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Abstract

Different tasks in the computational pipeline of single-particle cryo-electron microscopy (cryo-EM) require enhan-
cing the quality of the highly noisy raw images. To this end, we develop an efficient algorithm for signal enhancement
of cryo-EM images. The enhanced images can be used for a variety of downstream tasks, such as two-dimensional
classification, removing uninformative images, constructing ab initio models, generating templates for particle
picking, providing a quick assessment of the data set, dimensionality reduction, and symmetry detection. The
algorithm includes built-in quality measures to assess its performance and alleviate the risk of model bias. We
demonstrate the effectiveness of the proposed algorithm on several experimental data sets. In particular, we show that
the quality of the resulting images is high enough to produce ab initio models of� 10Å resolution. The algorithm is
accompanied by a publicly available, documented, and easy-to-use code.

Impact Statement
In the past few years, single-particle cryo-electronmicroscopy (cryo-EM) has become the state-of-the-art method
for resolving the atomic structure and dynamics of biological molecules. We design an efficient algorithm to
enhance the quality of the highly noisy cryo-EM experimental images. The enhanced images can be used in a
wide variety of tasks in the algorithmic pipeline of cryo-EM, including two-dimensional classification, removal
of uninformative images, ab initio modeling, dimensionality reduction, symmetry detection, quick assessment of
the data set, and as templates for particle picking.We provide a documented Python code. The algorithm includes
built-in quality measures to mitigate the risk of model bias.

1. Introduction

In the past few years, single-particle cryo-electron microscopy (cryo-EM) has become the state-of-the-art
method for resolving the atomic structure and dynamics of biological molecules(1–5). A cryo-EM
experiment results in a large set of images, each corresponding to a noisy tomographic projection of
the molecule of interest, taken from an unknown viewing direction. In addition, the electron doses
transmitted by the microscope must be kept low to prevent damage to the radiation-sensitive biological
molecules, inducing signal-to-noise ratio (SNR) levels that might be as low as –20 dB (i.e., the power of
the noise is 100 times greater than the signal)(6). The low SNR level is one of the main challenges in
processing cryo-EM data sets. In particular, different tasks in the computational pipeline of cryo-EM
require enhancing the quality of the highly noisy raw images. Specifically, the high-quality enhanced
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images can be used as two-dimensional (2D) class averages, to remove uninformative images (e.g., pure
noise images, contamination), to construct ab initio models based on the common-lines property(7,8),1 as
templates for particle picking, to provide a quick assessment of the particles, for dimensionality reduction,
and for symmetry detection(6,11).

In this paper, we propose a new signal enhancement algorithm that quickly produces multiple
enhanced images that represent different viewing directions of the molecule of interest. The algorithm
begins by performing steerable principal component analysis (sPCA) that reduces the dimensionality of
the data and allows rotating (steering) the images easily(12). Next, we randomly choose a subset of the
images and find their nearest neighbors based on (approximately) rotationally invariant operations.
Hereafter, we refer to each image and its neighbors as a class. Then, we apply two stages for refining
the classes. We first remove low-quality classes, and then also remove individual images which are
inconsistent with their classes. These stages are based on inspecting the spectra of designed matrices,
called synchronization matrices. The spectra of these matrices (that is, the distribution of their eigen-
values) provide a built-in quality measure to assess the consistency of each class. This is essential to
support downstream tasks, such as ab initio modeling. Finally, we run an expectation–maximization
(EM) algorithm for each class independently. This step aligns and averages the remaining images in each
class, producing high SNR enhanced images. The different steps of the algorithm are elaborated in
Section 2.

Our algorithm is inspired by and builds on the general scheme of(13). In particular, the authors of(13)

suggest finding the rotationally invariant nearest neighbors of each image based on the bispectrum: a
third-order rotationally invariant feature(14). Then, a high-quality image is produced by aligning all
neighbors and averaging. While this method works quite well in many cases, the bispectrum inflates the
dimensionality of the problem, boosts the noise level (which is already high in typical data sets), and does
not offer a systematic way to assess the performance of the algorithm. Section 2 elaborates on the
differences between(13) and our proposed algorithm.

Our work also shares similarities with 2D classification algorithms, which cluster the particle images
and average them to produce high SNR images, dubbed class averages. 2D classification is a standard
routine in all contemporary cryo-EMcomputational pipelines and ismostly used to remove uninformative
images that are associated with low-quality class averages and to provide a quick assessment of the
particles; our algorithm can be used for those tasks aswell. A popular solution to the 2D classification task,
implemented in the software RELION, is based on maximizing the posterior distribution of the classes,
while marginalizing over the rotations and translations, using an EM algorithm(15); we describe this
methodology in more detail in Section 2.5. A large number of class averages leads, however, to high
computational complexity and to low-quality results because only a few images are assigned to each class.
In addition, EM tends to suffer from the “rich get richer” phenomenon (also dubbed the attraction
problem): most experimental imageswould correlate well with, and thus be assigned to, the class averages
that enjoy higher SNR. As a result, EM tends to output only a few informative classes(16). We circumvent
this phenomenon since we apply the EM to each class separately.

Another related research thread considers denoising at the image or at the micrograph level. One
example of the former is denoising based on Wiener filtering(17). A popular micrograph denoising
technique is TOPAZ(18), which is based on deep learning methods; see also(19,20). However, these
techniques do not harness the similarity between particle images to suppress the noise, and thus their
denoising quality is limited. For example, we use the enhanced images (the outputs of our algorithm) to
directly construct molecular structures at a low to intermediate resolution. As far as we know, this has not
been done using the said methods.

The paper is organized as follows. Section 2 outlines our method. In Section 3, we present results on
four experimental data sets. We attain high-quality images that can be used to construct ab initio models

1Wemention that there are many alternative algorithms for constructing ab initio models, which do not require enhanced images,
such as stochastic gradient descent9 and the method of moments10.
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with resolutions between � 10 Å to � 20 Å. Section 4 concludes the paper and delineates future work to
improve the algorithm.

2. Method

This section describes themain steps of the proposed algorithm.A documented Python code is available at
https://github.com/TamirBendory/CryoEMSignalEnhancement.

2.1. Preprocessing

The algorithm begins with a few standard preprocessing steps: we apply phase-flipping to approximately
correct the effect of the CTF, down-sample the images to a size of 89�89 pixels, and whiten the noise in
the images. The down-sampling has a minor effect on the nearest neighbors search, and is thus used to
accelerate the running time of the algorithm. Then, we further reduce the dimension of the images using
sPCA, which learns a steerable, data-driven basis for the data set(12). Under this basis, the ith image can be
approximated by a finite expansion

Ii ξ,θð Þ≈
Xkmax

k¼�kmax

Xqk
q¼1

aik,qψ
k,q
c ξ,θð Þ, i¼ 1,…,N, (2.1)

where N is the number of images in the data set, ξ,θð Þ are polar coordinates, ψk,q
c are the sPCA

eigenfunctions, aik,q are the corresponding coefficients, c¼ 1=2 is the bandlimit of I, and kmax and qk are
determined as described in(12). Remarkably, under this representation, an in-plane rotation translates into a
phase shift in the expansion coefficients

Iiðξ,θ�αÞ≈
Xkmax

k¼�kmax

Xqk
q¼1

aik,qe
�ιkαψk,q

c ðξ,θÞ, (2.2)

where ι¼ ffiffiffiffiffiffiffi�1
p

is the imaginary unit, and, for real-valued images, a reflection translates into conjugation

Ii ξ,π�θð Þ≈
Xkmax

k¼�kmax

Xqk
q¼1

aik,qψ
k,q
c ξ,θð Þ: (2.3)

The sPCA dramatically reduces the dimensionality of the images. We use 500 sPCA coefficients to
represent the images. Henceforth, with a slight abuse of notation, we refer to the vector of sPCA

coefficients of the ith image ai ≔ aik,q

n o
k,q

as the image.

We mention that the final stage of the algorithm, the EM step, uses the raw images, which are not
affected by these preprocessing steps.

2.2. Nearest neighbor search

Next, we randomly choose Nc images I r1 ,…, I rNc
from the data set and find the K nearest neighbors of

each image. The underlying assumption is that the nearest neighbors arise from similar viewing
directions. We refer to an image and its K neighbors as a class.

The nearest neighbors search is based on a correlation measure which is approximately invariant
under in-plane rotations and reflection. Let Θ be a predefined set of N θ angles; we typically use Θ¼
i
36π, i¼ 0,…,71 so that Nθ ¼ 72:We define the approximately invariant correlation, between two images
ai and aj, by

max
θ∈Θ

max corr eikθ �ai,aj
� �

,corr eikθ �ai,aj
� �� �

,
�

(2.4)

where

corr u,vð Þ¼ u�uð Þ∗ v� vð Þ
σuσv

, (2.5)
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and where k is a radial frequency vector, � denotes element-wise product, and σa is the standard deviation
of a vector a. The nearest neighbors of the i -th image are chosen as the K images with the highest
correlation (2.4).

The nearest neighbors search requires computing N correlations for each of the Nc selected images,
resulting in a total ofNcN correlations. For each image, the correlations can be computed using a couple of
matrix multiplications using established linear algebra libraries. The computational complexity of this
stage is governed by the multiplication of matrices of sizeNθ�N co andN co�N, whereN co is the number
of sPCA coefficients. For the experiments in Section 3, this stage took less than a minute.

Two comments are in order. First, the approximately invariant correlation can be, in principle, replaced
with invariant polynomials called the bispectra, giving rise to analytical rotationally invariant fea-
tures(13,14) or approximately rotationally and translationally invariant features(21) However, the dimension
of the bispectrum far exceeds the dimension of the image, and thus we preferred to use the more direct
expression of (2.4). Second, we choose the Nc images at random in order to cover different viewing
directions. In a future work, we hope to replace this random strategy with a deterministic technique that
finds a set of images covering all viewing directions.

We next describe amethod to rank and remove low-quality classes resulting from our random sampling
strategy. This method provides a built-in measure of the quality of the classes, and thus of the enhanced
images.

2.3. Sorting the classes

Until now, we have randomly chosen a set of images I i, i¼ 1,…:Nc, and found K nearest neighbors per
class. However, since the images I i were chosen randomly, it is plausible that some of them will be
uninformative in the sense that they do not have close neighbors. To discard uninformative images and
their classes, we aim to rank the classes according to their quality.

We define a good class as a class where all of its members were taken from a similar viewing direction,
up to an in-plane rotation and, possibly, a reflection. For each pair of images in the class, we compute the
most likely relative in-plane rotation and reflection; this is a by-product of computing the correlations in
(2.4) so no additional computations are required. We denote the estimated relative rotation angle between
the ith and jth members of the kth class by θ kð Þ

i,j . If no reflection is involved, the relative rotation can be
represented by a 2�2 rotation matrix

R kð Þ
i,j ¼ cosθ kð Þ

i,j �sinθ kð Þ
i,j

sinθ kð Þ
i,j cosθ kð Þ

i,j

2
4

3
5: (2.6)

If the pair of images are also reflected, then

R kð Þ
i,j ¼ cosθ kð Þ

i,j �sinθ kð Þ
i,j

�sinθ kð Þ
i,j �cosθ kð Þ

i,j

2
4

3
5: (2.7)

We then construct a Hermitian block matrix R kð Þ ∈ℝ2K�2K

R kð Þ ¼

R kð Þ
1,1 R kð Þ

1,2 ⋯ R kð Þ
1,K

R kð Þ
2,1 R kð Þ

2,2 ⋯ R kð Þ
2,K

⋮ ⋮ ⋱ ⋮
R kð Þ
K ,1 R kð Þ

K ,2 ⋯ R kð Þ
K ,K

2
66664

3
77775: (2.8)

The matrix R kð Þ is a synchronization matrix over the dihedral group(22). If indeed all K class members are
the same image up to an in-plane rotation and, possibly, a reflection (namely, an element of the dihedral
group), then R kð Þ is of rank two. In other words, only the first two largest eigenvalues λ kð Þ

1 ,λ kð Þ
2 of R kð Þ are

nonzero. In practice, since the images were not taken precisely from the same viewing direction, and
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because of the noise, the matrix is not of rank two. Therefore, as a measure of the quality of this class, it is
only natural to compute how “close” is R kð Þ to a rank two matrix, namely,

G kð Þ ¼ λ kð Þ
1 þ λ kð Þ

2

2K
, (2.9)

where we note that
P

iλ
kð Þ
i ¼Tr R kð Þ� �¼ 2K . We refer to G kð Þ ∈ 0,1½ � as the grade of the k th class. We

repeat this procedure for each class, and remove the classes with the lowest grades. In practice, we found
that removing half of the classes yields good results. Since we need to extract the two leading eigenvalues
of Nc synchronization matrices, the typical computational complexity of this stage is O K2Nc

� �
.

The empirical distributions of the eigenvalues, or the grades G kð Þ , provide a measure to assess the
performance of the algorithm. This is important since the output of the signal enhancement algorithmmay
be used in downstream procedures, for example, to construct ab initio models. Thus, producing poor
output may bias the entire computational pipeline with unpredictable consequences(23).

2.4. Sorting images within classes

After removing classes of low quality, we wish to improve each of the remaining classes by removing
inconsistent images.We follow the same strategy as before, and look for, within each class, a subset of images
that are consistentwith each other, namely, that form an approximately rank-two synchronizationmatrix (2.8).

Let bR kð Þ ¼V kð Þ V kð Þ� �∗
be the best rank-two approximation ofR kð Þ, where the columns ofV kð Þ ∈ℝ2K�2

are the eigenvectors of R kð Þ associated with the two leading eigenvalues. Let bR kð Þ
i, j½ � and R kð Þ i, j½ � be

the i, jð Þth entries of bR kð Þ
and R kð Þ, respectively. To determine whether the ith class member is consistent

with its other class members, we compute the average distance between bR kð Þ
i, j½ � and R kð Þ i, j½ � for all

j¼ 1,…,K. Namely, the grade of the ith member of the k-th class is defined by

g kð Þ
i ¼� 1

K

XK
j¼1

bR kð Þ
i, j½ ��R kð Þ i½ , j�

��� ���
2
: (2.10)

We found that producing classes with 300 images, and removing 150 images with the lowest score g kð Þ
i

(per class) yields good results.

2.5. Expectation–maximization

After pruning out low-quality classes, and inconsistent images within each class, we are ready for the last
stage of our algorithm: aligning the images within each class and averaging them to produce a high SNR
output image. To this end, we apply the EM algorithm that aims tomaximize the likelihood function of the
observed images. The EM algorithm is applied to the raw images corresponding to each class separately
(before down-sampling, phase-flipping, and so forth.)

The EM algorithm assumes that all observed images are rotated, translated, and noisy versions of a
single image; this image is denoted byX and corresponds to the high SNR image wewish to estimate. The
generative model of the images within a specific class is given by

Ii ¼ LtiXþ εi, i¼ 1,…,K, (2.11)

where ti encodes the unknown rotation and translation of the i th image, Lt is a linear rotation and
translation operator (may also include the CTF), and εi is an i.i.d. Gaussian noise with variance σ2. Our
goal is to maximize the marginalized log-likelihood, which is equal, up to a constant, to

log p I1,…, IK ;Xð Þ¼
XK
i¼1

log
X
tℓ ∈T

p tℓð Þe� 1
2σ2

∥Ii�LtℓX∥, (2.12)

where T denotes the set of possible rotations and translations. While optimizing (2.12) is a challenging
non-convex problem, EM has been proven to be an effective technique for optimizing (2.12) for cryo-EM
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images(6,24). In particular, we used the implementation of RELION(15). We note that this implementation
does not correct for reflections, and thus we correct for reflections before running the EM algorithm. In
particular, we construct a symmetric matrix whose i, jð Þ entry is�1 if the i-th and j-th images are likely to
be reflected, and 1 if not. This is a by-product of previous steps, described in Section 2.3, so no additional
computations are required. Since this matrix is ideally a rank-one matrix (if all pair-wise estimations are
consistent), we extract its leading eigenvector and round its entries into�1. This algorithm is known as the
spectral algorithm for group synchronization(22,25).

As mentioned in the introduction, a popular solution to the 2D classification task (which shares
similarities with the signal enhancement problem) is to run EM on the observed images, before clustering
the images. In this case, the generative model reads

Ii ¼ LtiXmi þ εi, i¼ 1,…,N, (2.13)

where X 1,…,XNc are the class averages to be estimated. While the implementation of the EM algorithm
for (2.13) follows the same lines as the EM algorithm we use, it tends to output only a few informative
classes because of the “rich get richer” phenomenon(16). We evade this pitfall by first finding the nearest
neighbors of the chosen images, and running EM on each class separately to optimize (2.12). In addition,
since we runmultiple independent instances of the EM algorithm, they can be run in parallel, resulting in a
significant acceleration.

We mention that the EM algorithm can be replaced by alternative computational strategies such as
stochastic gradient descent or rotationally and translationally aligning the images, and then averaging
them. The latter strategy, used by(13), is much faster than EM, and thus will significantly accelerate the
algorithm, at the cost of lower image quality.

3. Experimental Results

In the following experiments, we produced 3000 classes and kept the bestNc ¼ 1500classes according to
the method explained in Section 2.3. Each class consists of 300 images, fromwhich only the bestK ¼ 150
images were used to estimate the class average, as explained in Section 2.4. We used the EM implemen-
tation of RELION(15) with seven iterations. Based on the class averages, we reconstructed ab initiomodels
using the common-lines method implemented in the ASPIRE package(26). All data sets were processed
using an Intel(R) Xeon(R) Gold 6252 CPU@2.10 GHz containing 24 cores, and a GeForce RTX 2080 Ti
GPU. The run times of all stages in the process are provided in Table 1. The resolution was computed
based on the Fourier Shell Correlation (FSC) criterion with cutoff of 0.5, where the reference volume was
downloaded from EMDB(27).

3.1. EMPIAR 10028

We begin with a data set of the Plasmodium falciparum 80S ribosome bound to the anti-protozoan drug
emetine, available as the entry10028 in EMPIAR(28) (the corresponding entry in EMDB isEMD-2660)(29).
This data set contains 105,247 images of size 360�360 pixels.

Table 1. Runtime.

EMPIAR
entry

#
images

Dimensions
[pixels]

Preprocessing
[s]

sPCA
[s]

Nearest neighbors
search [s]

EM
[s]

Total
[s]

10028 105,247 360�360 1,032 1,036 131 2,299 4,508
10073 138,840 380�380 1,735 1,397 155 2,735 6,037
10081 55,870 256�256 1,405 698 170 1,149 3,427
10061 41,123 768�768 2,405 540 184 5,261 8,413

Abbreviation: EM, expectation–maximization; sPCA, steerable principal component analysis.
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Figure 1 shows examples of raw data images, the corresponding class averages, and a 3D structure
reconstructed using the class averages; the resolution of the reconstructed structure is 10.41Å. The nearest
neighbor’s stage took 2.5 min, and the overall process took around 75 min.

3.2. EMPIAR 10073

This data set of the yeast spliceosomal U4/U6.U5 tri-snRNP is available as the entry 10073 of EMPIAR
(the corresponding entry in EMDB is EMD-8012)(30). This data set contains 138840 images of size
380�380 pixels. The nearest neighbors search took 2.5 min and producing 1500 class averages took
roughly 100 min. The results are presented in Figure 2. The resolution of the reconstructed structure is
19.58 Å.

3.3. EMPIAR 10081

This data set of the human HCN1 hyperpolarization-activated cyclic nucleotide-gated ion channel is
available as the entry 10081 of EMPIAR (the corresponding entry in EMDB is EMD-8511)(31). This
data set contains 55870 images of size 256�256pixels. The nearest neighbors search took less than 3min

(a) Example of experimental images (b) Corresponding enhanced images

(c) Reconstructed volume (d) FSC curve of the structure of panel (c)

Figure 1. EMPIAR 10028. The resolution of the reconstructed structure is 10.41 Å.
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and producing 1500 high-quality images took roughly 1 hr. Figure 3 shows the results. The resolution of
the reconstructed structure is 11.25 Å.

3.4. EMPIAR 10061

This data set of the beta-galactosidase in complex with a cell-permeant inhibitor is available as the
entry10061 of EMPIAR (the corresponding entry in EMDB is EMD-2984)(32). This data set contains
41123 images of size 768�768 pixels. The nearest neighbors search took less than 3 min and
producing 1500 class averages took roughly 2.5 hr. Figure 4 shows results, where the 3D structure
was reconstructed from the enhanced images using the spectral algorithm implemented in ASPIRE(33).
Although the class averages look of good quality, the resolution of the reconstructed structure is only
22.63 Å.

4. Discussion

In this paper, we have presented a new algorithm to enhance the quality of cryo-EM images, which can
be used for various tasks in the computational pipeline of cryo-EM. The algorithm is based on(13), but

(a) Example of experimental images (b) Corresponding enhanced images

(c) Reconstructed volume (d) FSC curve of the structure of panel (c)

Figure 2. EMPIAR 10073. The resolution of the reconstructed structure is 19.58 Å.
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extends it in several ways, which are crucial to improve its performance and to design built-in quality
measures. The algorithm is computationally efficient and can be executed on large experimental
data sets.

For larger data sets, the brute-force nearest neighbors search we use can be replaced by efficient
randomized algorithms(34), resulting in a better asymptotic computational complexity. However, for
contemporary data sets, the running times of both approaches are comparable. Our classification is
approximately invariant under in-plane rotations and reflections; see also(35) for a related approach.While
it can be extended to translation invariance by explicitly considering different translations, it will
significantly increase the running time. A possible alternative approach would be to employ polynomials
that are approximately invariant under the group of in-plane rotations and translations (namely, the group
of rigid motions SE(21).

To improve the quality of the nearest neighbors search, the classes are refined by analyzing the spectra
of synchronization matrices. This provides a validation measure that can be computed directly from the
data, which is crucial to mitigate the risk of model bias in downstream tasks, such as ab initio modeling.
We have demonstrated that the enhanced images are of high quality so that they can be used to construct
ab initio models. To cover all viewing angles, we randomly sample the data set. This is clearly not
optimal, and we intend to study different deterministic strategies to sample the data. A successful
sampling strategy may make the class sorting stage of Section 2.3 unnecessary.

(a) Example of experimental images (b) Corresponding enhanced images

(c) Reconstructed volume (d) FSC curve of the structure of panel (c)

Figure 3. EMPIAR 10081. The resolution of the reconstructed structure is 11.25 Å.
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