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ABSTRACT

A number of standard market models are studied. For each one, algorithms
of computational complexity equal to the number of rates times the number
of factors to carry out the computations for each step is introduced. Two new
classes of market models are developed and it is shown for them that similar
results hold.
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1. INTRODUCTION

It has become more common in recent years for insurance companies to invest
their reserves in exotic structured products in order to obtain an increase in
yield. Such products typically consist of a note issued by a bank which pays
a coupon which is a path-dependent function of LIBOR or swap rates. This
note is often callable, that is the bank can repay the principal early and terminate
the contract. It is therefore important to be able to accurately assess the value
of these products.

Methodologies for pricing such interest-rate products have evolved over
time. This evolution both reflects the changing nature of the products being
addressed and technical advances: both mathematical and computational.
A recent development is the introduction of generic market models. In this
article, we discuss their context in the evolution of interest rate models, and
introduce some new algorithms demonstrating that their efficiency level is
comparable to that of the LIBOR market model.

The post Black-Scholes models for pricing interest rate derivatives were
initially short rate models. These models relied on the notion of a hypotheti-
cal short rate chosen to follow a process that was typically some variant of
a normal or log-normal process. One can view exotic options pricing as an
extrapolation exercise, the objective is to extrapolate from the prices of vanilla
derivative instruments such as swaps and bonds, and options thereon, to prices
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of exotic derivatives. One therefore had to fit the short rate process’s parameters
to the prices of market instruments. In particular, calibrating to both the dis-
count curve and the prices of swaptions were non-trivial tasks. A consequence
of all this fitting and the fact that everything was driven by a single short rate
was that the dynamics of the model were not realistic. The interest rate dis-
count curve can evolve in a complicated fashion which is not capturable by a
single state variable.

Market models were a significant advance on short rate models. These
models rely on choosing processes for market observable rates rather than a
hypothetical short rate. The rates evolved are typically LIBOR rates or swap-
rates and one then has automatic calibration not just to the value of the rate
but also to options on that rate; that is caplets and swaptions. The original
cases studied were contiguous LIBOR rates and co-terminal swap rates, (Brace
et al, 1997, Jamshidian, 1997) however, more general cases have recently been
examined also, (Gallucio et al 2007, Gallucio and Hunter 2004, Pietersz
and Regenmortel 2006), including the concept of a generic market model.
For detailed accounts of market models, see Brigo and Mercurio (2001), Joshi
(2003) or Musiela and Rutkowski (1997).

In all of these models, n rates are chosen and assumed to be log-normal (or
some similar process such as displaced diffusion) and a single zero-coupon
bond is chosen as numeraire. The fact that rates are log-normal and evolved
individually means not only that calibration to their initial values is immediate;
but also that calibration to options on their values is also by construction
rather than fitting. We can thus price n swaptions of our choice absolutely cor-
rectly with no work, and additional swaptions can be calibrated to with a fitting
procedure. Contrast this with a short-rate model where even achieving a fit
to n swaptions requires an optimization. The fact that we can choose these
swaptions is an important advantage when pricing exotic interest rate deriva-
tive products in that it allows us to choose the n rates which have the closest
relationship with its pay-off.

To price exotic derivatives, one typically evolves the rates through a series
of dates. On each date, the cash-flows generated by a product are computed
and used to purchase units of the numeraire. One then gathers the total num-
ber of numeraires generated by each path, and averages to get an estimate of
the expected pay-off as a multiple of the initial value of the numeraire.

There will generally be n rates driven by an F-dimensional Brownian motion,
and this will be said to be an F-factor model. Generally, in derivatives pricing
one works with discounted (or deflated) asset prices which are constructed to
be martingales in an appropriate measure. This is, however, not natural for
market models since the evolved quantities are rates, i.e., ratios of asset prices.
In the pricing measure, the rates therefore have drifts; the values of these drifts
are determined by the rates and the covariances between them. This means that
the implementation of a pricing model by Monte Carlo is tricky and compu-
tationally intensive. The problem of implementation of swap-rate market mod-
els by means other than Monte Carlo does not appear to have been addressed.
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The implementation of such models requires several non-trivial compu-
tations. The first is the deduction of bond ratios from the observed rates, the
second is the calculation of drifts, and thirdly the stochastic differential equa-
tion must be approximately solved. In this paper, we address how all of these
can be done with a total of order nF computations for a wide range of cases
including all the specific examples that have been studied.

In particular, we study the cases of co-terminal swap-rates, co-initial swap
rates and the constant maturity market model. We also introduce two more gen-
eral types of model: the incremental market model and the fully incremental
market model, and establish similar results for them.

Specifically, we find order n algorithms for the deduction of the bond ratios
in each of our specific cases, and for fully incremental models. We also show
that the drifts computation is order nF in each of these cases. The simple
Euler approximation (and also predictor corrector) is of order nF for solving
the SDEs so the total computational order for a step in all these cases is there-
fore nF.

It is important to realize that it is not necessary to find a closed-form for-
mula for the drift and the bond ratios, but merely to write down an algorithm
that is efficiently implementable, and this is how we proceed.

The only papers to date where the issue of efficient algorithms for the com-
putation of swap-rate drifts and the deduction of bond ratios are discussed are
Joshi (2003b, 2006) and Pietersz and Regenmortel (2006). In Joshi (2003b),
the LIBOR market model is studied and an algorithm for drift computation
of order nF is presented. In Joshi (2006), this result is extended to encompass
the case of F common factors and n idiosynchratic factors. Note that a similar
extension could easily carried out in the cases studied here, but we do not so for
brevity. In Pietersz and Regenmortel (2006), an order n3 algorithm in presented
for deduction of bond ratios in the general case. An order nF algorithm is pre-
sented for computation of drifts in the co-terminal case, and an approximate
algorithm for the drifts of order nF is presented for the constant maturity case.

The structure of this paper is as follows. In Section 2, we establish some
notation and examine the computational order of the evolution of the SDE.
We develop computational techniques in Section 4, which we apply in the rest
of the paper. In Section 5, we show how to deduce the bond ratios from the
swap rates in the co-terminal model, and the drift computation in that case is
carried out in Section 6. The constant maturity market model is dealt with in
Section 7. The arguments for the co-initial model are developed in Section 8.
The concept of an incremental market model is introduced in Section 9.
We present some numerical results in Section 10 and conclude in Section 11.

2. NOTATION AND MODEL SET-UP

We fix some notation. We have times 0 < t0 < t1 < g < tn, and tj = tj + 1 – tj . We
let Pj denote the price of the zero-coupon bond expiring at time tj . We let SRa,b
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denote the swap-rate running from time ta to time tb . We let Aa,b be the value
of the annuity of SRa,b , that is

j 1+ .A ,a

aj
b

b 1

=
=

-

j Pt!

Recall, that the swap-rate is the fixed rate at which a stream of cash-flows can
be swapped to a floating rate for zero cost. It satisfies

b .A
P

SR ,
,

a
a

a

b
b

=
-P

(2.1)

A forward rate corresponds to the degenerate case where b = a + 1.
In all market models, one takes n swap-rates and assigns dynamics to them.

This is done in such a way as to make the ratio of all the bonds to the numeraire
asset PN be martingales. Note that n is precisely the number of rates needed to
deduce the values of the n ratios Pj /PN .

Picking a swap-rate is equivalent to picking a pair (aj, bj) with bj ≥ aj + 1,
so specifying a generic market model is equivalent to picking n such pairs.
Having done so, we work with the rates

j ,j j
.SR SRa b= (2.2)

Clearly, one cannot pick an arbitrary set of pairs (aj, bj ). For example, for
every i one would expect there to be at least one swap-rate that either terminates
or starts at i in order to determine the ratio Pi /PN . The issue of what choices
lead to self-consistent models has been addressed by Gallucio et al (2007), and
Pietersz and Regenmortel (2006). In particular, Gallucio et al used graph-
theoretic techniques to show that there are nn – 2 possible market models. Given
that n is usually at least 20, this leads to a huge number of possible choices.

However, as well as it being possible to deduce the ratios, one also needs
an effective algorithm for doing so, since this will be carried out at every step
of every path in a Monte Carlo simulation. Pietersz and Regenmortel showed
that in general it was possible to carry out the deduction with order n3 compu-
tations. Whilst this is a useful result, for n large it can be very time consuming
and one generally wants a faster algorithm. We show in this paper that for large
sub-classes of generic market models, an order n algorithm exists.

When pricing in a market model, one carries out a Monte Carlo simulation
to estimated the expected discounted value of a pay-off. Each path will consist
of a number of steps and for each step the following procedures are necessary:

(1) Compute the drifts of the rates.
(2) Evolve the rates.
(3) Deduce the bond ratios.
(4) Compute cash-flows generated by the product.
(5) Discounting the cash-flows.

456 M.S. JOSHI AND L. LIESCH

0345-07_Astin37/2_13  28-11-2007  15:51  Pagina 456

https://doi.org/10.2143/AST.37.2.2024076 Published online by Cambridge University Press

https://doi.org/10.2143/AST.37.2.2024076


The last two of these are of constant complexity for any reasonable product.
Since the third is of linear complexity, we would therefore also like the first two
to be of linear complexity, we will show that this can be made to be the case
for a large class of models.

The rates will be driven by F Brownian motions. Let ajk denote the exposure
of rate j to the Brownian motion Wk. We will therefore have a system of sto-
chastic differential equations,

dSRj = mj (SR)dt + SRj jk
k

F

1=

a! (t)dWk .

We will evolve the log in discrete time steps. A typical step will run from s to
t, for some s < t, and then we will have

log SRj (t) = log SRj (s) + mj – j ,k
k

F

k
1=

Za!

where ajk is the integral of ajk across the step, Cjj is the variance of log SRj

and Zk are F independent random variables.
The terms ajk specify the volatilities and covariance of the rates: choosing

them is equivalent to calibrating the model.
We have also set mj to be the approximated drift across the step. In this

paper, we will take it to be instantaneous drift at the start of the step with
the covariance terms across the step integrated. Given the drift term, it is clear
that the evolution across the step could be carried out with order nF compu-
tations.

A predictor-corrector drift approximation method is often used to better
approximate the evolution of the SDE. In this case, the rates are first evolved
as above, and then the drifts are recomputed at the end of the step. The rates
are then re-evolved using the same random numbers but with the average of
the two drifts. This method was introduced in Hunter et al (2001). Clearly, if
drifts can be deduced in order nF computations, then the predictor-corrector
method can also be applied with the same computational order.

3. A SIMPLE CASE

In this section, we discuss the LIBOR market model. The results are not orig-
inal but they serve to illustrate the issues and will hopefully assist the reader
with the rest of the paper, see Joshi (2003b) for further discussion of this case.
The LIBOR market model corresponds to the case where all swap rates span
one period, so the rates are

fj = SRj, j + 1.
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In this case, we have 

j j ,f t1
j

j

1
= +

+P
P

so it is easy to deduce the bond ratios from the rates.
If we take the final bond as numeraire, then we want the measure in which

every bond divided by the numeraire is a martingale. This makes the rates have
non-zero drifts. It is a well-known result that the processes followed by the
rates in this measure are

j j
j ,f dtm

j
k k

k

F

1

= +
=

d
f
f

C dW!^ h

where

j j ,m t
t

1r
r j

n

r r

r t

1

= -
+

= +
f

f
C!

with Cjr = rjr sj sr, the instantaneous covariance between the logs of rates r
and j. (See for example Brigo and Mercurio (2001) or Joshi (2003).)

To evolve the log rates across a step, one needs to compute mj for each j .
We pre-compute the ratios t

t
1 r r

r t
+ f
f . The computation of mj then needs roughly

n – j multiplications. So computing the value for all j, will require order n2 com-
putations. If the number of factors is low and n is large, then the drift compu-
tation will dominate computing time.

However, if the number of factors is F, we can write

C = AAt,

with A = (aij) an n ≈ F-dimensional matrix. This will allow us to rewrite the
computation in a manner that allows a timing of order nF. In particular, sub-
stituting for the value of Cjk and reversing the order of summation, we obtain

mj = jr
r

F

1

-
=

a! ej,r, (3.1)

where

ej,r = .a t
t

1
>

kr
k j k k

k k

+ f
f

! (3.2)

The virtue of this representation is that

ej,r = ej + 1,r + aj + 1,r ,1 j j

j j

1 1

1 1

+ + +

+ +

t
t

f
f
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which means we can obtain the value of ej,r for all j and r with order nF compu-
tations. The deduction of the terms mj then requires another nF computations
and the result follows.

Whilst in the LIBOR market model case, it is easy to get closed-form for-
mulas which can then be manipulated to get faster computational time, for
more general swap-rate market models one has the issue that the drifts are not
easily writable as formulas. Instead, they can be more naturally found as results
of recursive procedures. Our objective in this paper is therefore to show how
these recursive procedures can be quickly evaluated.

4. THE CROSS-VARIATION DERIVATIVE AND MARTINGALE PRICING

In what follows, it will be useful to work with the cross-variation derivative for
two Ito processes. Given processes Xt and Yt, we define

�Xt,Yt �

to be the coefficient of dt in dXt.dYt. (Note the cross-variation process is gen-
erally defined to be the process dXt.dYt , but the cross-variation derivative will
be more convenient for us.) This means that if we have

dXt = mX(t)dt + sX (Xt,Yt, t)dWt
X, (4.1)

dYt = mY(t)dt + sY (Xt,Yt, t)dWt
Y, (4.2)

with WX,WY correlated (jointly normal) Brownian motions, then

�Xt,Yt � = rsX(Xt,Yt, t) sY (Xt,Yt, t) , (4.3)

where r is the correlation between WX and WY. Note that the drift terms do
not appear in this expression.

The cross-variation derivative has some useful computational properties.
First, it is linear in each term, i.e, if Yj are a number of stochastic processes,
and aj ! �, then

j jj j, , .X X
j j

=a aY X! ! (4.4)

It is trivially symmetric in X and Y. We can also compute with products in a
simple fashion

�X,YZ � = �X,Y �Z + �X,Z �Y. (4.5)

Note that trivially the cross-variation derivative with a constant is always zero.
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We can deduce the value of �Y,X –1�:

�Y,1� = �Y,X.X –1�,
= �Y,X �X –1 + �Y,X –1�X,

and therefore

�Y,X –1� = – X –2�Y,X �. (4.6)

The cross-variation derivative will play an important role in our drift compu-
tations. Suppose we have a rate, by which we shall mean a quantity defined as
the ratio of the prices of two assets; in other words, it is the exchange rate for
converting one asset to the other. When applying martingale pricing, we pick
a numeraire asset N which is always positive, and construct a measure in which
the ratio of the price of every security to N is a martingale. We can think of N
as a deflator. Once everything is a martingale, no arbitrage can occur in either the
pricing measure, nor any measure equivalent to it. Whilst traditionally, one started
by positing real-world processes and finding the equivalent martingale measure,
it is now more usual to start by specifying dynamics in the martingale measure.

So suppose X, Y and N are tradable assets, and we wish to compute the
drift of R = X/Y when N is numeraire. We want RY/N = X/N and Y/N to be
martingales. Up to technical considerations, we do not address here, this is
equivalent to their drifts being zero. We compute to find the drift of R which
makes this the case.

We have

. .d N
RY

N
Y dR Rd N

Y dR d N
Y

= + +

Taking the drifts, and discarding martingale terms, we have that mR, the drift
of R, satisfies

, .Y
N R N

Y
mR = - (4.7)

So, in order to compute the drift of R, it is sufficient to compute the cross-varia-
tion derivative of R and N

Y .
The cross-variation will also be useful for assessing the impact of chang-

ing numeraire on a drift. Suppose we already know the drift, mR,N, of R under
the numeraire N and we want to compute the drift, mR,M, with numeraire M.
We have

(4.8), ,

, ,

R M
Y

Y
M

R N
Y

M
N

Y
M

m M = -

= -

R,

(4.9)

460 M.S. JOSHI AND L. LIESCH

0345-07_Astin37/2_13  28-11-2007  15:51  Pagina 460

https://doi.org/10.2143/AST.37.2.2024076 Published online by Cambridge University Press

https://doi.org/10.2143/AST.37.2.2024076


(4.10), , ,

, .

R N
Y

M
N

Y
M R M

N
N
Y

Y
M

R M
N

N
M

m N

= - -

= -R,
(4.11)

We now do the computation using cross-variation derivatives in the LIBOR mar-
ket model case with the terminal measure (that is with Pn as numeraire.) Since

,j
j j

j j

1

1
=

-

+

+

tf P
P P

the drift of mj , is

j

1-

r

j

j

j

j

j

r

r
r

r r

r

r

, ,

, ,

, ,

, ,

.

f

f

t

t t

t t

t

1
1

1 1
1

1 1

1

j

n

n

j

j

n
j k

k

F

k
n

j

j

n
j k

k

F

k
rr j

n

j

n
j k

r j

n

n

j

k

F

r k
r

j k
k

F

r
r j

n

k r

j k
k

F

rr j

n

1

1

1 1

1

1 1 1

1 1

1

1

1 1

1 1

- = -

= -
+

= - +
+

= - + +

= -
+

+

+

+ =

+

+ = = +

+ = +

+

=

= = +

= = +

t

P
P

P
P

P

P
P

kr

f

f f

f f

f

W

W

W

W

a

a

a

a

a
a

P
P

P f
P

P f

P f
P

f

f

!

! %

!!

! !

! !

^

^

h

h

Thus we have achieved an alternate deduction of the drift expression in this
simple case.

5. DEDUCING THE BOND-RATIOS IN THE CO-TERMINAL CASE

The most ancient and most popular swap-rate market model is the co-termi-
nal model of Jamshidian (1997). In this model, the swap rates are chosen to
all have the same termination date but varying start dates. This model is par-
ticularly well adapted to the pricing of Bermudan swaptions. Recall that a
Bermudan swaption is the right to enter into a swap on any of a fixed set of
dates. A callable bond can be viewed as a fixed rate non-callable bond minus
a Bermudan swaption. If one restricts exercise to any one of these dates then
one has a European swaption, that is a swaption that can only be exercised on
one date. The co-terminal model has the attractive feature that calibration to
these swaptions is immediate.
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In this section, we show how to compute the bond ratios in order n com-
putations for the co-terminal swap-rate market model. In order to keep notation
simple, in this section and the next, we let SRj denote the swap-rate associated
to times tj, g, tn . We also let Aj be the annuity of SRj .

We first show how to find the ratios Pj /Pn . Clearly, the ratio Pj /PN for
any N is then trivial to find. We work backwards. If j = n, we have Pj /Pn = 1,
and we are done. For j < n, we assume that Pj /Pn has been found for larger j.
We then have

SRj = j

j

n-

A
P P

,

and it follows that

j
j j .SR1
n n

= +P
P

P
A

The terms on the right hand side are already determined as Aj only involves
bonds with maturity after tj, the value of Pj /Pn follows and we are done.

Note that all the bond ratios can be deduced with order n computations.

6. CO-TERMINAL SWAP-RATE DRIFT COMPUTATIONS

We apply our results on cross-variation derivatives1. In the case of a swap-rate,
we have

SRj = j

j
.n-P P

A

If we adopt PN as numeraire, we conclude that the drift of SRj, mj satisfies

mj =
j

N-
P
A �Aj /PN,SRj �. (6.1)

We therefore need to evaluate this cross-variation term.
We now specialize to the case where N = n, we will return to the general case

further down. We can write

dSRj = SRj jk
k

F

1=

a! dWk + drift, (6.2)

where the Brownian motions, Wk, are independent. Clearly, we have

�SRj, Aj /Pn � = SRj jk
k

F

1=

a! �Wk, Aj /Pn �. (6.3)
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If we can compute �Wk, Aj /Pn � for all j and k then we are done, and it will take
O (nF ) computations to convert to drifts for SRj .
We now address how to compute

�Wk, Aj /Pn �

for a fixed k and all j with order n computations. We work backwards. The first
case is j = n – 1, where An – 1 /Pn = tn – 1 and the cross-variation is zero. Now sup-
pose we have computed �Wk, Aj + 1 /Pn �, we have

�Wk, Aj /Pn � = �Wk, Pj + 1 /Pn �tj + �Wk, Aj + 1 /Pn �, (6.4)

the second term we already know. The first term we can rewrite:

�Wk, Pj + 1 /Pn � = �Wk,1 + SRj +1 Aj + 1 /Pn �, (6.5)

= �Wk, SRj +1 Aj + 1 /Pn �, (6.6)

= �Wk, SRj +1� Aj + 1 /Pn + �Wk, Aj + 1 /Pn � SRj +1. (6.7)

The first angle bracket is SRj +1 aj +1, k by definition and the second is already
known. This means that we can deduce the j th term from the preceding com-
putations with a fixed finite number of computations, and we are done.

Note that the above computations have computed the drift of SRj whereas
we would typically evolve log(SRj) instead, and we would therefore not carry
out the final multiplication in (6.3), but subtract the standard –0.5Cjj for the
transformation to log space.

We have computed the drift when Pn is numeraire. We may wish to use
another numeraire, we can compute the new drift using (4.11). We have

mSRj, PN
= mSRj, Pn

– j , .SR
N

n

n

N

P
P

P
P

We can expand SRj in terms of Wk as before, and we therefore need to com-
pute

n

N

, ,

, .

P

P

n

N
k

N

n

n

N
k

n

N

k
n

N

N

n

2

2

= -

= -

P
P

P
P

P
P

P
P

P
P

P
P

W W

W

As AN – 1 – AN = tN – 1 PN, this is easily rolled into our original computation,
and we are still within order nF computations.
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7. CONSTANT MATURITY MARKET MODELS

Since short terms interests can vary a lot, a coupon which is linked to a short
term LIBOR rate can change greatly from year to year. Products have therefore
been introduced which have coupons that are linked to long swap-rates, since
long rates tend to be more stable than short ones. Thus, for example, one
may have a bond that pays a coupon which is a function of the ten-year swap
rate on the coupon date. Such products are called constant maturity products
or CMS products. One therefore wishes to be able to specify the dynamics of
the ten-year swap rate starting on each coupon date for maximal effectiveness
of the model. The coupon may also be a function not just of the current ten-
year swap rate but also the previous coupon. For example, a CMS TARN
struck at K pays a multiple of max(K – 2SR10,0) until a total predetermined
coupon has been reached. It is then important not just to specify the dynamics
of individual rate but also their joint dynamics and the constant maturity
market model makes this possible.

In this section, we examine constant maturity market models. For a constant
maturity model, we consider the set of rates

SRa,a+r ,

for a fixed r, and we make the convention that if a + r ≥ n, then we take it to
equal n. We similarly let Aa,a+r denote the annuity of SRa,a+r.

Note that we obtain a different rate for a = 0,1,g, n – 1, and that for the
last r rates we are working with co-terminal rates, and for those rates any analy-
sis carries directly over from the co-terminal swap-rate market model. We need
to compute drifts and find an algorithm for obtaining the bond ratios from the
rates. We work with Pn as numeraire and work backwards.

We have

SRj,r + j = j ,
,j r j

r j-

+

+P P
A

by definition, (even when r + j > n ), which implies

j ,

n n

r j

n

j r j
= +

+ +

P
P

P
P

P
A

SRj,r + j . (7.1)

It is now clear that we can induct backwards computing Aj,r + j and Pj /Pn as we go.
If we are working in an F factor model, as before, we can write

dSRj,r + j = SRj,r + j jk
k

F

1=

a! dWk,

up to drift terms, and it follows that the drift of SRj,r + j is equal to

j , .
,

,
,

k
k

F

j r j

n
j r j k

n

j r j

1

-
= +

+

+P
PA

A
Wa SR!
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If we can compute the quadratic variation terms with order nF computations
then that will be sufficient to show that we can compute all the drifts with that
computational order. We work backwards. Suppose we know

k,,

n

j j r+

P
A

W for j > l, and (7.2)

k,
n

r

P
P

W for r > l + 1, (7.3)

we show that we can find

k,
A ,

n

l l r+

P W and (7.4)

k,
n

l 1+

P
P

W (7.5)

with a fixed number of computations, which will be sufficient. With knowledge
of the second term, the first follows immediately from linearity and the values

of k
A

,P
,

n

l l r1 1+ + + W , and k,P
P

n

l r 1+ + W .

We compute

j
k k k, , , .,

,

n
j r j

n

j r j

n

j r1
1 1

1 1 1
= +

+

+ + +

+ + + + +

P
P

P P
P

W
A

W WSR

Using equation (7.1) and expanding, this is equal to

k k

k

, ,

, .

,
, ,

,j r j
n

j r j

n

j r j
j r j

n

j r

1 1
1 1 1 1

1 1

1

+

+

+ + +

+ + + + + +

+ + +

+ +

P P

P

A
W

A
W

W
P

SR SR

The first and third terms are known, and the second is trivial; we are done.

8. CO-INITIAL SWAP-RATES

As well as products depending on a single constant-maturity swap-rate,
products exist which pay a function of the spread between two rates. Thus we
may receive the difference of the ten-year rate and the two-year rate capped
and floored. To deal with such products, the co-initial swap-rate market was
introduced in Gallucio and Hunter (2004). We can solve it using similar tech-
niques to the other cases we have discussed.
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For this section, we use SRj to denote the swap-rate which was SR0, j in Sec-
tion 2, similarly for Aj. Our class of swap-rates is SRj for j=1,g,n, and they there-
fore all start on the same date but finish on varying dates. As usual, we must first
develop an algorithm to deduce the bond ratios from the swap-rates. We will
work with P0 as numeraire in this section. In order to ease the notation, we shall
also use a tilde to denote that a price has been divided by P0. We thus have

Pk = ,P
k

0

P
(8.1)

Aj = j .P0

A
(8.2)

As

SRj = j

j
,0 -P P

A

we see that

Pj = 1 – Aj SRj

= 1 – Aj – 1 SRj – tj – 1 Pj SRj ,

and hence that

Pj =
j

j .1
1

j

j

1

1

+

-

-

-A
SR
SR

t (8.3)

Inducting on j increasing, it is clear how to deduce the bond ratios in order n steps.
By the usual arguments, to compute drifts for log-normal co-initial rates we
need to find the cross-variation of Wk and Pj , which equals

jk k
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If we make it our inductive hypothesis that we have already computed �Wk, Pj – 1�,
and �Wk, Aj – 1�, it is clear that we can do the next term with a fixed finite num-
ber of computations, and the drifts follow as before.

9. INCREMENTAL MARKET MODELS

We have studied four cases: the LIBOR market model, the co-terminal swap-
rate market model, the co-initial swap-rate market model, and the constant
maturity market model. For each of these, we have seen that the bond ratios can
be deduced in order n operations and the drifts computed in order nF opera-
tions. One would, of course, like to formulate a general result. In this section,
we introduce a new class of models for which we can compute the bond ratios
with order n multiplications, and the drifts with order nF multiplications but
both requiring order n2 additions and subtractions. Additions are much faster
in most architectures than multiplications so this is still a worthwhile result.
We then see how adding a further additional hypothesis can reduce the total
number of computations to order nF.

Any market model is determined by picking a set of times t0 < t1 < g < tn,
and then choosing a subset of the swap-rates associated to (usually) contiguous
subsets of those times. Let Pr be value of the discount bond expiring at time tr.
We have

SRa,b = .
t

a

a

r r
r

b

b

1

1

-

+

=

-

PP

P!

Specifying a market model is therefore equivalent to specifying two sequences
in {0, 1,g, n – 1} : a0,g, an – 1, and b0,g, bn – 1, such that bj ≥ aj + 1. Of course,
for a given choice of the sequences, one needs to show that the bond ratios are
uniquely determined.

Definition 9.1. A market model is incremental if b0 = a0 + 1, and for j > 0, either

aj = min
<r j

ar, and bj = 1 + max
<r j

br

or

aj = – 1 + min
<r j

ar, and bj = max
<r j

br.

In other words, in an incremental market model the introduction of each new
rate causes dependency on exactly one more discount bond. Note that as it
is really bond ratios we care about, this is true even of SRa0,b0

, which depends
purely on the ratio Pa0

/Pb0
. If we fix a numeraire, there are n bond ratios, and n

rates so when we get to the last rate we will have introduced dependency on
all the bond ratios.
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Theorem 9.1. In an incremental market model, for any N the bond ratios Pj /PN

are determined by the swap-rates and can be deduced with order n multiplications
and order n2 additions.

Proof. We take N = b0. Once Pj /Pb0
is known for all j, one simply writes

j j

b

b ,
N N0

0=P
P

P
P

P
P

to get the general case with an extra order n computations.
We have

SRa0,b0
= a

b

b

a

,t
0 0

0 0

-

-

P
P P

so the ratio a

b 0

0

P
P

is clearly determined.

We now show that given the bond ratios for the bonds underlying the first
r – 1 rates, we can deduce the extra bond ratio underlying SRar, br from its value.
There are two cases corresponding to whether the new bond is at the beginning
or end.

If it is at the end, we have br = 1 + max
<l r

bl, and

SRar, br
= a b .

t
a

l l
l

b

1

1

r

r

r r
-

+

=

-

PP

P!

Rearranging, we obtain

rb

b

a
l

b

b b
.SR

SR

t

t

1 ,

,

a

a
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l

l

b

b
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1

2
1

r r r

r

r

r

r r

0

0 0
=

+

-

-
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-
+

P
P P P

PP
!

(9.1)

The ratio is therefore determined. Similarly, if the new bond is at the beginning,
we have

rba

l
b b b

,SR t,a

al

l
b

b 1
1r

r r

r

r

0 0 0

= +
=

-
+

P P
P

P
PP

! (9.2)

and the first ratio is determined.
How many computations will this take? At each stage, we store each new

bond ratio and its multiplication by the appropriate accrual, tl, it is then
clear that we only need a fixed number of multiplication per step and there-
fore order n in total. However, the sums will require up to n additions per step
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so we have order n2 additions in total. Note that in each of the four cases we
studied in detail, there was extra structure that reduced the number of addi-
tions, but it seems unlikely that this will be possible in general without extra
hypotheses. ¡

By the same arguments as in previous sections, if we take Pb0
as numeraire, we

can deduce the drift of SRaj, bj
for all j from the knowledge of

b
k , ,

,j j

0

b

P

A
W

a

with order nF operations. We proceed inductively on j as usual and each stage
store the cross-variation of the swap-rate ratio of the new bond to the numeraire
and its value multiplied by the appropriate accrual.

Just as with the deduction of the bond ratios, we have to proceed differently
according to whether the introduction of the new bond is at the beginning or
the end of the known cases. If it is at the start, using (9.2), we have

rba

k k k

k

l

l

b b b

b

, , ,

, .
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W W W
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P
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!
(9.3)

This is computable with order n additions and a fixed finite number of multi-
plications.

If at the end, using (9.1), we have
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This can also be computed with order n additions and a fixed finite number
of multiplications.

Once we have the cross-variation derivative with each bond ratio, the cross-
variation derivatives with the annuities are straightforward additions and we
are done.

Studying the above proofs, one sees that the failure of the algorithm to attain
order n operations for the deduction of bonds-ratios and order nF for the
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computation of drifts arises from the need to compute annuities. If we put an
additional hypothesis on the annuities, we can attain these faster speeds.

Definition 9.2. We shall say that a class of market models is fully incremental
of order q if there exists q independent of n such that for each j, there exists i < j,
such that SRi differs from SRj by at most q bonds.

It is clear from studying the proofs above that the bond-ratios can be deduced
in O (nq ), operations and the drifts in O(n (F + q )) operations. The constant
maturity market model is fully incremental of order 2, the other cases we have
studied are fully incremental of order 1.

10. NUMERICAL RESULTS

In this section, we present timings using these techniques. The purpose of the
modelling was to demonstrate the behaviour as a function of the number of
rates, n, rather than to do the fastest possible implementation. For each of the
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TABLE 1

TIMINGS FOR EVOLVING A CONSTANT MATURITY SWAP MARKET MODEL OF

CONSTANT MATURITY 4 FOR A 3-FACTOR MODEL WITH VARYING NUMBERS OF RATES.
THE FINAL COLUMN DISPLAYS THE BEST FIT PARABOLA THROUGH THE POINTS.

Rates Time Fit

5 10.11 10.17
10 31.97 31.77
15 65.36 65.11
20 110.68 110.19
25 165.65 167.01
30 236.24 235.57

TABLE 2

TIMINGS FOR EVOLVING A CONSTANT MATURITY SWAP MODEL OF

CONSTANT MATURITY 4 FOR A 5-FACTOR MODEL WITH VARYING NUMBERS OF RATES.
THE FINAL COLUMN DISPLAYS THE BEST FIT PARABOLA THROUGH THE POINTS.

Rates Time Fit

5 12.41 13.02
10 41.19 40.51
15 85.63 85.01
20 146.60 146.54
25 223.33 225.09
30 321.58 320.66
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TABLE 3

TIMINGS FOR EVOLVING A CO-TERMINAL SWAP-RATE MARKET MODEL

FOR A 3-FACTOR MODEL WITH VARYING NUMBERS OF RATES.
THE FINAL COLUMN DISPLAYS THE BEST FIT PARABOLA THROUGH THE POINTS.

Rates Time Fit

3 5.82 6.06
5 12.69 12.49

10 37.95 37.69
15 75.74 75.93
20 127.10 127.22
25 191.69 191.55

TABLE 4

TIMINGS FOR EVOLVING A CO-TERMINAL SWAP-RATE MODEL

FOR A 5-FACTOR MODEL WITH VARYING NUMBERS OF RATES.
THE FINAL COLUMN DISPLAYS THE BEST FIT PARABOLA THROUGH THE POINTS.

Rates Time Fit

5 15.05 14.28
10 46.53 46.44
15 93.81 95.92
20 165.20 162.73
25 245.95 246.85 

constant maturity and co-terminal cases, we step all the rates that have not
reset to each of the reset dates. We show timings for a fixed number of factors.
Since we carry out an order nF algorithm for each of n steps, we obtain
timings that are parabolic in n, and we display the values of a fitted parabola

TABLE 5

TIMINGS FOR EVOLVING A CO-INITIAL SWAP-RATE MARKET MODEL

FOR A 3-FACTOR MODEL WITH VARYING NUMBERS OF RATES.
THE FINAL COLUMN DISPLAYS THE BEST FIT LINE THROUGH THE POINTS.

Rates Time Fit

3 1.76 1.78
5 2.14 2.14

10 3.07 3.04
15 3.96 3.95
20 4.84 4.85
25 5.76 5.75
30 6.64 6.65
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through the timings in each case. The parabola is always a close fit, numeri-
cally confirming that the algorithm is second order in n. See tables 1 and 2 for
the constant maturity case, and tables 3 and 4 for the co-terminal case. In each
case, we use 32768 paths. The rates are yearly rates and we step to the reset time
of each rate using the predictor-corrector algorithm. The simulations were run
on a 400MHz PC.

In the co-initial case, we only evolve to the common initial time so we
expect linear behaviour for speed. We display the timings and the best fit line
through them in tables 5 and 6.

CONCLUSION

We have examined a number of special cases: the co-terminal swap-rate model,
the co-initial swap-rate model, the constant maturity market model, as well as
the more general case of the incremental market model. For these cases, we have
shown that efficient algorithms exist for the evolution of time steps. These
models are therefore equally attractive to the LIBOR market model in terms
of efficiency and one should make model choice on the basis of other issues
such as ease of calibration, and adaptation to the product being studied.
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