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Abstract

We study an operation, that we call lifting, creating nonisomorphic monomial curves from a single
monomial curve. Our main result says that all but finitely many liftings of a monomial curve have
Cohen–Macaulay tangent cones even if the tangent cone of the original curve is not Cohen–Macaulay.
This implies that the Betti sequence of the tangent cone is eventually constant under this operation.
Moreover, all liftings have Cohen–Macaulay tangent cones when the original monomial curve has a
Cohen–Macaulay tangent cone. In this case, all the Betti sequences are just the Betti sequence of the
original curve.
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1. Introduction

The main theme of this note is an operation that we call lifting and use for spreading
a special property of a monomial curve within an infinite family of examples. By a
monomial curve CS in the affine space Kn over a field K, we mean a curve whose points
(tm1 , . . . , tmn ) vary with the parameter t ∈ K. The curve has a strong relation with the
semigroup S generated minimally by the positive integers m1, . . . ,mn. The smallest
minimal generator of S is called the multiplicity of CS . The monomials tm1 , . . . , tmn

generate the integral domain K[S ] of K[t], which is known as the numerical semigroup
ring associated to S . The polynomial ring R = K[x1, . . . , xn] is graded by the semigroup
S , by setting degS (xi) = mi, giving rise to a graded map R→ K[S ], which sends xi to
tmi . Its kernel denoted by IS is called the toric ideal of S . When K is algebraically
closed, the vanishing ideal I(CS ) of CS is IS , and thus K[S ] is isomorphic to the
coordinate ring R/IS of the curve CS . The curve CS is singular at the origin if S , N
in which case one wants to measure how nice the singularity is. An algebraic way to
understand the quality of the singularity is to look at the coordinate ring grm(K[S ]) of
the tangent cone which is isomorphic to the ring R/I∗S , where m = 〈tm1 , . . . , tmn〉 is the
maximal ideal of K[S ]. Here I∗S is the ideal generated by the least degree homogeneous
summands f ∗ of f in IS . The Cohen–Macaulayness of grm(K[S ]) is investigated for
this purpose in [1, 7, 11, 17, 18].
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It is well-known that the ideal IS is generated by finitely many binomials
xu1

1 · · · x
un
n − xv1

1 · · · x
vn
n such that uivi = 0 and degS (xu1

1 · · · x
un
n ) = degS (xv1

1 · · · x
vn
n ). In

general, the ideal IS has alternative minimal generating sets of the same cardinality. If
a binomial B or −B appears in every minimal generating set it is called indispensable.
Hence, the ideal IS has a unique minimal generating set if and only if it is generated
by indispensable binomials. Uniquely generated ideals are of interest in the emerging
field of algebraic statistics (see [8, 19]). Recently, indispensable binomials were also
used to characterise monomial curves in K4 with a Cohen–Macaulay tangent cone
(see [2, 16]).

Our main aim in this note is to see how Cohen–Macaulayness spreads among
liftings of a monomial curve. It is inspired by a recent paper of Herzog and
Stamate [10] on a similar additive operation on S called shifting, which produces a
semigroup generated by m1 + k, . . . ,mn + k for every positive integer k. Herzog and
Stamate show that tangent cones of shiftings are Cohen–Macaulay for all sufficiently
large k, and that the Betti numbers of the tangent cones are eventually periodic in k.
The second concern of this paper is to examine how lifting effects indispensability of
binomials in IS and strong indispensability of a minimal free resolution of K[S ].

Before stating our main results let us introduce more notations. Fix a numerical
semigroup S generated minimally by m1,m2, . . . ,mn. By a k-lifting Sk of S we mean
the numerical semigroup generated by

m1, km2, . . . , kmn,

where k is a positive integer with gcd(k,m1) = 1. The last condition is to avoid having
isomorphic liftings. In the same vein, the monomial curve Ck corresponding to Sk

is called a k-lifting of C := CS . When C has multiplicity m1, all of its liftings will
have multiplicity m1. There is a closely related operation called simple gluing that
has been used to produce more examples with an interesting structure from a single
monomial curve. Let T be a semigroup generated minimally by m2, . . . ,mn. If m1 ∈ T
and gcd(k,m1) = 1, then Sk is called a simple gluing of T and N. Notice that Sk is a
k-lifting of S1 = S for any k. This technique has been used for the first time in [21]
to prove that Sk is symmetric if and only if T is symmetric. It is used in [13] to
produce monomial curves with Noetherian symbolic blow-ups and in [20] to create
monomial curves which are set theoretic complete intersections. In [3], the authors
proved that the tangent cone grm(K[Sk]) is Cohen–Macaulay when the same is true for
the semigroup T and k ≤ m2 + · · · + mn. This is extended later in [12]. Finally, it has
very recently been used to study the catenary degree (see [15, Theorem 3.3]) which is
an invariant of the semigroup measuring complexity of factorisations of elements. As
T is independent of k, all these results reveal the common behaviour of the liftings Sk.

We finish the introduction by describing the structure of the paper. In the next
section, we establish a one-to-one correspondence between the binomials in both
ideals IS and ISk with monomials having no common divisor, associating minimal
generators of IS to those of ISk , and preserving indispensability (see Proposition 2.2).
In Section 3, we show that all but finitely many liftings of a monomial curve
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have Cohen–Macaulay tangent cones even if the tangent cone of the original curve
is not Cohen–Macaulay. Moreover, all liftings have Cohen–Macaulay tangent
cones when the original monomial curve has a Cohen–Macaulay tangent cone (see
Theorem 3.3). In the last section, we show that the minimal free resolution of K[S ] is
strongly indispensable if and only if the minimal free resolution of K[Sk] is strongly
indispensable (see Proposition 4.1). Finally, we prove that the Betti sequence of the
tangent cone is eventually constant under this operation and that all the Betti sequences
are just the Betti sequence of the original tangent cone if the latter is Cohen–Macaulay
(see Theorem 4.5).

2. Indispensability

In this section we establish the correspondence between the indispensable binomials
of a monomial curve and those of its liftings. Let us recall a graph encoding minimal
generators of IS . Let V(d) be the set of monomials of S -degree d. Denote by G(d)
the graph with vertices the elements of V(d) and edges {M, N} ⊂ V(d) such that the
binomial M − N is generated by binomials in IS of S -degree strictly smaller than d
with respect to <S , where s1 <S s2 if s2 − s1 ∈ S . In particular, when gcd(M,N) , 1,
{M, N} is an edge of G(d) as M − N = gcd(M, N) · [(M − N)/ gcd(M, N)] and the
binomial (M − N)/ gcd(M, N) in IS has strictly smaller S -degree. A binomial of S -
degree d is indispensable if and only if G(d) has two connected components which
are singletons, by [5, Corollary 2.10]. This means that M − N is indispensable exactly
when V(d) = {M,N} and M − N is not generated by binomials in IS of S -degree strictly
smaller than d.

Let b ∈ S . Every tuple (v1, . . . , vn) ∈ Nn satisfying b = v1m1 + · · · + vnmn is
called a factorisation of b. Note that there is a one-to-one correspondence between
factorisations (v1, . . . , vn) of b ∈ S and monomials N = xv1

1 · · · x
vn
n of S -degree b. The

following key fact will be used many times in what follows.

Lemma 2.1. There is a one-to-one correspondence between S and kS ⊂ Sk under which
m1 + S is mapped onto k(m1 + S ). Moreover, the factorisation (v1, v2, . . . , vn) of b ∈ S
corresponds to the factorisation (kv1, v2, . . . , vn) of kb ∈ kS .

Proof. If b ∈ S , then kb ∈ kS ⊂ Sk. Conversely, if kb ∈ Sk, then we have kb =

v′1(m1) + v2(km2) + · · · + vn(kmn). So, k divides v′1m1, which forces the existence of
v1 ∈ N such that v′1 = kv1, since gcd(k,m1) = 1. Thus, b = v1m1 + · · · + vnmn ∈ S . So,
the map sending b ∈ S to kb = kv1(m1) + v2(km2) + · · · + vn(kmn) ∈ Sk is one-to-one
and onto. As v1 , 0 if and only if kv1 , 0, it follows that this map restricts to a
one-to-one correspondence between m1 + S and k(m1 + S ). Clearly, the factorisation
(v1, v2, . . . , vn) of b corresponds to the factorisation (kv1, v2, . . . , vn) of kb. �

It is time to describe the correspondence between the binomials in both ideals IS

and ISk with monomials having no common divisor. This has been noted for the first
time by Morales (see [13, Lemma 3.2]). We show that indispensable binomials are
associated with indispensable ones under this correspondence. Let B be a binomial in
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IS with monomials having no common divisor. Then, either x1 divides no monomials
in B or it divides only one of them. In the former case, B lies in ISk , so let Bk := B.
In the latter, B = M − N with M = xu2

2 · · · x
un
n and N = xv1

1 xv2
2 · · · x

vn
n , so we define Bk :=

M − Nk ∈ ISk , where Nk = xkv1
1 xv2

2 · · · x
vn
n . In both cases, degSk

(Bk) = k degS (B) ∈ kS .

Proposition 2.2. The map φk : IS → ISk , given by B → Bk, is a one-to-one
correspondence between the binomials in both ideals with monomials having no
common divisor, associating minimal generators of IS to those of ISk , and preserving
indispensability.

Proof. It is clear that the assignment is one-to-one. We prove that it is onto by using
Lemma 2.1. Now, assume that M − N′ is a binomial in ISk , where M = xu2

2 · · · x
un
n

and N′ is a monomial corresponding to the factorisation (v′1, v2, . . . , vn) with v′1 > 0.
So, degSk

(N′) = degSk
(M) = kb lies in k(m1 + S ), where b := degS (M). Lemma 2.1

implies that the factorisation (v′1, v2, . . . , vn) of kb corresponds to the factorisation
(v1, v2, . . . , vn) of b, for some v1 > 0. Therefore, there is a monomial N = xv1

1 xv2
2 · · · x

vn
n

with S -degree b such that N′ = Nk. So, φk(M − N) = M − N′.
Let G(b) be the graph of an S -degree b and Gk(d) be the graph of an Sk-degree d. By

Lemma 2.1, there is a one-to-one correspondence between the monomials of S -degree
b and monomials of Sk-degree kb. So, there is a correspondence between the vertices
of the graphs G(b) and Gk(kb). By the first part, M − N is generated by binomials
in IS of S -degree smaller than b if and only if M − Nk is generated by binomials
in ISk of Sk-degree smaller than kb. This correspondence associates edges between
{M} and {N} to edges between {M} and {Nk}. As these graphs determine the minimal
generators, this correspondence associates a minimal generating set of IS to a minimal
generating set of ISk . Assuming that B is an indispensable binomial of S -degree b, we
see that G(b) has two connected components {M} and {N} which are singletons by [5,
Corollary 2.10]. Thus, {M} and {Nk} are the only connected components of Gk(kb) and
they are singletons. Hence, B is indispensable if and only if Bk is indispensable. �

3. Cohen–Macaulayness of the tangent cone

In this section, we study local properties of liftings of a monomial curve C with
multiplicity m1. Recall that the S -degree and the usual degree of a monomial are

degS (xu1
1 · · · x

un
n ) = u1m1 + · · · + unmn and deg(xu1

1 · · · x
un
n ) = u1 + · · · + un.

Lemma 3.1 [9]. Let C be the monomial curve corresponding to S . Then the tangent
cone of C is Cohen–Macaulay if and only if for every monomial M = xu2

2 · · · x
un
n

with degS (M) ∈ m1 + S there exists a monomial N = xv1
1 · · · x

vn
n with v1 > 0 such that

degS M = degS N and deg M ≤ deg N. �

Remark 3.2. It is sufficient to check the conditions in Lemma 3.1 for monomials M
with ui < m1, where i = 2, . . . , n. This is because when ui ≥ m1 we have ui = qim1 + ri
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and so

degS (M) =

n∑
j=2

u jm j = (qimi)m1 + rimi +
∑

j∈{2,...,n}\{i}

u jm j = degS (N)

for N = xqimi
1 · · · xri

i · · · x
un
n . Since ui = qim1 + ri < qimi + ri, it follows that

deg(M) =

n∑
j=2

u j < (qimi) + ri +
∑

j∈{2,...,n}\{i}

u j = deg(N).

Theorem 3.3. Let C be a monomial curve and Ck be its kth lift. If C has a Cohen–
Macaulay tangent cone, then Ck has a Cohen–Macaulay tangent cone for all k > 1. If
not, there is a positive integer k0 such that Ck has a Cohen–Macaulay tangent cone for
all k ≥ k0.

Proof. Take a monomial M = xu2
2 · · · x

un
n whose Sk-degree degSk

(M) = k degS (M) lies
in m1 + Sk. It follows from Lemma 2.1 that degS (M) ∈ m1 + S . This means that there
is a monomial N = xv1

1 xv2
2 · · · x

vn
n such that v1 > 0 and degS (M) = degS (N). Clearly, we

also have degSk
(M) = degSk

(Nk), for Nk = xkv1
1 xv2

2 · · · x
vn
n . So, under the correspondence

in Proposition 2.2, the binomial M − N in IS maps to M − Nk in ISk .
On the other hand,

deg(Nk) − deg(M) = deg(Nk) − deg(N) + deg(N) − deg(M)

= (k − 1)v1 + deg(N) − deg(M). (3.1)

Now, if C has a Cohen–Macaulay tangent cone, it follows from Lemma 3.1 that there is
at least one N with deg(N) − deg(M) ≥ 0. Thus, we have deg(Nk) − deg(M) ≥ 0 for the
corresponding Nk by 3.1. So, Ck has a Cohen–Macaulay tangent cone by Lemma 3.1.

If C does not have a Cohen–Macaulay tangent cone, then again by Lemma 3.1 there
is some monomial M with degS (M) ∈ m1 + S such that deg(N) − deg(M) < 0 for all
N with degS (M) = degS (N). Since S is a numerical semigroup, there are only finitely
many monomials N with the S -degree degS (M) for a fixed monomial M. Let N0 be the
one with the biggest degree so that deg(N) − deg(M) is the biggest possible negative
number. Then (k0(M) − 1)v1 + deg(N) − deg(M) ≥ 0 for large enough k0(M). Hence,
it follows that deg(Nk) − deg(M) ≥ 0 by (3.1), for all k ≥ k0(M). By Remark 3.2 it is
sufficient to check the condition of Lemma 3.1 for finitely many monomials M. So, if
we choose k0 to be the maximum of all k0(M) corresponding to these monomials, then
Lemma 3.1 completes the proof. �

4. Minimal free resolutions

Let S be a numerical semigroup and Sk be its kth lift as before. In this section we
discuss the relation between their homological invariants. We start with the relation
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between minimal free resolutions of the semigroup rings K[S ] and K[Sk]. Recall that
R = K[x1, . . . , xn] is S - and Sk-graded, respectively, via

degS (x1) = degSk
(x1) = m1 and degSk

(xi) = k degS (xi) = kmi, for all i > 1.

As indicated in [14], a minimal Sk-graded free resolution of K[Sk] is obtained from a
minimal S -graded free resolution of K[S ] via the faithfully flat extension f : R→ R,
defined by sending x1 → xk

1 and xi → xi for all i > 1. This proves the following
proposition.

Proposition 4.1. If K[S ] has a minimal S -graded free resolution given by

0−→
βn−1⊕
j=1

R[−bn−1, j]−→ · · · −→
β1⊕
j=1

R[−b1, j]−→R−→K[S ]−→0,

then K[Sk] has a minimal Sk-graded free resolution given by

0−→
βn−1⊕
j=1

R[−kbn−1, j]−→ · · · −→
β1⊕
j=1

R[−kb1, j]−→R−→K[Sk]−→0.

It follows from Proposition 2.2 that ISk has a unique minimal generating set or
equivalently is generated minimally by indispensable binomials if and only if IS has
the same property. This means that one of the first matrices in the resolutions of
Proposition 4.1 is unique if and only if the other is so. The corresponding notion
introduced by Charalambous and Thoma [6] for the full minimal free resolution is
strong indispensability of the resolution. Recall that a resolution (F, φ) is called
strongly indispensable if for any graded minimal resolution (G, θ), we have an injective
complex map i : (F, φ) −→ (G, θ). As a consequence, we get the following result about
indispensability of higher syzygies using Lemma 2.1.

Proposition 4.2. K[Sk] has a strongly indispensable minimal free resolution ⇐⇒
K[S ] has a strongly indispensable minimal free resolution.

Proof. By [4, Lemma 19], the algebra K[Sk] has a strongly indispensable minimal
free resolution ⇐⇒ b − b′ < Sk, for all b, b′ ∈ Bi(Sk). Proposition 4.1 implies
that Bi(Sk) = kBi(S ) and thus b ∈ Bi(Sk) ⇐⇒ b = kd, for some d ∈ Bi(S ). Thus,
b − b′ < Sk for all b, b′ ∈ Bi(Sk) ⇐⇒ d − d′ < S for all d, d′ ∈ Bi(S ), by Lemma 2.1,
which completes the proof by [4, Lemma 19] again. �

Definition 4.3. For an ideal I, a finite subset G ⊂ I is called a standard basis of I if
the least homogeneous summands of the elements of G generate the ideal I∗. In other
words, G ⊂ I is a standard basis of I, if I∗ is generated by g∗ for g ∈ G.

We use the following crucial fact to relate Betti numbers of tangent cones to liftings.
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Lemma 4.4 [10, Lemma 1.2]. Let I be an ideal of R = K[x1, . . . , xn] with I ⊂ m =

(x1, . . . , xn). Suppose that x1 is a non zero-divisor on K[[x1, . . . , xn]]/IK[[x1, . . . , xn]].
Let π : R→ R̄ = K[x2, . . . , xn] be the K-algebra homomorphism with π(x1) = 0 and
π(xi) = xi for i > 1, and set Ī = π(I). Let g1, . . . , gr be a standard basis of Ī such
that there exist polynomials f1, . . . , fr ∈ I with π( fi) = gi and deg( f ∗i ) = deg(g∗i ), for
i = 1, . . . , r. Then,

(a) f1, . . . , fr is a standard basis of I;
(b) x1 is regular on grm(R/I);
(c) there is an isomorphism

grm(R/I)/x1grm(R/I) = grm̄(R̄/Ī),

of graded K-algebras, where m̄ = π(m).

Before we state our final result, recall that the curve C is of homogeneous type if
βi(R/IS ) = βi(grm(R/IS )), for all i.

Theorem 4.5. Let Ck be the kth lifting of C. Then, there exists a positive integer k0
such that for all i = 1, . . . , n − 1 and k ≥ k0,

βi(grm(R/ISk )) = βi(grm(R/ISk0
)).

Furthermore, when the tangent cone of C is Cohen–Macaulay, C is of homogeneous
type if and only if Ck is of homogeneous type for all k > 1.

Proof. First, Ī = π(ISk ) is independent of the value of k, since π(Bk) = π(B) = B if B
does not involve x1 and π(Bk) = π(M − Nk) = M if x1 divides Nk. Being the image
of ideals with binomial generators, Ī has a standard basis consisting of binomials
and monomials. These binomials are images of themselves under π as they do not
involve the variable x1. So, we need to prove that for any monomial M = xu2

2 · · · x
un
n

in this standard basis, there is a binomial Bk = M − Nk in ISk with π(Bk) = M and
deg(B∗k) = deg(M). Since M ∈ Ī, there is always a binomial Bk = M − Nk in ISk with
π(Bk) = M but the last condition is satisfied exactly when deg(M) ≤ deg(Nk). In the
proof of Theorem 3.3, we demonstrate that there is some positive integer k0 such
that deg(M) ≤ deg(Nk) for all k ≥ k0 and thus the tangent cone grm(R/ISk ) is Cohen–
Macaulay for all k ≥ k0. Therefore, the hypothesis of Lemma 4.4 holds as x1 is always
regular on K[[Sk]]. Thus, we have the following isomorphism

grm(R/ISk )/x1grm(R/ISk ) = grm̄(R̄/Ī),

which implies that

βi(grm(R/ISk )/x1grm(R/ISk )) = βi(grm̄(R̄/Ī)), for all i = 1, . . . , n − 1.

Since x1 is not a zero-divisor on grm(R/ISk ), it follows that

βi(grm(R/ISk )/x1grm(R/ISk )) = βi(grm(R/ISk )), for all i = 1, . . . , n − 1.

https://doi.org/10.1017/S0004972718000400 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972718000400


[8] Liftings of a monomial curve 237

Therefore, for all k ≥ k0,

βi(grm(R/ISk )) = βi(grm̄(R̄/Ī)) = βi(grm(R/ISk0
)), for all i = 1, . . . , n − 1.

When the tangent cone grm(R/IS ) of C is Cohen–Macaulay, we have k0 = 1 by the
proof of Theorem 3.3. Thus, by the first part,

βi(grm(R/ISk )) = βi(grm(R/IS )), for all i = 1, . . . , n − 1

and by Proposition 4.1, we have βi(R/ISk ) = βi(R/IS ), for all i = 1, . . . ,n − 1. Therefore,
C is of homogeneous type if and only if Ck is of homogeneous type. �
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