
METACYCLIC INVARIANTS OF KNOTS AND LINKS 

R. H. FOX 

To each representation p on a transitive permutation group P of the group 
G = ir(S — k) of an (ordered and oriented) link k = k± KJ k2 U . . . U &M in 
the oriented 3-sphere S there is associated an oriented open 3-manifold 
M = Mp(k), the covering space oî S — k that belongs to p. The points 
0i, 02, . . . that lie over the base point o may be indexed in such a way that 
the elements g of G into which the paths from ot to 0̂  project are represented 
by the permutations gp of the form ("'')''"), and this property characterizes 
M. Of course M does not depend on the actual indices assigned to the points 
0i, 02, . . . but only on the equivalence class of p, where two representations 
p of G onto P and p' of G onto P ' are equivalent when there is an inner 
automorphism 6 of some symmetric group in which both P and P' are contained 
which is such that p' = Op. 

The covering .M" —» 5 — fe has a unique completion M —* S, called the 
associated branched covering [7]. The part of il? that lies over the simple closed 
curve ka is the union of a finite or infinite sequence of mutually disjoint sets 
kai, ka2, . . . called branch curves, each of which is either a simple closed curve 
or an open arc. If kap has a meridian, it may be obtained by lifting a suitable 
power of a meridian of ka. 

An orientation-preserving autohomeomorphism <p of S that maps one 
(ordered and oriented) link k onto another one, k'', induces a biunique 
correspondence p <-> p between the representations p of G and the 
representations p' of G; which is such that, for each corresponding pair, <p 
lifts to an orientation-preserving homeomorphism cp of Mp(k) onto Mp>{kr)\ 
this homeomorphism <£, which is unique up to covering translations, maps 
branch curves into branch curves. Thus the collection of spaces Mp(k) and 
Mp(k) that belong to the representations p of a distinguishable family, for 
example the representations p of G onto a given permutation group P , is an 
invariant of the type K of the link k. Such invariants may be called P-invariants-, 
thus we have cyclic invariants (when P is cyclic), metacyclic invariants (when 
P is metacyclic), abelian invariants (when P is abelian), metabelian invariants 
(when P is metabelian), etc. Since the Alexander matrix A{h, . . . , ty) is an 
invariant of the universal abelian covering M(p) —> 5 — k that belongs to 
the representation of G onto the free abelian group of rank JU, all the various 
knot-theoretical invariants that can be derived from the Alexander matrix 
(e.g. the elementary ideals Ed(ti, . . . , t^) and polynomials Ad(/i, . . . , ty), 
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d = 1, 2, . . .) are abelian invariants. (In particular, when /x = 1, the free 
abelian group of rank fx is cyclic; hence -4(0» Ed(t), and Ad(t), etc., are also 
cyclic invariants.) 

When K is tame and P is finite, M is an oriented closed 3-manifold, and 
the linking invariants of M are then defined, and they are therefore 
P-invariants of K. (When M is not a closed manifold, which happens whenever 
P is not finite, it does not seem to contain any information not already 
contained in M.) 

The reason that so much of the literature is about the cyclic invariants 
of knots (and the abelian invariants of links) is their relative tractibility. It 
is simply that the non-abelian invariants are not as well-behaved, and hence 
not very much has been done with them. However, I have found that it is 
possible to deal with the metabelian invariants to a certain extent, and I 
will try to indicate here some of the results that have been obtained about 
them. In order to present these results in their sharpest form, I shall restrict 
myself to metacyclic invariants, where by "metacyclic" I mean what is often 
called "i£-metacyclic" [4, p. 11]. This restriction involves no loss of ideas. 

1. The metacyclic representations of G. The iT-metacyclic group Tp 

is generated by the two cycles œ = (12 . . . p), where p is an odd prime, 
and £ = (1 qp~2 qp~s . . . q), where g is a primitive root of p. Note that the 
group Tp does not depend on q although, of course, the generator £ does. 
A presentation of Yv is 

(co, £:co* = 1, e~l = 1, fco = «<{); 

a normal form for the elements of Tp is coa£&, 0 ^ a < p, 0 ^ b < p — 1. 
It will always be assumed that K is tame. Let 

(xi, . . . , xn:ri = 1, . . . , rw_i = 1) 

be a Wirtinger presentation of G, and denote by e(j) the component of k 
of which %j is a meridian, 1 S e(j) = /*• If e(ji) = ^(j'2), then xh

p and xh
p 

must be conjugates in Tv. Hence a representation p of G into Tp is determined 
by an assignment 

xj-ZtS't™, i = i », 

provided that rt
p = 1 for i = 1, . . . , w — 1. This condition can be written 

in the form 

(*) E UM"\ • • • , <LH)a, = 0 (mod p), i = 1, . . . , n - 1, 

where | |r^(/i, . . . , /M)|| is the Alexander matrix A(ti, . . . , t^). For each 
jit-tuple b — (61, . . . , 6M) let the rank of the matrix ^4(gi&1, . . . , gM

&/i) be 
n — 1 — db; the number of solutions of the homogeneous system of congruences 
(*) is then p1+db. However, p of these solutions (those for which the ratio 
(q — l)dj : qbe(j) — 1 is independent of j) yield representations onto proper 
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subgroups of Tp. (These are cyclic representations.) T h u s there are 
Y^bp(pdb — 1) representat ions of G on Tp. Bu t each equivalence class of 
representat ions on Tp contains p{p — 1) different representat ions. Th i s m a y 
be summarized by means of the following theorem. 

T H E O R E M 1. G can be represented on Yv if and only if the odd prime p divides 
A(qbl, . . . , qbti) for some b. The number of inequivaient representations is equal to 

v pdW - 1 

hf P-i ' 
where d(b) is the largest integer d such that p divides Ed(q

bl, . . . , qb^). 

In practice, the congruence (*) is most conveniently solved by a simple 
trial and error procedure carried out on a projection of k. For example, for 
p = 3, one tries to mark on each overpass one of the integers 1, 2, 3 (stand-ins 
for the transposit ions (2 3) , (1 3) , and (1 2), respectively) in such a way t h a t 

(1) all three integers are used, and 
(2) a t each crossing the three associated integers are either all different 

or all the same. 
An example is shown in Figure 1. A pleasing effect can be obtained by 

replacing the labels 1, 2 and 3 by, say, the colours red, yellow, and blue. 
T h e 84 pr ime knots of a t most nine crossings are given in the s tandard 

knot table [14, pp . 70-72] , and 167 presumably prime knots of ten crossings 
and 608 presumably prime, al ternat ing knots of eleven crossings have been 
listed by T a i t and Lit t le [17; 10], a l though recent rechecking indicates t h a t 
these la t ter lists are incomplete. T h e polynomials of these 608 knots were 
machine-calculated by Anger [1] and M. Syverson [unpublished work done 
a t Princeton (cf. [8, p . 127])], and a list of the 294 representat ions of the 
213 of these t h a t have representat ions on T3 was compiled by Perko [13]. 
T h e two quadruple ts and the one quintuple t were studied by D. A. Gay and 
T . B. Stoel, Princeton Senior Theses, 1961, 1962, bu t only part ial resolution 
was achieved. 

2. T h e cover ings of c o m p a n i o n s . Let L i be a (tame) solid torus in S 
t h a t contains k in its interior, and let L\ = L\ — k. Denote by X the type of 
a core / of L\. T h e closure L2 of the complement of L\ is a compact submanifold 
of 5 t h a t intersects L\ in their common boundary L0 . If k is not a core of L\ 
and is not contained in any 3-cell subset of Zi , then k is called a companion 
[15] of X. Assuming t h a t the base point o lies in L0 , let us consider the 
fundamental groups of Li , L2 , L0 = L\ C\ L2 and L = L i U L2 = S — k. 

W e know [5] t ha t x (L) is the direct limit of the system 

7r(L0) 

/ \ 

7r(Li) 7r(L2) 
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Since k is not contained in any 3-cell subset of Zi, the injection 7r(L0) —» 7r(Li) 
is an isomorphy. If X is not trivial, the injection 7r(Z0) —>7r(L2) is also an 
isomorphy, and thus 7r(Z) is the free product with amalgamation 

7r(L) = 7r(Li) * 7r(L 2 ) . 

*r(Lo) 

A transitive representation p of 7r(Z) on a permutation group P induces, 
for i = 0, 1, 2, a representation p* of 7r(L*) on a subgroup P* of P . In general, 
the part Mû of the covering space M that lies over Z^ is the union of several 
components, each of which is a covering space of Lt. It is easy to see that 
Mi is connected if and only if P* is transitive, and that Mt is then the covering 
of Lt that belongs to pt. Thus if P 0 is transitive, so that Px and P 2 are also 
transitive, M0, Mi, araZ M2 ar£ connected and 7r(M) W Zfee cfo>£d fe'raz7 0/ /fee 

^(M0) 

/ \ 

TrCMx) 7r(M2) 

Since the injections 7r(M0) —» 7r(Mj), '̂ = 1,2, are isomorphics if and only if 
the injections w(L0) —> 7r(Lj) are isomorphics, we see that 

TT(M) = TT(MI) * TT(M2) if and only if w(L) = TT(LI) * TT(L2). 

7 T ( M 0 ) 7r(Lo) 

3. Metacyclic invariants of doubled knots. To each integer y there is 
associated to a tame knot / a companion k = ly called the double [18] of / 
with twist y. If /* is any other tame knot, and a tubular neighbourhood L\ 
of / is mapped faithfully onto a tubular neighbourhood Zi* of /*, then ly is 
thereby mapped onto Z7*; hence the definition of doubling is reduced to 
description of the doubles of a trivial knot. Although ly and ly* are inequivalent 
whenever I and Z* are inequivalent [16], ly and Zy* have exactly the same 
cyclic invariants (since the group of ly modulo its second commutator subgroup 
does not depend on / but only on 7). This raises the question of distinguishing 
between ly and ly* by algebraic invariants. 

The Alexander polynomial of ly is 

A(0 =yt>+ (1 - 2y)t + y 

and the second elementary ideal is E2(t) = (1). Hence, by Theorem 1, the 
number of inequivalent representations on Tp is equal to the number of 
roots of the congruence 

yt2 + (1 - 2y)t + 7 = 0 (mod p), 

i.e. there is just one representation if p divides 1 — 47, there are two 
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representat ions if 1 — 4 7 is a quadra t ic residue of p, and there are no 
representat ions if 1 — 4y is a non-residue. 

Let us consider a representation p of ir(L) onto Yv. Since a longitude of / 
belongs to the second commuta to r subgroup of ir(L), it mus t lie in the kernel 
of p. Since the winding number of k in L\ is equal to 0, a meridian of / mus t 
lie in the commuta to r subgroup of ir(L) and must therefore be mapped into 
a power of oo. A properly chosen meridian cell of Li cu ts k in two points, 
and two corresponding meridians of k are mapped by p into, say, coai£& and 
o/*2£&. Since p(ir(L)) is not allowed to be a proper subgroup of TP, the integer 
b mus t be prime to p — 1, and the integers a,\ and a2 mus t be incongruent 
modulo p. (If a,\ = a2 (mod p), then all of T(L2) would lie in the kernel of p, 
and consequently every meridian of k would be mapped by p into coai£6.) I t 
follows t h a t 7r(Lo) is mapped onto the cyclic subgroup generated by co, and 
therefore t h a t the representation p0 is t ransi t ive; consequently, by the 
preceding paragraph, Mo, Mu and M2 are connected. Moreover, if I is not 
trivial, then 

w(M) = TT(MI) * w(M2). 

IT (Mo) 

Now ir (Mo) is the free abelian group generated by xv and y, where the meridian 
x and the longitude y generate the free abelian group w(Lo). T h e orientable 
surface X (of genus 1) bounded by x in L\ is covered by an orientable surface 
bounded by xv in Mi, and the orientable surface Y bounded by y in L2 is 
covered by an orientable surface in M2 whose boundary is y. T h u s H(M) 
is the direct product 

If X* is the trivial type 0, then, as shown above, ikf0*, Mi*, and M2* are 
connected, bu t in this case 

(y) (y) 

On the other hand, H(M2)/(x
v) is clearly the homology group of the £-fold 

cyclic branched covering of /; hence [6, p . 416, (6.1)], H(M2) is the homology 
group of the ^-fold cyclic unbranched covering of / and (y) is a direct summand 
of it. T h u s we have the following result. 

The torsion numbers of a pih metacyclic (unbranched) covering of ly are the 
torsion numbers of the corresponding pth metacyclic (unbranched) covering of 
07 together with the torsion numbers of the pth cyclic (unbranched) covering of I; 
the betti number of a pth metacyclic (unbranched) covering of ly is equal to 1 less 
than the sum of the betti number of the corresponding pth metacyclic (unbranched) 
covering of 07 and the betti number of the pth cyclic (unbranched) covering of I. 
(This result was first proved by direct calculation by Art in [2].) 
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4. Fundamental group of metacyclic covering. There is a very simple 
algorithm for the fundamental group w(M) of the branched covering that 
belongs to a metacyclic representation onto r3 . If the group of the link k 
is G = \xi, . . . , xn:ri = 1, . . . , rw_i = 1| and w is a representation of G 
onto r3 , then each xf must be one of the transpositions (1 2), (1 3), (2 3), 
say (UjVj). By the Reidemeister-Schreier theorem (cf. [8, pp. 144-147]), 
the fundamental group ir(M) of the unbranched covering M has the 
presentation 

(xjfi:ria (j = 1, . . . , n, 0 = 1, 2, 3; i = 1, . . . , n - 1, a = 1, 2, 3), 

•^ 7*' 1 ~"~ -̂ - j ^ 7 ' ' 1 ~ X. J • 

where x^ and x^/ are any two of the generators Xi, . . . , xn wrhich are such 
that xr

w = (12), Xy^ = (13), say, and r i a are as described in [8, p. 146]. 
A presentation of the group T(M) is obtained by adjoining the branch relations 
xjujxjvj = 1, xjwj = 1, (where UJVJWJ is some permutation of 1 2 3 and 
Uj < Vj). Of course, this set of branch relations is very redundant but let us 
adjoin them all and use them to eliminate xjvj and xjWj. Writing xy again for 
xjuj there results a presentation of the following form: 

\Xi , . . . , Xn. o i J. , . . . , on—i Lj Xj' X, X j'' 1 ) , 

where Si can be described as follows: 
(1) If the ith relation rt = 1 

is Xi+i = x\(i)eXiX\(i) e and x/°, xi+iu
t xxaf = (zw), then the relation st = 1 is 

Xf = X\(i)Xf X\(i) , 

(2) if x/° = (uv), x\af = (uw), xi+iw = (yw), then the relation st = 1 is 
a = be, where a is that one of xu xi+i, x\(o that is represented by (1 3), 
b that one that is represented by (1 2), and c that one that is represented by 
(2 3). (If the two relations Xy\ = 1 and xy>\ = 1 are omitted, the group 
presented is the free product of ir(M) and the free group F2 of rank 2; cf. 
[6, p. 413].) An example will show how easy this algorithm is to use: 

T(M) = \a, b} A, B, C, a, ft, y: a = aB, y = aA, p = bA, a = bC, (3 = aC, 

7 = bB, /3 = 7Ô7, B = CÂC, b = 1, C = 1| 

= \a, 6, 4 , 5 , C: a £ = bC, bA = aC, Ci4 = 6S, (4 = âbB), 

B = C4C| 6 = 1, C = 1 

= |a, &, -4: a&a = bâb, ba = abab\ b = 1, A = a 

— \a: a3 = 11. 
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FIGURE 1 

I have calculated ir(M) for the 294 branched covering spaces M of the 213 
tabulated knots that have representations on r3 . It turns out that in this 
range, ir(M) is always either cyclic or the free product of two cyclic groups, 
which indicates that because of redundancies the number of different manifolds 
occurring grows rather slowly with n (the number of crossings). M turns out 
to be in this range simply connected 90 times. By a method that I plan to 
discuss in a later paper, I have shown that these are in fact all homeomorphic 
toS 3 . 

The method of this section may easily be modified to deal with any 
representation p that maps meridians into transpositions. It is only necessary 
to remark that in TT(M) there may be a third type of relation, namely: 

(3) If x? = Xi+i" = (uv) and xMif = (wq), then the relation st = 1 is 
X % X i-j-l» 

Particularly simple is the case of the representation onto T2, i.e. the case 
of the 2-fold cyclic covering, since in this case all the relations st = 1 are of 
type (1). 

Since the developments of this section are obviously an outgrowth of [9], 
it may be appropriate here to note that S. Kinoshita and K. Perko have each 
kindly pointed out to me that diagram (b) of [9, p. 215] is in error, and that 
a correct diagram is, for example, the following one. 
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5. Linking of the branch curves. When a representation p of a knot 
group is cyclic, the branch curve in il? is a knot; in other cases it is a link.f 
The idea of attaching the linking numbers of such a link to the type of the 
knot or link goes back to Reidemeister [14, Chapter III, § 15] and Bankwitz 
and Schumann [3], but there has been a lack of systematic study of this 
invariant. In his senior thesis, Perko [13] set forth an algorithm for the 
combinatorial calculation of these linking numbers, and, in particular, a 
computer program for their calculation in the case of representation onto 
F3. This program was run for the 213 knots mentioned above, and the results 
for the knots of at most nine crossings are shown in the table below. These 
linking numbers are, of course, rational numbers whose denominators divide 
the largest torsion number of M, and they exist only if the cycles carried by 
the branch curves are torsion cycles. Since reversing the orientation of 5 
reverses the orientation of M, and hence the sign of the linking number of 
the branch curves, the knot will certainly be non-amphicheiral whenever this 
linking number exists and is different from zero; (when there is more than one 
representation, the condition is that the set of these linking numbers calculated 
for the various representations should be unsymmetric). Using this criterion, 
Perko observed that the knots 6i, 9i, 923, 937, and 946 are not amphicheiral, 
the non-amphicheirality of the last two of these appears not to have been 
known previously. 

The following table gives the structure of the group TT(M) and the linking 

K 0 V 

9 i ± 6 
92 ± 2 
94 ± 2 

96 ± 6 
9 i o ± 6 
9n ± 6 
9 l 5 ± 6 
9 i 6 ± 4 

9l7 ± 1 0 
9 2 3 ± 6 
924 2 0 
928 2 ± 4 
9 2 9 1 ± 1 0 
9 34 5 ±14/5 
935 0 935 0 

3 ±2 /3 
3 ±2/3 
3 ±2 /3 

AC 0 V 

3 i 1 ± 2 

6 i 1 ± 2 

74 1 ± 2 
77 1 ± 6 

85 2 ± 4 
810 2 0 
811 1 ± 6 
815 2 ± 4 
818 3 ± 2 

3 ± 2 
3 T 2 
3 T 2 

819 2 ± 4 
820 2 0 
821 2 ± 4 

K 0 V 

937 0 937 0 
3 ±10/3 
3 ±14/3 
3 ±10/3 

9 3 8 1 ± 1 4 
940 4 ± 4 
9 46 0 

3 ± 2 / 3 
3 ±2 /3 
3 =F2/3 

947 3 ±2 /3 
3 ±2 /3 
3 ± 2 / 3 
3 =F2/3 

948 0 
3 ±10/3 
3 ±10/3 
3 ±10/3 

fin general, the expected number of components lying over a knot with meridian x will 
be the number of cycles in xp. However, Perko [13] has given an example showing that it 
may in fact be fewer than expected. 
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number v of the two branch curves for those prime knot types K of at most 
nine crossings that can be represented on T3; in this range, T(M) is always 
a cyclic group of order o H , and thus the cases where v is undefined occur 
only when o = 0. Note that in the cases where there are several representations, 
reorientation changes the signs of the corresponding numbers v simultaneously. 
The representations p on T3 of a composite knot type K and the corresponding 
linking numbers v are determined by the representations p and linking numbers 
v of the individual factors of K [13]. The numbers v are even integers whenever 
M is simply connected [13]; when M is not simply connected, it has always 
turned out that the numerator of v is an even integer but this has not been 
proved. 
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