
VI
Strangeness

17 Thermal production of flavor in a deconfined phase

17.1 The kinetic theory of chemical equilibration

Strangeness, and more generally heavy-flavor quarks, can be produced
either in the first interactions of colliding matter, or in the many ensuing
less-energetic collisions. The mass of the strange quark ms is comparable
in magnitude to the typical temperatures reached in heavy-ion interac-
tions, and the numerous ‘soft’ collisions of secondary partons dominate
the production of strangeness, and naturally, of the light flavors u and d.
The masses of charm and bottom quarks are well above typical tem-

peratures; these quarks are predominantly produced in the hard initial
scattering. This process remains today a topic of current intense study
both for the elementary and for the nuclear collisions [124]. We will not
discuss it further in this book.
At the time at which the strange flavor approaches chemical equi-

librium in soft collisions, the back reaction is also relevant. The quantum-
mechanical matrix element driving a two-body reaction must be, channel
by channel, the same for forward- and backward-going reactions. The
actual rates of reaction differ since there are usually considerable differ-
ences in statistical and phase-space factors. However, the forward and
backward reactions will balance when equilibrium yields of particles are
established. This principle of detailed balance can sometimes be used to
evaluate reaction rates.
The net change in yield of flavors f and f̄ is given by the difference

between the rates of production and annihilation. The evolution in the
density of heavy quarks in QGP can be described by the master equation

dNf(t)
d3x dt

=
dN(gg, qq̄→ f f̄)

d3x dt
− dN(f f̄ → gg, qq̄)

d3x dt
. (17.1)
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17 Thermal production of flavor in a deconfined phase 317

When locally at a point in space there is exact balance between the two
terms on the right-hand side of Eq. (17.1), chemical equilibrium has been
established, which, as we recall, is the state of maximum entropy; see
section 7.1.
Each of the terms in Eq. (17.1) expresses a change in number of particles

per unit of 4-volume and it is a Lorentz-invariant quantity. We take
advantage of this to write

∂µj
µ
f ≡ ∂ρf

∂t
+
∂/v ρf
∂/x

= ρ2g(t)〈σv〉gg→f f̄
p + ρq(t)ρq̄(t)〈σv〉qq̄→f f̄

p

− ρf(t)ρf̄(t)〈σv〉f f̄→gg,qq̄
p . (17.2)

The left-hand side describes the change in the local particle density in-
cluding the effect of flow; the right-hand side is another way to express
the change in number of particles in terms of individual reactions, as we
shall show, see Eq. (17.7).
The momentum-averaged cross section of reacting particles is

〈σvrel〉p ≡
1

1 + I12

∫
d3p1
∫
d3p2 σ12v12f(/p1)f(/p2)∫

d3p1
∫
d3p2 f(/p1)f(/p2)

. (17.3)

The factor 1/(1 + I12) is introduced to avoid double counting of indis-
tinguishable pairs of particles, I12 = 1 for an identical pair of bosons
(gluons, pions), otherwise I12 = 0. Some authors introduce this factor
into the kinetic equation Eq. (17.2). Considering that the cross section is
obtained as an average over all reaction channels, the implicit sums over
spin, color, and any other discrete quantum numbers can be combined in
the particle density,

ρ =
∫

d3p

(2π)3
f(/p) =

∫
d3p

(2π)3
∑

i=s,c,...

fi(/p). (17.4)

We have suppressed, in the above discussion, the dependence of the phase-
space distributions f(/p, /x, t) on the spatial coordinates, as well as their
evolution with time.
In general terms, we need to obtain f(/p, /x, t) for gluons and light qu-

arks from a solution of a transport master equation such as the Boltzmann
equation. However, this introduces a large uncertainty due to our great
ignorance of the early collision (quantum) dynamics. Moreover, a seven
dimensional evolution equation for f(/p, /x, t) cannot yet be handled with
the available computing power without simplifying assumptions invoking
spherical symmetry. Moreover, the uncertainty about the initial temper-
ature, initial yield of strangeness from pre-equilibrium reactions, and the
poorly known mass of the strange quark ms introduce significant uncer-
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318 Strangeness

tainties into calculations of the yield of strangeness, and limit the need
for very precise methods.
We proceed to simplify by the use of two assumptions, which follow

from the discussion we presented in section 5.5.

• The kinetic (momentum-distribution) equilibrium is approached faster
than the chemical (abundance) equilibrium [23, 231, 246]. This allows
us to study only the chemical abundances, rather than the full momen-
tum distribution of the (strange) quark flavor.

• Gluons equilibrate chemically significantly faster than does strangeness
[276]. We consider the evolution of the population of strangeness only
after gluons have (nearly) reached chemical equilibrium.

In view of these assumptions, the phase-space distribution fs can be
characterized by a local temperature T (/x, t) of a (Boltzmann) equilibrium
distribution reached for t → ∞, f∞s , with normalization set by a phase-
space-occupancy factor:

fs(/p, /x; t) � γs(T )fTs (p), fTs (p) = e−
√
m2s+p

2/T , (17.5)

where fTs is the equilibrium Boltzmann momentum distribution. Equa-
tion (17.5) invokes in the momentum independence of γs the first assump-
tion. The factor γs allows the local density of strange quarks to evolve
independently of the local temperature.
Using the Boltzmann momentum distribution Eq. (17.5) in Eq. (17.3),

we are performing a thermal average of the cross section and relative
velocity, and the result is a thermally averaged cross section, a function
that depends on T instead of

√
s. Some books refer to this as thermal

reactivity; we will often call it the thermal cross section:

〈σvrel〉T ≡ 1
1 + I12

∫
d3p1
∫
d3p2 σ12v12f

T
1 (p)f

T
2 (p)∫

d3p1
∫
d3p2 fT1 (p)f

T
2 (p)

. (17.6)

This thermal cross section is dependent on T , and on the masses of re-
acting particles, and its physical dimension is volume per time. We will
often drop the subscripts T and rel, since the only average to which we
refer in a cross section is ‘thermal’, and, in this context, the velocity is
always relative.
The thermal reaction rate per unit time and volume, R12(T ), is ob-

tained as follows: consider that a single particle ‘1’ enters at velocity v12
a medium of particles ‘2’; the rate of reactions is 〈σvrel〉Tρ2. If per unit
volume there are N1 particles, i.e., we have a density ρ1, then

R12(T ) ≡ 〈σvrel〉Tρ1ρ2. (17.7)
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17 Thermal production of flavor in a deconfined phase 319

The densities ρ1 and ρ2 arise from the momentum integration of the Boltz-
mann distributions f1 and f2, Eq. (17.4), and contain the degeneracy fac-
tors g1 and g2. This rate Eq. (17.7) is Lorentz invariant, i.e., all observers
agree by how much the number of particles changes per (invariant) unit
volume in space–time.
The following evaluation of R12 applies to reactions occurring in con-

fined and deconfined matter. However, for almost all particles (except
pions) in the hadronic gas, it is sufficient to use the Boltzmann momen-
tum distribution function, since the phase-space cells are nearly empty,
while the density of particles arises from the numerous resonances en-
countered (see section 12.1). In QGP, we must in general use the Bose
and Fermi distributions, as appropriate, which will complicate the results
slightly.
We recall here the (Mandelstam) variables s, t, and u characterizing,

in an invariant way, the two-particle reaction 1 + 2→ 3 + 4,

s = (p1 + p2)2 = (p3 + p4)2, (17.8a)
t = (p1 − p3)2, (17.8b)
u = (p2 − p3)2, (17.8c)

s + t+ u =
4∑
i=1

m2
i , (17.8d)

where the 4-momenta pµ = (Ep, /p) are used with Ep =
√
/p2 +m2.

√
s is

as usual the total CM energy and t is the invariant generalization of the
scattering angle.
The cross section for reaction of two particles to give n final-state par-

ticles is computed according to

σ12v12E1E2 =
∫ n+2∏

i=3

d4pi δ(p2i −m2
i )Θ(p

0
i )

× δ4

(
p1 + p2 −

n+2∑
i=3

pi

)
|M|2. (17.9)

|M(s, t)|2 is the reaction-matrix element obtainable, for perturbative pro-
cesses, using the Feynman rules described in section 14.1. The relative
velocity of two collinear particles, which is used in the definition of the
cross section, is∗

v122E12E2 ≡ 2λ1/22 (s),

= 2
√
s− (m1 +m2)2

√
s− (m1 −m2)2. (17.10)

∗ λ
1/2
2 (s) has nothing to do with a fugacity.
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320 Strangeness

The invariant reaction rate, Eq. (17.7), thus is

R12 =
∫

d3p1
(2π)32E1

d3p2
(2π)32E2

f1 f2
1 + I12

σ12v12 × 2E1 × 2E2 (17.11)

=
g1g2
(2π)6

∫ ∞

sth

ds
2λ1/22 σ12
1 + I12

(∫
d3p1
2E1

d3p2
2E2

e−E1/T e−E2/T δ(s−(p1+p2)2)
)
,

where we have inserted a (dummy) integration over s. The lower limit
sth of the integration over s is the threshold for the reaction, usually
sth = (

∑
imi)2, the sum of masses of the final state created.

We are also interested in understanding at which values of
√
s the pro-

duction processes occur. We will evaluate the p1 and p2 momentum inte-
grals first, which will leave us with a final integral over

√
s in Eq. (17.11).

We can present the rate of production as an integral over the differential
rate dRi/ds, where i refers to the reaction channel considered:

R ≡
∑
i

∫ ∞

sth

ds
dRi
ds

≡
∑
i

∫ ∞

sth

ds σi(s)Pi(s). (17.12)

σi(s) is the cross section of the channel. The factor Pi(s), which has the
same dimension as the invariant rate R, is interpreted as the number of
collisions per unit volume and time, and corresponds to the expression
in the second line in Eq. (17.11), with the channel i corresponding to the
collision of particles {1, 2}.
In order to evaluate the p1 and p2 momentum integrals in Eq. (17.11), it

is convenient to introduce, for the Boltzmann distributions, the 4-vector
of temperature, Eq. (12.39), in the local restframe β = (1/T, 0) and to
write the (invariant) factor in large brackets in Eq. (17.11),

[· · ·]=
∫

d4p1 d
4p2 δ

4(p− p1− p2)δ0(p21−m2
1)δ0(p

2
2−m2

2)

×
∫

d4p e−β·pδ(p2− s), (17.13)

with δ0 being the δ-function restricted to positive roots of the argument
only (compare with Eq. (12.45)). A dummy integration over p = pA + pB
allows one to rearrange the terms in a way that separates the expres-
sion into the two factor integrals. The first is known as the two particle
invariant phase-space integral ‘IMS2’ [86]:∫

d4p1 d
4p2 δ

4(p− p1 − p2)δ0(p21 −m2
1)δ0(p

2
2 −m2

2) =
π

2

√
λ2
s

. (17.14)
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17 Thermal production of flavor in a deconfined phase 321

λ
1/2
2 (s) is as defined in Eq. (17.10). The second integral can be obtained
by evaluating Eq. (10.43), it appeared previously in Eq. (12.22):∫

d4pe−βpδ0(p2 − s) =
2π
β

√
sK1(β

√
s). (17.15)

The invariant reaction rate, Eq. (17.7), is

R12 =
g1g2
32π4

T

1 + I12

∫ ∞

sth

ds σ(s)
λ2(s)√

s
K1(

√
s/T ). (17.16)

So far, we have not addressed the quantum nature of colliding particles.
The difficult case is that of a pair of light quarks reacting at finite baryon
density, for which one of the distributions cannot be expanded. Since, in
this case, the mass of the light quark is negligible, one of the integrals
can be done analytically. The integral of interest, which is obtained after
performing the angular integrals in Eq. (17.11), is

K1(
√
s/T )→ 1

T
√
s

∫ ∞

0
dp1

∫ ∞

0
dp2Θ(4p1p2 − s)fq(p1)fq̄(p2), (17.17)

with (compare with Eqs. (10.34a) and (10.34b))

fq(p) =
1

γ−1q λ−1q ep/T + 1
, fq̄(p) =

1
γ−1q λqep/T + 1

.

Assuming that γq/λq < 1 (baryon-rich matter), we can expand the distri-
butions for antiquarks and obtain the generalization of K1 in Eq. (17.16):

K1(
√
s/T )→

∞∑
l=1

(−)l+1
γlq
lλlq

∫ ∞

0

dp1√
s

exp
(
−l s

4Tp1

)
γ−1q λ−1q ep1/T + 1

, (17.18)

which has to be evaluated numerically.
In the special case that all chemical factors are unity (or otherwise allow

the expansion), we expand Eq. (17.18) again to obtain

K1(
√
s/T )→

∞∑
l,n=1

(±)l+n√
s l

∫ ∞

0
dp1 exp

(
−l s

4Tp1
− np1

T

)
. (17.19)

We have allowed for Fermi and Bose distributions, recalling the expansion

1
eE/T ∓ 1

= ±
∞∑
n=1

(±)ne−nE/T .
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322 Strangeness

The upper sign in Eq. (17.19) is for bosons and the lower for fermions.
We now use∫ ∞

0
dx e−a/(4x)−bx =

√
a

b
K1(

√
ab), (17.20)

and obtain in the case γq = λq = 1 the generalization of K1 in Eq. (17.16):

K1(
√
s/T )→

∞∑
l,n=1

(±)l+nK1(
√
lns/T )√
ln

. (17.21)

We see how the powers of
√
s cancel out, leaving only the slowly converg-

ing pre-factor. It turns out that many terms in the sum of l and n are
required in order to arrive at a precise result.

17.2 Evolution toward chemical equilibrium in QGP

The conservation of current used in Eq. (17.2) applies to the laboratory
‘Eulerian’ formulation. This can also be written with reference to the in-
dividual particle dynamics in the so-called ‘Lagrangian’ description: con-
sider ρs as the inverse of the small volume available to each particle. Such
a volume is defined in the local frame of reference (subscript ‘l’) for which
the local flow vector vanishes, /v(/x, t)|local = 0. For the considered volume
δVl being occupied by a small number of particles δN (e.g., δN = 1), we
have

δNs ≡ ρs δVl. (17.22)

The left-hand side of Eq. (17.2) can be now written as

∂ρs
∂t
+
∂/v ρs
∂/x

≡ 1
δVl

dδNs
dt

=
dρs
dt
+ ρs

1
δVl

dδVl
dt

. (17.23)

Since δN and δVl dt are Lorentz-invariant quantities, the actual choice
of the frame of reference in which the right-hand side of Eq. (17.23) is
studied is irrelevant and, in particular, it can be considered in the local
rest frame. The last term in Eq. (17.23) describes the effect of volume
dilution due to the dynamic expansion of matter. The other term on the
right-hand side is then interpreted as the evolution of the local density in
proper time of the volume element.
We continue to use the first form of Eq. (17.23) and evaluate the lo-

cal change in number of particles. We introduce ρ∞s (T ) as the (local)
chemical-equilibrium abundance of strange quarks which arises at t → ∞,
thus ρs = γs(t)ρ∞s . We use the Boltzmann equilibrium abundance, sec-
tion 10.4,

δNs = δV γsρ
∞
s = [T

3 δV ]γs
3
π2

z2K2(z). z =
ms

T
, (17.24)
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17 Thermal production of flavor in a deconfined phase 323

In an entropy-conserving evolution, e.g., subject to (ideal) hydrodynamic
flow, section 6.2, the first factor on the right-hand side in Eq. (17.24) (in
square brackets) is a constant in time, δV T 3 = δV0 T

3
0 = constant. We

now substitute in Eq. (17.23) and obtain, using Eq. (10.54b),

∂ρs
∂t
+
∂/v ρs
∂/x

= Ṫ ρ∞s

(
dγs
dT

+
γs
T
z
K1(z)
K2(z)

)
, (17.25)

where Ṫ = dT/dt. Only a part of the usual flow-dilution term is left, since
we implemented the adiabatic volume expansion, and study the evolution
of the phase-space occupancy in lieu of the particle density.
We include the collision term seen in Eq. (17.2) and two channels, the

fusion of gluons and light-quark–antiquark fusion into a pair of strange
(or equivalently charm) quarks:

Ṫ ρ∞s

(
dγs
dT

+
γs
T
z
K1(z)
K2(z)

)
= γ2g(τ)R

gg→ss̄ + γq(τ)γq̄(τ)Rqq̄→ss̄

−γs(τ)γs̄(τ)(Rss̄→gg +Rss̄→qq̄). (17.26)

Similar equations can be formulated for the evolution of γg and γq. Knowl-
edge of the dynamics of the local temperature, along with the required
invariant rate of production R(T ), allows one to evaluate the dynamic
behavior of occupancy fugacities γi(t).
Since only weak interactions convert quark flavors, on the hadronic time

scale we have γs,q(τ) = γs̄,q̄(τ). Moreover, detailed balance, arising from
the time-reversal symmetry of the microscopic reactions, assures that the
invariant rates for forward/backward reactions are the same, specifically

R12→34 = R34→12, (17.27)

and thus

Ṫ ρ∞s

(
dγs
dT

+
γs
T
z
K1(z)
K2(z)

)
= γ2g(τ)R

gg→ss̄

(
1− γ2s (τ)

γ2g(τ)

)
+ γ2q(τ)R

qq̄→ss̄

(
1− γ2s (τ)

γ2q(τ)

)
. (17.28)

When all γi → 1, the right-hand side vanishes; chemical equilibrium is
established.
In order to be able to evolve the population of (strange) quarks we need

to understand the population of gluons, i.e., γg. Several workers have
considered the glue approach to equilibrium in perturbative processes
such as gluon splitting, e.g., gg→ ggg [71, 252, 253, 275]. They find that,
in the thermal environment, there is not enough production of gluons
to reach chemical equilibrium. Accordingly, there are too few gluons to
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derive the approach to chemical equilibrium of light quarks, and, even
more so, of strange quarks. The initial conditions for such a full-kinetic-
evolution study are relatively unreliable, but can not alter this conclusion.
We pursue an entirely different point of view in this book, based on the
belief that strong multigluon processes gg → ng, n > 3 can equilibrate
the abundance of gluons faster [278]. Therefore, we assume that gluon
chemical equilibrium is reached rapidly, O(1 fm), on a scale not much
longer than the time required to reach thermal equilibrium. Our choice
of an initial condition for consideration of strange flavor equilibration is
γg = 1. In the study of evolution of strange (and charm) quarks we also
take γq = 1. A large error, in this last assumption, is without significance
for what follows, since gluons dominate the thermal production of strange
quarks.
Given the chemical equilibrium of gluons and light quarks, we obtain

the dynamic equation describing the evolution of the local phase-space
occupancy of strangeness (and, in analogy, charm),

2τsṪ
(
dγs
dT

+
γs
T
z
K1(z)
K2(z)

)
= 1− γ2s . (17.29)

As discussed at the end of section 5.7, we introduce the relaxation time
τs of chemical (strangeness) equilibration as the ratio of the equilibrium
density that is being approached and the rate at which this occurs,

τs ≡
1
2

ρ∞s
(Rgg→ss̄ +Rqq̄→ss̄ + · · ·) . (17.30)

The factor 12 is introduced by convention, in order for the quantity τs(T )
to describe an exponential approach to equilibrium, Eq. (5.41).
One generally expects that γs → 1 monotonically as a function of time.

However, Eq. (17.29) allows the range γs > 1, for it incorporates the
physics of a rapidly expanding high yield of strangeness created in the
early stage at high T . At a high background temperature, the evolution
γs(t) → 1 produces a high yield of particles, which corresponds, at the
lower temperature established after expansion of the system, to γs > 1.
One finds that thermal annihilation of flavor cannot keep up with the
rapid evolution of a fireball of QGP, and an overabundance will generally
result. Annihilation is slow, since the density of strange and antistrange
quarks is about four times smaller than the density of gluons (an effect of
color and mass) and the rate of annihilation for strange quarks is 16 times
slower. With a relaxation time for the production of strangeness of 1.5–10
fm (depending on temperature), see Fig. 17.11 below, the relaxation time
for ss̄ annihilation is 20–150 fm, so practically all strangeness is preserved
on the time scale of 5 fm of a QGP fireball. For charm this argument
is much stronger, given the greater effect of mass. Once it has been
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17 Thermal production of flavor in a deconfined phase 325

Fig. 17.1. The statistical equilibrium densities of strange or antistrange quarks
with ms = 160MeV (solid line) and of charmed or anticharmed quarks with
mc = 1500MeV (dashed line), as functions of temperature T .

produced, heavy flavor has no time to annihilate and reequilibrate. This
is a very important feature that makes the yield of strangeness a ‘deep’
probe of the deconfined phase.
Said differently, the high abundance of strangeness (or charm) formed

in the high-temperature QGP stage over-populates the available phase
space at lower temperature, when the equilibration rate cannot keep up
with the cooling due to expansion. We will quantify this effect in more
detail in section 17.5. In the kinetic equation Eq. (17.29), this is seen
most clearly by considering the case T < ms. In this limit, 1/τs becomes
small, the dilution term (second term on the left-hand side in Eq. (17.29))
dominates the evolution of γs. For the massive charm quarks T 	 mc, so
expansion dilution can generate a very large phase-space overabundance,
compared with the equilibrium yields expected in hadronization.
To grasp the sensitivity of these remarks to the early QGP stage,

we look at the equilibrium densities of strange (ms = 160MeV) and
charmed (mc = 1500MeV) quarks, shown in Fig. 17.1. We note that, for
T � 250MeV, the equilibrium abundance of strangeness exceeds one s̄ qu-
ark for each fm3 of matter, and that charm reaches this for T ≥ 450MeV.
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Fig. 17.2. Leading order Feynman diagrams for production of ss̄ (and similarly
cc̄) by fusion of gluons and pairs of quarks (q = u,d).

Looking at charm, we note that, when the system expands and cools
rapidly from T = 450 to 150 MeV, the volume grows by less than a factor
of 70, see the entropy density in Fig. 16.7, while the equilibrium density
of charm declines by factor 10 000 and the charm saturation factor γc in-
creases by the factor 150, to preserve the yield of charm. This abundance
of charm is a product of the first interactions, not of thermal processes,
except possibly at the LHC in a very-high-T scenario.

17.3 Production cross sections for strangeness and charm

The production processes involving quark and gluon degrees of freedom
in QGP are

u + ū→ s + s̄, d + d̄→ s + s̄, (17.31a)
g + g→ s + s̄. (17.31b)

These three processes describing perturbative production of pairs of
strange quarks are represented to lowest order in Fig. 17.2, and have to
be summed incoherently. These lowest-order diagrams were studied in
the early eighties, for the quark process [68] and for the gluon process
[226], employing fixed values of αs = 0.6 and ms = 160–180MeV.
The evaluation of the lowest-order Feynman diagrams shown in Fig. 17.2

yields the cross sections [95]:

σqq̄→f f̄(s)=
8πα2s
27s

(
1+
2m2

f

s

)
w(s), w(s) =

√
1− 4m

2
f

s
, (17.32a)

https://doi.org/10.1017/9781009290753.024 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290753.024


17 Thermal production of flavor in a deconfined phase 327

Fig. 17.3. Production cross sections for strangeness in leading order: (a) for
αs = 0.6 and ms = 200MeV; (b) for running αs(

√
s) and ms(

√
s), with αs =

0.118. Solid lines, qq̄→ ss̄; dashed lines, gg→ ss̄.

σgg→f f̄(s)=
πα2s
3s

[(
1 +

4m2
f

s
+
m4
f

s2

)
ln
(
1 + w(s)
1− w(s)

)

−
(
7
4
+
31m2

f

4s

)
w(s)
]
. (17.32b)

Inspecting Fig. 17.3(a), we see that the magnitudes (up to 0.4mb) of both
types of reactions considered, quark fusion and gluon fusion, are similar.
At this stage, it is not immediately apparent that gluons dominate the
production of flavor.
The magnitude of the cross section of interest is normalized by αs. To

obtain Fig. 17.3(a), we took αs = 0.6. While the value seems reasonable, a
value of αs = 0.3 would lengthen the relaxation time of strangeness, τs ∝
α−2
s , by a factor of four, nearly beyond the expected life span of the QGP
fireball. Thus, we must improve the determination of αs. There are two
natural ways to do this; the easier one is to adopt the functional αs(T ) seen
in Fig. 14.3. However, in such an approach, two-body collisions occurring
at very different

√
s but in a thermal bath at the same temperature T are

evaluated with the same value of αs. Only for the thermal production of
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Fig. 17.4. Running masses for αs = 0.118: (a) the mass of the strange quark
ms, for which the dot indicates the production thresholds for pairs of strange
quarks for ms(MZ) = 90 MeV; (b) the mass of the charmed quark mc, for
which the cross indicates production thresholds for pairs of charmed quarks for
mc(MZ) = 700 MeV.

charm does this approach turn out to yield the same result as does the
more complex, but more precise, consideration of an appropriate value
of αs for each collision, governed by the applicable αs(µ), Fig. 14.1, with
µ �

√
s.

This second method, in which for each collision in the thermal bath
an appropriate coupling strength is selected, is necessary for studying
the production of strangeness in order to account for the growth of the
cross section for soft scattering. The increase of cross section in soft
collisions is, however, largely balanced by the concurrent suppression of
the cross section due to the increase in mass of the strange quark ms

on the soft momentum scale. We adopt the running-mass and coupling-
constant results presented in chapter 14, for αs(MZ) = 0.118. In Fig. 17.4,
the running masses of the strange and charm quarks mi(µ), i = s, c, for
ms(MZ) = 90MeV and mc(MZ) = 700MeV, derived from Fig. 14.1, are
shown. These values imply that ms(1GeV) � 200MeV and mc(1GeV) �
1.55 GeV.
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µ

Fig. 17.5. Cross sections for leading order production of charm for the running
αs and running mass of the charmed quark with mc(MZ) = 0.7GeV: the solid
line is for fusion of pairs of light quarks, whereas the dashed line is for gg→ cc̄.

The energy scale of greatest interest for studying the production of
strangeness is certainly µ = 2πT � 1–2 GeV, which is precisely the region
of rapid change of the value of ms. Below

√
s = 1GeV, the mass of the

strange quark increases rapidly and the threshold for producing pairs
of strange quarks increases to above 2ms(1GeV). Half of the threshold
energy is indicated by the black dot in Fig. 17.4(a). The pair-production
threshold is, section 14.4,

2mth
s (µ = 2m

th
s ) = 611MeV, ms(MZ) = 90MeV, αs(MZ) = 0.118.

For charm, the running-mass effect plays differently, since the naive
threshold for production of charmed quarks 2mc(2GeV) > 2GeV. The
running of the mass has the effect of reducing the effective threshold. For
mc(MZ) = 700MeV, the production threshold is found, rather than at
3.1GeV, at

2mth
c (µ = 2m

th
c ) = 2.3GeV, mc(MZ) = 700MeV, αs(MZ) = 0.118.

The cross, in Fig. 17.4(b), indicates the position of half of the threshold
energy. Even this small reduction in threshold enhances the production
of charm at low energy and especially so in the thermal environment we
are considering.
In Fig. 17.3(b), we have presented the cross sections for production

of strangeness Eqs. (17.32a) and (17.32b), evaluated using the running
QCD parameters obtained in sections 14.3 and 14.4, identifying µ →

√
s.
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On comparing this with the ‘conventional’ result seen in Fig. 17.3(a), a
greater threshold and more rapid decline of the cross sections are noted.
Near

√
s = 1 GeV, in both cases, the fusion of gluons (dashed line)

dominates, even though at lower energy the quark-pair fusion reaction
(solid line) has a stronger peak. Similarly, for production of charm, we see
in Fig. 17.5 the cross sections for fusion of gluons (dashed line) and pairs
of quarks (solid line), for production cross sections which were computed
for the running αs(MZ) = 0.118 and running charmed-quark mass with
mc(MZ) = 700 MeV. These cross sections are a factor 100 smaller than
those for strangeness, at the level 1–2 µb. This is due to the fact that
an eight-fold greater

√
s is required, given that σ ∝ 1/s, and a reduction

in the effective coupling strength. The smallness of the cross section
for production of charm is the reason why thermal production of charm
becomes relevant only at T → 1 GeV. Inspecting Fig. 17.5, we can also
clearly understand the great sensitivity of the direct production of charm
in non-thermal parton collisions to the value, and running, of the mass of
the charmed quark: using a production threshold at 3 GeV, we cut 40%
of the available strength of the cross section.
The use of scale dependent QCD parameters, αs and mf , f = s, c, with

µ ∝
√
s amounts to a re-summation of many QCD diagrams comprising

vertex, and self energy corrections. A remaining shortcoming of thermal
production evaluation is that up to day, there has not been a study of the
next to leading order final state accompanying gluon emission in thermal
processes, e.g., gg→ ss̄ + g. In direct parton induced reactions, this next
to leading order effect enhances the production rate by a factor K = 1.5–
3. This causes a corresponding increase in the rate of production, and
a reduction in the thermally computed chemical equilibration time of
strangeness and charm.

17.4 Thermal production of flavor

The thermal production processes occur over a wide range of
√
s. There

are two factors determining this. Aside from the cross section, the collision
frequency is the determining factor. We have introduced the thermal col-
lision frequency per unit time and volume Pi(s) in channel i, Eq. (17.12).
Employing the result Eq. (17.16) and the discussion of quantum correc-
tions which followed, we obtain, setting g1 = g2 = 16, I12 = 1 and λ2 = s2

(for massless gluons)

Pg =
4Ts3/2

π4

∞∑
l,n=1

1√
nl
K1

(√
nl s

T

)
. (17.33)
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Fig. 17.6. The collision distribution functions as functions of
√
s: (a) for quarks

and (b) for gluons, computed for temperature T = 260MeV, λq = 1.5 (dotted
lines, amplified by a factor of eight); T = 320MeV, λq = 1.6 (dashed lines,
amplified by a factor of four); and T = 500MeV, λq = 1.05 (solid lines). In all
cases γq, γg = 1.

For quark processes, using Eq. (17.18) for γq/λq < 1, and setting g1 =
g2 = 6, I12 = 0 and λ2 = s2 (for massless quarks), and taking the result
twice to allow for the two quark flavors which can undergo incoherent
reactions,

Pq|µq=0 =
9Ts3/2

4π4

∞∑
l=1

(−)l+1
γlq
lλlq

∫ ∞

0

dp1√
s

exp
(
−l s

4Tp1

)
γ−1q λ−1q ep1/T + 1

. (17.34)

In Fig. 17.6, the distribution functions for the collision frequency
Eqs. (17.33) and (17.34) are presented as functions of

√
s for gluons (b),

and a qq̄ pair of light quarks (a). The temperatures correspond to a range
of possible initial fireball temperatures at the SPS and RHIC: T = 260
MeV (dotted, λq = 1.5), 320 MeV (dashed, λq = 1.6), and 500 MeV
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Fig. 17.7. The differential thermal production rate for strangeness dRs/ds, with
T = 250, λq = 1.5 for gluons (dashed line), and qq̄→ ss̄ (solid line, includes two
interacting flavors), for the running αs(MZ) = 0.118 and running mass of the
strange quark ms(MZ) = 90 MeV ± 20% (thin lines).

(solid λq = 1.05). Gluons and light quarks are assumed to be in chemical
equilibrium, γq, γg = 1.
There is a shift in the maximum of the distribution of Pq,g to higher

√
s

with increasing temperature. The collision frequency for gluons is about
five times greater, Pg � 5Pq, than that for a pair of quarks, and this is
the origin of the glue dominance of thermal production of strangeness.
Moreover, the peak in the gluon collision frequency Pg is more coincident
with the peak in the cross section, as a function of

√
s, Fig. 17.3(b). This

further amplifies the gluon dominance. This combined enhancement effect
can be seen in the thermal differential production rates,

dRf
ds

=
∑
i=q,g

σif(s)Pi(s), f = s, c, (17.35)

shown for thermal production of strangeness, in Fig. 17.7 for T = 250
MeV, and for thermal production of charm, in Fig. 17.8 for T = 500
MeV. Gluons (dashed lines) dominate quark-pair processes (solid lines),
which are contributing at the level of 15%. The uncertainty in mass of the
strange quark has significant impact; thin lines bordering thick lines show
the effect of 20% variation in the value of the quark mass considered.
Since formation of charm occurs in the domain T 	 mc, near to the

threshold, where the cross section for fusion of a pair of quarks domi-
nates gluon fusion, the gluon dominance of the production rate is not

https://doi.org/10.1017/9781009290753.024 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290753.024


17 Thermal production of flavor in a deconfined phase 333

Fig. 17.8. The differential thermal production rate for charm dRc/ds, with T
= 500MeV, λq = 1 for gluons (dashed lines) and qq̄ → cc̄ (solid line, includes
three interacting flavors), for the running αs(MZ) = 0.118 and running mass of
the charmed quark mc(MZ) = 700 MeV ± 7% (thin lines).

as pronounced as it is for strangeness. Only for T ≥ 500MeV does the
glue fusion pick up strength and clearly dominate the thermal production
of charm. Yet, even at T = 500 MeV, the rates for charm are a factor
100 smaller than those for strangeness at T = 250 MeV, and thermal
production of charm is expected to be irrelevant at the RHIC.
The differential production rate can easily be integrated, and we show

the results in Fig. 17.9 for strangeness, and in Fig. 17.10 for charm. In
Fig. 17.9, we see that the early results (dotted line) [226] are found within
the uncertainty in mass of the strange quark (a smaller mass leads to a
bigger value of R). A yet greater value of R should result after the K-
factor has been introduced, describing the next-to-leading-order effects.
The rate of production of strangeness per unit volume and time is at the
level of unity at temperatures reached at the RHIC, and production of
strangeness is very abundant.
The thermal production of charm could be significant at the LHC rel-

ative to the direct first-parton-collision production, if temperatures well
above T = 500 MeV are reached. We see, in Fig. 17.10, that the produc-
tion rate for charm changes by six orders of magnitude as the temperature
varies between 200 and 600MeV. This sensitivity to the initial tempera-
ture is due to the exponential suppression with m/T > 1. In turn, this
implies that the thermal production of charm can become important at
sufficiently high temperature.
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Fig. 17.9. Thermal production rates for strangeness Rs in QGP (thick solid
line), calculated for λq = 1.5, αs(MZ) = 0.118, and ms(MZ) = 90 MeV, as a
function of temperature. Chain lines show the effect of variation of the mass of
the strange quark by 20%. The dotted line shows comparison results for fixed
αs = 0.6 and ms = 200MeV.

Fig. 17.10. Thermal production rates for charm Rc in QGP (solid line), calcu-
lated for λq = 1.05, αs(MZ) = 0.118, and mc(MZ) = 0.7GeV, as a function of
temperature. Chain lines show the effect of variation of mass of the charmed
quark by 7%. Dotted lines are comparison results for fixed αs = 0.35 and
mc = 0.9GeV (upper) and αs = 0.4 and mc = 1.5GeV (lower).
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Insertion of the rates Ri into Eq. (17.30) allows us to obtain the time
constants for chemical relaxation τs and τc. It should be stressed that,
in an actual kinetic evaluation of the production of flavor, the relaxation
time τf enters only when we relate the actual yield of flavor to the ex-
pected yield ρ∞f . Namely, the back reaction, f f̄ → gg, qq̄, is driven by the
actual density of strangeness, whereas the forward rate, ignoring Pauli
blocking, is not affected by the equilibrium yield at all. Which mf is used
in Eq. (17.30) to define ρ∞f is physically irrelevant, as long as the same
values of mf and ρ∞f are used both in the definition of τf , Eq. (17.30), and
in γf(t) = ρf/ρ

∞
f . In Fig. 17.11, we see τs evaluated with ms(1GeV) = 200

MeV. The range of the assumed 20% uncertainty in ms(MZ) is indicated
by the hatched areas. The initial predictions obtained 20 years ago [226]
at fixed values αs = 0.6 and ms = 200 MeV (the dotted line in Fig. 17.11)
are well within the band of values related to the uncertainty in mass of
the strange quark. The approximate formula obtained in [226],

τf =
1.6

α2sγ
2
gT

mf/T emf/T

[1 + (99/56)T/mf + · · ·] , (17.36)

allows a quick estimate of the expected relaxation time in all the en-
vironments discussed in this subsection. We have added the pre-factor
γ−2g relevant in case the dominant source of heavy flavor, gluons, is not
in chemical equilibrium. We see that the equilibration time lengthens
accordingly.
Thermal nonperturbative effects on the relaxation of strangeness were

studied by introducing thermal, temperature-dependent, particle masses
[70]. After the new production rates, including the now possible gluon de-
cay, were added up, the total rate of production of strangeness was found
to be little changed compared with the free-space rate. This finding was
challenged [34], but a further reevaluation [66] confirmed that the rates
obtained with perturbative glue-fusion processes are describing precisely
the rates of production of strangeness in QGP, for the relevant tempera-
ture range T > 200 MeV. We can thus assume today that the ‘prototype’
strangeness-production processes seen in Fig. 17.2, re-summed using the
renormalization-group method, are dominating the rates of production of
strangeness in QGP.
The poor knowledge about the mass of the strange quark makes it

possible that the actual relaxation time for strangeness is even smaller.
In quenched-lattice calculations, see section 15.5, a much smaller value
ms(MZ) � 50 MeV is found. The thin-dotted line in Fig. 17.11 gives the
corresponding result for ms(MZ) = 50 MeV. We see that the relaxation
time is already small enough to allow chemical equilibration at T < 200
MeV. Moreover, next-to-leading-order effects (the K-factor) should fur-
ther reduce the chemical relaxation constant.

https://doi.org/10.1017/9781009290753.024 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290753.024


336 Strangeness

Fig. 17.11. The QGP chemical relaxation time for strangeness τs, for αs(MZ) =
0.118 with ms(MZ) = 90 MeV and ρ∞s (ms � 200MeV) (thick line). Hatched
areas show the effect of variation of the mass of the strange quark by 20%. The
fat-dotted line shows comparison results for fixed αs = 0.6 and ms = 200MeV.
The thin-dotted line shows the result for ms(MZ) = 50 MeV.

While precise evaluation of the production of strangeness at tempera-
tures as low as Tc � 160 MeV is not reliable within the scheme we have
presented, it is highly probable that the combined effect of lowms and the
K-factor would ensure that near-chemical equilibrium for strangeness can
develop as soon as the QGP phase can be formed. As a result, the stran-
geness energy excitation function, seen in Fig. 1.5 on page 17, can then
be interpreted as due to the onset of deconfinement already in collisions
below SPS energies. We see that, despite 20 years’ work on strangeness,
we still have many new, interesting insights to gain.
In Fig. 17.12, the chemical relaxation time for charm is shown in the ex-

tended interval through T = 1000 MeV. Since charm is considerably more
massive than strangeness, there is less uncertainty in the extrapolation of
the running QCD coupling constant. There is also less relative uncertainty
in the value of the mass of the charmed quark, shown by the hatched area.
We also see (dotted lines) the results for fixed mc and αs with parameters
selected to border high- and low-T limits of the results presented. In the
high-T limit, the choice (upper dotted line) mc = 1.5GeV, αs = 0.4 is
appropriate, whereas to follow the result at small T (lower dotted line),
we take a much smaller mass mc = 0.9GeV, with αs = 0.35.
The important result, see Fig. 17.12, is that, above T = 700 MeV,

the relaxation time drops below to 10 fm; the curves flatten. At gluon
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Fig. 17.12. Solid lines show the thermal relaxation constant for charm in QGP,
calculated for running αs(MZ) = 0.118, mc(MZ) = 0.7GeV and ρ∞c (mc �
1.5GeV). Lower dotted line, for fixed mc = 0.9GeV and αs = 0.35; upper
dotted line, for fixed mc = 1.5GeV and αs = 0.4. The hatched area shows the
effect of variation mc(MZ) = 0.7 GeV ± 7%.

collision energies of several GeV, it is quite natural to expect that the
next-to-leading-order effects enhance the cross section for production of
charm by a factor of two, and this reevaluated relaxation time would
correspond to a true value of a few fermis only. At this juncture in time,
it is quite impossible to be sure how important the thermal component
is in the production of charm at the LHC. On the other hand, even the
first parton collisions are expected to produce 200 ± 50% cc̄ pairs, and
thus, in one way or another, charm certainly will be the novel-physics
frontier at LHC energies, replacing strangeness as the flavor signature of
new physics.

17.5 Equilibration of strangeness at the RHIC and SPS

Given the relaxation constant τs, we evaluate the thermal yield of stran-
geness in the QGP which arises on integrating the kinetic equation
Eq. (17.29). Since this requires as input initial conditions the temporal
evolution of the fireball, results are somewhat model-dependent. Indeed,
there is considerable difference of opinion among groups regarding the
well-studied RHIC system [71, 221, 252, 253, 275], since the experimental
data which would narrow down the models is only now being obtained.
The most important issue on which the various groups differ is the directly
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(or indirectly) assumed gluon content. In this book, we assume rapid
chemical equilibration of gluons, which is not reached in studies relying
on kinetic evolution by implementing the lowest-order gg → ggg gluon
fragmentation.
For the RHIC conditions, we present a qualitative model with a cylin-

drical longitudinal flow, and transverse expansion [221]. We assume that
the transverse flow of matter occurs at the velocity of sound for relativis-
tic matter v⊥ � c/

√
3 = 0.58c. For a purely longitudinal expansion, the

local entropy density scales according to S ∝ T 3 ∝ 1/τ ; see Eqs. (6.35)
and (7.22). The transverse flow of matter accelerates the drop in entropy
density. To model this behavior without too great a numerical effort, con-
sidering the other uncertainties, the following temporal-evolution function
of the temperature was proposed:

T (τ) = T0

(
1

(1 + 2τc/d)(1 + τv⊥/R⊥)2

)1/3
. (17.37)

Considering various values of T0, the temperature at which the gluon
equilibrium is reached, the longitudinal dimension is scaled according to

d(T0) = (0.5GeV/T0)3 × 1.5 fm. (17.38)

This adjustment of the initial volume V0 assures that the different evolu-
tion cases refer to a fireball with a similar entropy content. The following
results are thus a study of one and the same collision system, and the
curves reflect the uncertainty associated with unknown initial conditions
of a fireball of QGP with identical, (but large by current standards) en-
tropy content.
The numerical integration of Eq. (17.29) is started at τ0 = 1 fm/c, the

time at which thermal initial conditions are reached. A range of initial
temperatures 300 MeV ≤ T0 ≤ 600 MeV, varying in steps of 50 MeV,
is considered. Since the initial p–p collisions also produce strangeness,
to estimate the initial abundance a common initial value γs(T0) = 0.15
is used. For T0 = 0.5GeV, the thickness of the initial collision region
is d(T0 = 0.5)/2 = 0.75 fm. The initial transverse dimension in nearly
central Au–Au collisions is taken to be R⊥ = 4.5 fm. The initial volume
of QGP is 190 fm3, which, at the temperature of T0 = 0.5GeV, implies,
according to results seen in Fig. 16.7, a total entropy content of S =
38 000. We divide this by the specific entropy content per hadron in the
final state, S/N = 4; see section 10.6. We see that the primary final-
state hadron multiplicity has implicitly been assumed to be 9500. This
is somewhat above results seen even during the RHIC run at

√
sN = 200

GeV, for which we estimate, for the 3% most central events, a total hadron
multiplicity, after resonance cascading, of 8000.
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Fig. 17.13. The evolution of QGP phase-space occupancy for strangeness γs:
(a) as a function of time and (b) as a function of temperature for ms(1GeV) =
200MeV; see the text for details.

The evolution with time in the plasma phase is followed up to the
breakup of the QGP at a temperature TRHICf � 150 ± 5 MeV. The nu-
merical solution of Eq. (17.29) for γs is shown as a function both of time
t, in Fig. 17.13(a), and of temperature T , in Fig. 17.13(b). This evolu-
tion is physically meaningful until it reaches the QGP breakup condition.
Since the results for higher temperatures are also displayed, the reader
who prefers hadronization at T = 170 ± 5 MeV can easily draw his own
conclusions.
We see in Fig. 17.13 the following phenomena.

• A steep rise at early times, showing actual production of strangeness,
which is followed by a dilution-driven increase of γs near the breakup
temperature.

• Widely different initial conditions (but with similar initial entropy con-
tents) lead to rather similar chemical conditions at chemical freeze-out
of strangeness.

• Despite the use of a high mass of ms = 200 MeV, we find that strange-
ness nearly equilibrates chemically, and that the dilution effect allows in
certain cases a small over-population of the strange-quark phase space
even in the strangeness-dense QGP.

• For a wide range of initial conditions and final freeze-out temperature
a narrow band of final result is seen, 1.10 > γs(Tf) > 0.9.

Since strangeness is more easily made in the ‘hot’ era in glue–glue inter-
actions, we can estimate that, if the abundance of glue had been at the
time 70% chemically equilibrated, then γs � 0.5. This high sensitivity to
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the glue density is at the origin of the claim that measuring the yield of
strangeness probes the presence and abundance of glue, which is a specific
property of QGP.
In the model calculations presented, the fireball begins to expand in

the transverse direction instantly at the full velocity. For this reason,
the initial drop in temperature is very rapid. This defect also makes the
transverse size at the end of the expansion too large, R⊥ � R0+tf/

√
3 � 9

fm, compared with the results of HBT analysis, Fig. 9.11. This can easily
be fixed by introducing a more refined model of the transverse velocity,
which needs time to build up. The yield of strangeness may slightly
increase in such a refinement, since the fireball will spend more time near
to the high initial temperature.
The RHIC results presented are typical for all collision systems. In the

top SPS energy range, the initial temperature reached is certainly less (by
10%–20%) than that in the RHIC 130-GeV run, and the baryon number in
the fireball is considerably greater; however, the latter difference matters
little for production of strangeness, which is driven by gluons. A model
similar to the above yields γQGPs � 0.6–0.7, the upper index reminds
us that in this section the strangeness occupancy factor γs refers to the
property of the deconfined phase. The experimental observable directly
related to γQGPs is the total yield of strangeness per participating baryon.
We will return to discuss the significance of these results in section 19.4.

18 The strangeness background

18.1 The suppression of strange hadrons

Since the matter around us does not contain valence strange quarks, all
strange hadrons produced must contain newly made strange and antis-
trange quarks. If strangeness is to be used as a diagnostic tool for inves-
tigating QGP, we need to understand this background rate of production
of strange hadrons. In that context, we are interested in measuring how
often, compared with pairs of light quarks, strange quarks are made. One
defines for this purpose the strangeness-suppression factor†

Ws =
2〈ss̄〉

〈uū〉+ 〈dd̄〉
. (18.1)

In Ws, all newly made ss̄, uū, and dd̄ quark pairs are counted.
If strangeness were to be as easily produced as light u and d quarks,

we would find Ws → 1. To obtain the experimental value for Ws, a care-
ful study of produced hadron yields is required [277]. Results shown in

† We chose Ws in lieu of the usual symbol λs, which clashes with the strangeness
fugacity.
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