(h) dh = L(s, π(n)). (5)

Here, ωπ(n) , denoted by σ in [BF99], is the spherical function attached to π(n). Thus ωπ(n) is

a genuine Kr bi-invariant function of GL
(n)
r . As is well known, the function ∆̃s(h) is uniquely

determined by [BF99, Proposition 1.1]. This function is referred to as the generating function

for the standard L function of the group GL
(n)
r .

We will give a different realization of the function ∆̃s(h). To do that let Θ
(n)
nr denote the

local unramified theta representation of GL
(n)
nr as constructed in [KP84]. This representation is

the unramified sub-representation of IndGL
(n)
nr

B
(n)
nr

δ
(n−1)/2n
Bnr

= IndGL
(n)
nr

B
(n)
nr

δ
−1/2n
Bnr

δ
1/2
Bnr

. Here, Bnr is the

Borel subgroup of GLnr. The definition of this induced representation is similar to the definition

of the representation π(n) given above, replacing the group GL
(n)
r by GL

(n)
nr , and the character χ

by the character δ
−1/2n
Bnr

.
This representation is not generic, but it still has a certain unique functional defined on it.

To describe this functional, let Unr denote the unipotent radical of the parabolic subgroup of
GLnr whose Levi part is GLr ×GLr × · · · ×GLr. In term of matrices the group Unr consists of
all matrices of the form 

I X1,2 X1,3 . . . X1,n

I X2,3 . . . X2,n

I
. . .

...
. . . Xn−1,n

I

 . (6)

Here I is the r × r identity matrix, and Xi,j ∈ Matr×r.
Let ψ denote an unramified character of F . Define a character ψUnr of Unr as follows. For

u ∈ Unr as above, define ψUnr(u) = ψ(tr(X1,2 +X2,3 + · · ·+Xn−1,n)). The stabilizer of ψUnr inside
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GLr ×GLr × · · · ×GLr is the group GL∆
r embedded diagonally. The embedding of GL∆

r inside
GLnr is given by g 7→ diag(g, g, . . . , g).

Given a representation σ
(n)
nr of GL

(n)
nr , we consider the space of all functionals on σ

(n)
nr which

satisfies l(σ
(n)
nr (u)v) = ψUnr(u)l(v) for all u ∈ Unr and all vectors v in the space of σ

(n)
nr . Given

such a functional, we may consider the space of functions W
(n)
v (h) = l(σ

(n)
nr (h)v).

Henceforth we shall assume that σ
(n)
nr = Θ

(n)
nr and denote the corresponding space of functions

by W
(n)
nr (h). Then, the following proposition is proved in [Cai16, Theorem 1.2].

Proposition 1. The space of functionals l defined as above on the representation Θ
(n)
nr is one-

dimensional.

It is not hard to construct the space of functions W
(n)
nr (h) explicitly on the space of Θ

(n)
nr .

Indeed, let f ∈ IndGL
(n)
nr

B
(n)
nr

δ
(n−1)/2n
Bnr

. Let U0
nr denote the subgroup of Unr which consists of all

matrices u as in (6) such that Xi,j ∈ Mat0
r×r for all i and j. Here Mat0

r×r is the subgroup of
Matr×r consisting of all matrices X such that X[l1, l2] = 0 for all l1 < l2, where X[l1, l2] denotes
the (l1, l2)th entry of X. Then

W (n)
nr (h) =

∫
U0
nr

f(wJw0uh)ψUnr(u) du (7)

defines the space of functions which satisfies the required transformation properties, provided
it is not identically zero. Here wJ is the Weyl element wJ = diag(Jn, Jn, . . . , Jn) ∈ GLnr where
Jn is the longest Weyl element of GLn. The Weyl element w0 is defined as the element whose
(a+ bn, (a− 1)r + b+ 1)th entry is one for all 1 6 a 6 n and 0 6 b 6 r − 1, and zero elsewhere.
Matrix multiplication implies that wJw0 is the shortest Weyl element of GLnr with the property
that for all u ∈ U0

nr, we have that wuw−1 is a lower unipotent matrix.

It is not hard to prove that the function W
(n)
nr (h) satisfies also the property W

(n)
nr (k∆h) =

W
(n)
nr (h) for all k∆ ∈ Kr ⊂ GL∆

r . The group GL∆
r was defined right after (6). Indeed, it follows

from [CFGK16, p. 4] right after Definition 1 that W
(n)
nr (k∆h) = W

(n)
nr (h) for all k∆ ∈Kr∩SL∆

r . If

k∆ is any diagonal matrix in Kr, then the property W
(n)
nr (k∆h) = W

(n)
nr (h) follows from integral

(7). We mention that to derive this identity we use our choice of the maximal abelian subgroup.

By considering the function W
(n)
nr (h) corresponding to the Knr fixed vector f in the space

of Θ
(n)
nr , one can easily show that W

(n)
nr (e) 6= 0. This will follow from the computation which we

will perform in the next proposition.
Before doing that, it will be convenient to perform a simple computation which we will refer

to several times. We will do it in the following subsection.

2.1 A local computation
Let F denote a local field. Given a root α associated with the group GLb, we will denote by xα(l)
the one-dimensional unipotent subgroup of GLb associated with this root. Assume that α and β
are two roots such that α+ β is also a root. Assume also that xα(z)xβ(l) = xβ(l)xα(z)xα+β(lz).
Let h(a) denote a one-dimensional torus of GLb which satisfies the property h(a)−1xα(z)h(a) =
xα(a−1z) for all a ∈ F ∗.

Let f denote a function defined on GLb(F ) which satisfies the property

f(xβ(l1)xα+β(l2)gk) = ψ(−l2)f(g) (8)

for all k ∈ Kb, where Kb is the standard maximal compact subgroup of GLb.
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Our goal in this subsection is to compute the integral

I =

∫
F 2

f(xα(z)xβ(l)h(a))ψ(εl) dz dl.

Here ε = 0,−1.

Lemma 1. We have I = f(h(a)xα(−a−1ε)) = f(xα(−ε)h(a)).

Proof. Since f is right Kb invariant,

I =

∫
F 2

∫
|m|61

f(xα(z)xβ(l)h(a)xα(m))ψ(εl) dmdz dl.

Conjugating xα(m) to the left, and using the above assumptions on the commutation relations,
we obtain the integral

I =

∫
F 2

∫
|m|61

f(xα(z + am)xα+β(−lam)xβ(l)h(a))ψ(εl) dmdz dl.

Changing variables in z and using property (8), we obtain
∫
ψ(lam) dm as inner integration. Here

m is integrated over |m| 6 1. Hence we may restrict the integration domain over the l variable
in integral I to the domain |la| 6 1.

The next step is to conjugate xβ(l) to the left. Using the commutation relations and property
(8), we obtain

I =

∫
F
f(xα(z)h(a))

∫
|la|61

ψ(zl + εl) dl dz.

Changing variables in l, we obtain

I = |a|−1

∫
|(z+ε)a−1|61

f(xα(z)h(a)) dz = |a|−1

∫
|(z+ε)a−1|61

f(h(a)xα(a−1z)) dz.

Writing a−1z = a−1z + εa−1 − εa−1, we obtain

I = |a|−1

∫
|(z+ε)a−1|61

f(h(a)xα(a−1z+εa−1−εa−1)) dz = |a|−1f(h(a)xα(−a−1ε))

∫
|(z+ε)a−1|61

dz

where the last equality is obtained from property (8), and the fact that xα(a−1z + εa−1) ∈ Kb.
From this the lemma follows. 2

With the above notation we prove the following corollary.

Corollary 1. Let a = 0, or if a ∈ F ∗, assume that |a| 6 1. Then∫
F
f(xα(z))ψ(az) dz = f(e).

Proof. Since f is right invariant under Kb, the above integral is equal to∫
F

∫
|m|61

f(xα(z)xβ(m))ψ(az) dmdz.

Conjugating xβ(m) to the left, we obtain, from the left invariant property of f , the integral∫
ψ(mz) dm as inner integration. Here m is integrated over |m| 6 1. Hence, we may restrict the

integration over z to the domain |z| 6 1. The result follows. 2
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2.2 On the generating function
In this subsection we will prove that the generating function can be expressed in terms of the

function W
(n)
nr .

Embed g ∈ GLr in GLnr as g 7→ g0 = diag(g, Ir, . . . , Ir). We have the following proposition.

Proposition 2. Let W
(n)
nr (h) denote the function corresponding to the Knr fixed vector. Then,

for s′ = s/n− (n− 2)r/2− 1/2n, we have

∆̃s(g) = W
(n)
nr (g0)|det g|s′ . (9)

Proof. It follows from the discussion right after equation (7) that the function W
(n)
nr (g0) is Kr

bi-invariant. To prove the proposition it is enough to show that∫
GLr

ωπ(n)(g)W
(n)
nr (g0)|det g|s′ dg = L(s, π(n)). (10)

Notice that this will also imply that the function W
(n)
nr (h) as defined in (7) is not identically

zero on the space of the representation Θ
(n)
nr . Using the identity ωπ(n)(g) =

∫
Kr
fπ(n)(kg) dk, we

may, after a change of variables, replace in (10) the function ωπ(n) by fπ(n) . Here fπ(n) is the
unramified vector in the space of π(n). Performing the Iwasawa decomposition, the integral in
equation (10) is equal to∫

Tr

fπ(n)(t)

∫
Vr

W
(n)
nr (v0t0)|det t|s′δBr(t)−1 dv0 dt. (11)

Here Vr is the maximal unipotent subgroup of GLr consisting of upper unipotent matrices. Also
t = diag(a1, a2, . . . , ar). Plug integral (7) into integral (11). Thus, we obtain the integral∫

Vr

∫
U0
nr

f(wJw0uv0t0)ψUnr(u) du dv0 (12)

as an inner integration to integral (11). Let U1
nr denote the subgroup of U0

nr consisting of all
matrices such that X1,2[i, j] = 0 for all i 6= j. We claim that integral (12) is equal to∫

U1
nr

f(wJw0ut0)ψUnr(u) du. (13)

We do this by using Lemma 1 several times. It is convenient to use the following notation. For
all integers 1 6 a, b 6 nr and all m ∈ F , let xa,b(m) = Inr +mea,b. Here ea,b is the matrix of size
nr which has a one in the (a, b)th entry, and zero elsewhere.

In integral (12) consider the integrations over the variables X1,2[r, r − 1] and v0[r − 1, r],
where the latter variable indicates the (r − 1, r)th entry of v0. In the notation of § 2.1, let
xα(z) = xr,2r−1(z) where z = X1,2[r, r− 1], and let xβ(l) = xr−1,r(l) where l = v0[r− 1, r]. With
this notation we have xα+β(m) = xr−1,2r−1(m), and from the definition of the character ψUnr

we have ψUnr(xα+β(m)) 6= 1. Hence, all the conditions of Lemma 1 are satisfied with ε = 0 and
h(a) = h(ar) = diag(Ir−1, ar, Inr−r). From this we deduce that in integral (12) we may restrict
the domain of integration to the group Vr with the condition that v0[r − 1, r] = 0, and to the
group U0

nr with the condition X1,2[r, r − 1] = 0.
In general, we apply this process in the following order. Fix r + 1 6 j 6 2r − 1. Then for

all j − r + 1 6 i 6 r, set xα(z) = xi,j(z) with z = X1,2[i, j − r], and xβ(l) = xj−r,i(l) with
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l = v0[j − r, i]. With this notation we have xα+β(m) = xj−r,j(m). Since ψUnr is not trivial on
xα+β(m), we can apply Lemma 1 with ε = 0. The end result of this repeated process is that
integral (12) is equal to integral (13).

Conjugating by w0, write w0U
1
nrw

−1
0 = U2

nrU
3
nr, where the groups U2

nr and U3
nr are defined as

follows. First, identify the group U2
nr with r copies of the group Vn. Here Vn is defined to be the

group of all upper unipotent matrices of GLn. The embedding of U2
nr inside GLnr is given by

(vn,1, vn,2, . . . , vn,r) 7→ diag(vn,1, vn,2, . . . , vn,r). Here vn,i ∈ Vn. To define the group U3
nr, consider

the unipotent group generated by all matrices of the form
I
Y2,1 I
Y3,1 Y3,2 I

...
...

. . . I
Yr,1 Yr,2 . . . Yr,r−1 I

 . (14)

Here Yi,j is in Matn×n. Then the group U3
nr is generated by all matrices as in (14) which satisfies

the conditions Yi,j [l1, l2] = Yi,j [1, 2] = 0 for all l1 > l2.
For v ∈ Vn, let ψVn(v) denote the Whittaker character of the group Vn. This character is

defined as follows. Given v = (v[i, j]) ∈ Vn, then

ψVn(v) = ψ(v[1, 2] + v[2, 3] + · · ·+ v[n− 1, n]). (15)

Let u2 = diag(vn,1, vn,2, . . . , vn,r) ∈ U2
nr. Define the character ψU2

nr
of U2

nr as ψU2
nr

(u2) =

ψVn(vn,1)ψVn(vn,2) · · ·ψVn(vn,r). Then, in the notation of U2
nrU

3
nr, the character ψUnr transforms

to the character ψU2
nr

on the group U2
nr, and is trivial on the group U3

nr.
Thus, integral (13) is equal to ∫

U3
nr

fW (u3w0t0w
−1
0 ) du3 (16)

where

fW (h) =

∫
U2
nr

f(wJu2h)ψU2
nr

(u2) du2.

We have w0t0w
−1
0 = diag(A1, A2, . . . , Ar) where Ai = diag(ai, In−1). Conjugating the matrix

w0t0w
−1
0 to the left in integral (16), we obtain the factor

α(t) = (|a2||a3|2|a4|3 · · · |ar|r−1)n−2

from the change of variables in U3
nr. Thus, integral (16) is equal to

α(t)

∫
U3
nr

fW (w0t0w
−1
0 u3) du3. (17)

We claim that integral (17) is equal to α(t)fW (w0t0w
−1
0 ). This we will show by a repeated

application of Corollary 1. Indeed, fix 2 6 i 6 r, where we first start with i = r, then i = r−1 and
so on. Let 1 6 k 6 i−1. Assume that l1 and l2 are such that Yi,k[l1, l2] is a variable in the domain of
integration in integral (17). In the notation of § 2.1, let xα(z) = xn(i−1)+l1,n(k−1)+l2(z) with z =
Yi,k[l1, l2], and let xβ(m) = xn(k−1)+l2,n(i−1)+l1+1(m). Then xα+β(l) = xn(i−1)+l1,n(i−1)+l1+1(l),
and from the properties of fW we have fW (xα+β(l)g) = ψ(−l)fW (g). Applying Corollary 1
several times in the indicated order, the above claim follows.
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Let f be an arbitrary function in the space of Θ
(n)
nr . Then the integral fW (h) defines a

functional on Θ
(n)
nr which by [Cai16, Theorem 3.38] is unique. Applying an argument similar to

that in [BG92, pp. 169–170], we deduce that for the unramified vector f in the space of Θ
(n)
nr we

have the following. First, fW (w0t0w
−1
0 ) = 0 unless |ai| 6 1 and |ai| = |bi|n for some |bi| 6 1. On

such elements fW (w0t0w
−1
0 ) is not zero and is equal to δ

(n−1)/2n
Bnr

(w0t0w
−1
0 ). Hence, integral (17)

is equal to

α(t)fW (w0t0w
−1
0 ) = α(t)δ

(n−1)/2n
Bnr

(w0t0w
−1
0 ). (18)

When ai = bni , we have fπ(n)(t) =
∏r
i=1 χ

n
i (bi)δ

n/2
Br

(diag(1, . . . , 1, bi, 1, . . . , 1)). Combining all this,
integral (11) is equal to

r∏
i=1

∫
|bi|61

χni (bi)|bi|ns
′+n(n−2)(r−1)/2+(n−1)2/2 dbi. (19)

From this the proposition follows. 2

3. The Whittaker functional of the generating function

In this section we compute the Whittaker functional of the function W
(n)
nr (g0). Here the notation

is as in § 2, but we assume that r < n. We make this assumption to get a precise proof of [BF99,
Conjecture 1.2]. The case when r > n is similar and will be dealt with in the next section. Embed
g ∈ GLr in GLn as g 7→ diag(g, In−r). Let g0 = diag(g, In−r, In, . . . , In) ∈ GLnr, where In appears
r − 1 times.

Let Vr denote the standard maximal unipotent subgroup of GLr, and let ψ−1
Vr

denote the

Whittaker character of Vr. See equation (15) for the definition of ψVr . Let W
(n)
Θn

denote

the Whittaker function of the theta function defined on GL
(n)
n . Our goal is to prove the following

theorem.

Theorem 2. Assume that r < n. With the above notation, for all g ∈ GL
(n)
r , we have∫

Vr

W (n)
nr (v0g0)ψ−1

Vr
(v) dv = W

(n)
Θn

(
g

In−r

)
|det g|(n−1)(r−1)/2. (20)

Proof. We will consider the case when r = n− 1. This is the hardest case. When r < n− 1 the
computations are similar but simpler. Since we will use some of the notation introduced in the
previous sections, we will continue to write r and n even though we assume that r = n− 1. By
the Iwasawa decomposition, it is enough to prove identity (20) for g = t = diag(a1, a2, . . . , an−1).

Notice, that from the left invariant properties of W
(n)
nr and W

(n)
Θn

, we may assume that |ai| 6 1
for all 1 6 i 6 n− 1.

We start by plugging integral (7) into the left-hand side of identity (20). Doing so, we obtain
the integral ∫

Vr

∫
U0
nr

f(wJw0uv0t0)ψUnr(u)ψ−1
Vr

(v) du dv. (21)

As in the proof of Proposition 2, we claim that integral (21) is equal to the integral∫
U0
nr

f(wJw0uδ0t0)ψUnr(u) du (22)
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where δ0 =
∏n−1
i=2 xi,r+i−1(1). Here, the definitions of U0

nr and xa,b(m) are given before and
after integral (13). To prove the above claim, we follow exactly the same steps as in the proof
that integral (12) is equal to integral (13). The only difference is that because of the character
ψ−1
Vr

in integral (21), for suitable variables in Vr, we need to use Lemma 1 with ε = −1 and not
with ε = 0 as in the proof of Proposition 2. This explains the element δ0. Next we proceed as in
the proof of Proposition 2. Following the exact steps which showed that integral (13) is equal to
integral (17), we deduce that integral (22) is equal to

I1 = α(t)

∫
U3
nr

fW (w0t0w
−1
0 u3δ1(t)) du3.

Here the group U3
nr and α(t) are defined before integral (17), and we remind the reader that

we assume that r = n − 1. Also, we have δ1(t) =
∏n−1
i=2 x(i−1)n+1,(i−2)n+2(a−1

i ). This element is
obtained by conjugating δ0 by w0 and t0.

At this point, for all 2 6 j 6 n− 1, we will introduce an integral which we denote by Ij . To
do that we first fix some notation. Let tj = diag(Aj,j , Aj,j+1, . . . , Aj,n−1, In, . . . , In) denote the
torus element of GLnr where Aj,j = diag(a1, . . . , aj , In−j), and for all j+ 1 6 i 6 n− 1 we define
Aj,i = diag(Ij , ai, In−j−1). Notice that when j = n−1, we get tj = diag(An−1,n−1, In, . . . , In) = t0.

Next we define αj(t) = |aj+1a
2
j+2a

3
j+3 · · · a

n−j−1
n−1 |n−2, where we set αn−1(t) = 1. Finally, we define

a set of subgroups Un,j , and a set of characters ψUn,j defined on these groups. The definition
is inductive, so we start with Un,2. Consider the group U3

nr with r = n − 1, as was defined
right after equation (14). Let Un,2 denote the subgroup of U3

nr with the extra condition that
Yn−1,i = 0 for all 1 6 i 6 n − 2. Assuming we defined Un,j−1, we define Un,j as the subgroup
of Un,j−1 consisting of matrices of the form (14) such that Yn−j+1,i = 0 for all 1 6 i 6 n − j,
and also satisfies the condition Yi,l[b, j] = 0 for all 2 6 i 6 n − j, 1 6 l 6 i − 1 and 1 6 b 6 n.
The character ψUn,j is defined as follows. For u ∈ Un,j written as in equation (14), we set

ψUn,j (u) = ψ(
∑n−j

i=2 Yi,i−1[j − 1, j + 1]).
With this notation, for all 2 6 j 6 n− 1, we set

Ij = αj(t)

∫
Un,j

fW (tju)ψUn,j (u) du.

We will prove that I2 = I1, and that for all 2 6 j 6 n− 1, we have Ij = Ij−1. This will complete
the proof of the theorem. Indeed, proving the above implies that the left-hand side of equation
(20) is equal to In−1. Since αn−1(t) = 1, the group Un,n−1 is the trivial group, and tn−1 = t0, we
deduce that In−1 = fW (t0). But as in equation (18) we obtain that fW (t0) equals the right-hand
side of equation (20).

We prove that I2 = I1. Since |ai| 6 1, we obtain the Iwasawa decomposition δ1(t) =∏n−1
i=2 x(i−2)n+2,(i−1)n+1(ai)

∏n−1
i=2 hi(ai)k. Here k ∈ Knr, and we have

∏n−1
i=2 hi(ai) = diag(B2,1,

B2,2, . . . , B2,n−1). Here B2,1 = diag(1, a2, In−2), for 2 6 i 6 n− 2 we have B2,i = diag(a−1
i , ai+1,

In−2), and B2,n−1 = diag(a−1
n−1, In−1). Conjugating in I1 the matrix δ1(t)k−1 to the left, and

using the left invariant properties of fW , we obtain by matrix multiplication

I1 = α2(t)

∫
U3
nr

fW (t2u3)ψU3
nr

(u3) du3. (23)

Here we use the fact that w0t0w
−1
0

∏n−1
i=2 hi(ai) = t2. The factor of |a2a3 · · · an−1|−(n−2) is obtained

from a change of variables when we conjugate the torus
∏n−1
i=2 hi(ai) across U3

nr. The product
of this factor by α1(t) is equal to α2(t). The character ψU3

nr
is defined as follows. For u3 ∈ U3

nr,
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define ψU3
nr

(u3) = ψ(
∑n−1

i=2 Yi,i−1[1, 3]). To complete the proof that I2 = I1, we need to show that

we can restrict the support of integration from U3
nr to Un,2. In other words, we need to show

that for all 1 6 i 6 n − 2, the integration over all variables in Yn−1,i is in Knr. This is done as
in the proof of Proposition 2 while showing that integral (17) reduces to the left-hand side of
identity (18). Indeed, from the definition of the torus t2, given a variable Yn−1,i[l1, l2], we can find
a one-dimensional unipotent subgroup xβ(m) so that we can apply Corollary 1. Thus I2 = I1.

The next step is to prove that Ij = Ij−1. The first step is to prove that we can integrate over
a smaller unipotent group. Let Un,j−1,1 denote the subgroup of Un,j−1 consisting of all matrices
which also satisfies Yi,l[b, j] = 0 for all 3 6 i 6 n − j + 1, 1 6 l 6 i − 2 and 1 6 b 6 j − 1. To
show that we can reduce the domain of integration from Un,j−1 to Un,j−1,1 we apply Corollary 1.
In the notation of this corollary, let xα(z) = xn(i−1)+b,n(l−1)+j(z) with z = Yi,l[b, j], and let
xβ(m) = xnl+j−2,n(i−1)+b(m). Notice that in this case the root α + β corresponds to the one-
dimensional unipotent subgroup xnl+j−2,n(l−1)+j(c), which is a subgroup of Un,j−1,1. Moreover,
the character ψUn,j−1 is not trivial on this subgroup. Hence, the conditions of the Corollary 1
are satisfied. We mention that the order for which we apply this corollary is important. We first
vary 3 6 i 6 n− j + 1 and fix l = 1. Then we repeat the same process with l = 2 and so on.

The second step is to show that Ij−1 is equal to

αj−1(t)

∫
Un,j−1,2

fW (tj−1uδj−1(t))ψUn,j−1(u) du. (24)

Here Un,j−1,2 is the subgroup of Un,j−1,1 which satisfies the condition that Yi,i−1[j − 1, j] = 0

for all 2 6 i 6 n − j + 1. The matrix δj−1(t) =
∏n−j+1
i=2 x(i−1)n+j−1,n(i−2)+j(a

−1
j+i−2). To derive

integral (24) we apply Corollary 1 with xα(z) = xn(i−1)+j−1,n(i−2)+j(z) with z = Yi,i−1[j − 1, j]
and xβ(l) = x(i−1)n+j−2,(i−1)n+j−1(l). The next step is to perform an Iwasawa decomposition for
δj−1(t) in integral (24). This is done as with δ1(t) and we obtain

δj−1(t) =

n−j+1∏
i=2

xn(i−2)+j,(i−1)n+j−1(aj+i−2)

n−j+1∏
i=2

h′i(aj+i−2)k

where k ∈Knr. Here
∏n−j+1
i=2 h′i(aj+i−2) = diag(Bj−1,1, Bj−1,2, . . . , Bj−1,n−j+1, In, . . . , In), where

Bj−1,1 = diag(Ij−1, aj , In−j), Bj−1,i = diag(Ij−2, a
−1
j+i−2, aj+i−1, In−j) for 2 6 i 6 n − j, and

Bj−1,n−j+1 = diag(Ij−2, a
−1
n−1, In−j+1). Plugging this into integral (24) and conjugating the

matrix δj−1(t)k−1 to the left, we obtain

αj(t)

∫
Un,j−1,2

fW (tju)ψUn,j (u) du. (25)

Here, we obtain the factor of |ajaj+1 · · · an−1|−(n−2) from the conjugation of the toral part
of δj−1(t)k−1 across Un,j−1,2. This combined with αj−1(t) gives the factor αj(t) in integral
(25). Notice also that the conjugation by the unipotent part of δj−1(t)k−1 changes the additive
character to ψUn,j . This is well defined. Indeed, notice that Un,j is a subgroup Un,j−1,2 and we
can view ψUn,j as a character of Un,j−1,2 by extending it trivially. Finally, we have the identity

tj−1
∏n−j+1
i=2 h′i(aj+i−2) = tj . To show that integral (25) equals Ij , we need to show that we may

restrict the domain of integration from Un,j−1,2 to Un,j . We do so using Corollary 1. Indeed, the
group Un,j is the subgroup of Un,j−1,2 obtained by setting Yn−j+1,l = 0 for all 1 6 l 6 n − j
and Yi,i−1[b, j] = 0 for all 2 6 i 6 n − j and 1 6 b 6 j − 2. To show that we may restrict the
integration over Un,j−1,2 to the subgroup obtained by setting Yn−j+1,l = 0, we argue in a similar
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way to the reduction from the group U3
nr to Un,2 as was done right after integral (23). Then,

finally, to obtain the group Un,j we use Corollary 1 with xα(z) = xn(i−1)+b,n(i−2)+j(z) where
z = Yi,i−1[b, j] and xn(i−2)+j,n(i−1)+b+1(m). Here 2 6 i 6 n− j and 1 6 b 6 j − 2. 2

4. The case when r > n

As mentioned in the introduction, the authors of [BF99] were well aware that the situation when
r > n is similar. Since they do not specify this case explicitly, we briefly mention the global
constructions and show how a similar result to Theorem 2 holds in this case.

Assume first that r > n. Let π(n) denote a cuspidal representation of the group GL
(n)
r (A).

Let Θ
(n)
n denote the theta representation of the group GL

(n)
n (A). Then we consider the global

integral (1) introduced in the introduction. The group Vr,n is defined as follows. Recall that Vr
is the standard maximal unipotent subgroup of GLr. Then Vr,n is the subgroup of Vr consisting
of all matrices v = (vi,j) ∈ Vr such that vi,j = 0 for all 2 6 j 6 n + 1. The character ψVr,n is
defined by ψVr,n(v) = ψ(vn+1,n+2 + vn+2,n+3 + · · ·+ vr−1,r). It follows from the cuspidality of φ
that integral (1) converges for all s. A similar unfolding to that in [BF99, § 2] implies that for
Re(s) large, integral (1) is equal to integral (2).

Next we consider the case when r = n. In this case the global integral is given by∫
Zr(A)GLr(F )\GLr(A)

φ(g)θ(g)E(g, s) dg. (26)

Here Zr is the subgroup of Z, the center of GLr, which consists of scalar matrices which are r
powers. For simplicity we assume that all representations have a trivial central character. Also,
E(g, s) is the Eisenstein series defined on the group GLr(A) and is associated with the induced

representation Ind
GLr(A)
P (A) δsP . Here P is the maximal parabolic subgroup of GLr whose Levi part

is GLr−1 × GL1. Unfolding this integral, by first unfolding the Eisenstein series, we obtain for
Re(s) large that integral (26) is equal to∫

Zr(A)Vr(A)\GLr(A)
Wφ(g)Wθ(g)f(g, s) dg. (27)

Here f(g, s) is a section in the above induced representation.
Next we study the local unramified computation corresponding to integrals (2) and (27).

Since the Whittaker coefficient of the representation π(n) is not factorizable, it is not clear that
these integrals are Eulerian. However, as explained in [BF99], if we can prove similar results
to Proposition 2 and Theorem 2, the so-called ‘new way’ would imply that these integrals are
indeed factorizable. As for Proposition 2, it is clear that it holds for all values of r and n.

As for Theorem 2, this is not the case for all matrices g ∈ GL
(n)
r . Assuming r > n, denote by

T0 the subgroup of GLr which consists of all diagonal matrices t = diag(a1, a2, . . . , ar) such that

|ai| 6 1 for 1 6 i 6 n and |ai| = 1 for all n+ 1 6 i 6 r. Let T
(n)
0 denote the inverse image of T0

inside GL
(n)
r . Let GL

(n)
r,0 denote all elements g ∈ GL

(n)
r which can be written as g = vtk where

v ∈ Vr, t ∈ T (n)
0 and k ∈ Kr. Here Kr is the standard maximal compact subgroup of GLr. With

this notation we have the following theorem.

Theorem 3. Assume that r > n. Then, for all g ∈ GL
(n)
r,0 , we have∫

Vr

W (n)
nr (v0g0)ψ−1

Vr
(v) dv = W

(n)
Θn

(g)|det g|(n−1)(r−1)/2+n−r. (28)
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Proof. The proof of this theorem is the same as the proof of Theorem 2, and so we will only
indicate the end result. Using the Iwasawa decomposition, we may assume that g0 = t0 = diag(t,
Ir, . . . , Ir) where t = (a1, . . . , ar). This factorization produces a factor of δ−1

Br
(t).

Defining similar integrals Ij as in Theorem 2, we prove that the left-hand side of integral (28)
is equal to fW (t′0) where t′0 = diag(A1, A2, . . . , Ar−n+1, In, . . . , In). Here A1 = diag(a1, . . . , an),
and for all 2 6 i 6 r − n + 1 we have Ai = diag(In−1, an+i−1). Applying the factorization of
equation (18), we obtain the identity

fW (t′0) = δ
(n−1)/2n
Pr,n

(t′0)
r−n+1∏
i=1

W
(n)
Θn

(Ai).

From the properties of the Whittaker function, we deduce that for all 2 6 i 6 r− n+ 1 we have

W
(n)
Θn

(Ai) = 0 unless |an+i−1| = 1. Notice that δ−1
Br

(A1, In−r) = δ−1
Bn

(A1)|detA1|n−r. From this
the theorem follows. 2

Notice that this theorem is enough to prove that the corresponding local versions of integrals
(2) and (27) are Eulerian. Indeed, the local version of integral (2) is given by∫

Vn\GLn

Wφ

(
g

Ir−n

)
Wθ(g)|det g|s−(r−n)/2 dg. (29)

Here φ is a vector in the local component of π
(n)
ν where ν is a place where all data

are unramified. Similarly for θ. Also, Wφ is any local Whittaker functional defined on the

representation π
(n)
ν . Similarly, Wθ is the Whittaker functional defined on the space of Θ

(n)
n,ν .

It is known that for the representation Θ
(n)
n,ν this Whittaker functional is unique (see [KP84]).

However, this need not be the case for the representation π
(n)
ν .

Applying the Iwasawa decomposition to the quotient Vr\GLr, the domain of integration in
integral (29) is reduced to the torus Tr of GLr. However, because of the Whittaker functional
properties, Wφ

(
t
Ir−n

)
is zero unless t ∈ T0. Hence, we can apply Theorem 3 to deduce that

integral (2) is indeed Eulerian.
A similar argument applies to integral (27). Indeed, using the properties of the Whittaker

function, we can choose representatives for the quotient Zr\Tr to be in the group T0. Hence,
once again we can apply Theorem 3.
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