ON THE RELATIVE WIDTHS OF COVERINGS BY CONVEX BODIES

W.O.J. Moser

The purpose of this note is to give an elementary proof of a special case of a theorem suggested by Th. Bang (2; 3) and proved by Lee et al (5; see also 1; 4; 6; 7; 8).

Let $w(K; \S)$ denote the width of the convex body K in the direction ξ i.e., w(K; ξ) is the length of the interval obtained by projecting K orthogonally onto a line in the direction \$

THEOREM. If K, K₁, K₂ are convex regions in the plane with $K \subset K_1 \cup K_2$, then

 $w(K_1; \xi_1)/w(K; \xi_2) + w(K_2; \xi_2)/w(K; \xi_2) \geqslant 1$

for arbitrary directions \S_1 and \S_2 .

Proof. If $\S_1 = \S_2 (= \S)$ then K, K_1 , K_2 project (on a line in the direction \S) into intervals I, I_1 , I_2 . of lengths $w(K;\S)$, $w(K_1;\S)$ and $w(K_2;\S)$ with $I\subset I_1\cup I_2$. Clearly, in this case $w(K_1;\S)+w(K_2;\S)\gg w(K;\S)$.

If $\begin{cases} 1 \neq \\ 2 \end{cases}$ we may assume them to be perpendicular. (An affine transformation which makes them so leaves convexity, set inclusion and ratio of lengths in the same direction unchanged.) Also, we may assume $K_1 \subset K$, $K_2 \subset K$ (we replace K_1 by $K_1 \cap K$ and K_2 by $K_2 \cap K$ if necessary).

Now let K and K_1 project on a line a (see Fig. 1), in direction \$\int_1\$ into intervals DC and XT; let K and K2 project on a line b, in direction \S_2 (perpendicular to \S_1), into intervals AD and ZY. K_1 is contained in the rectangle $r_1 = PQTX$ and K_2 is contained in the rectangle $r_2 = ZRSY$. Since $K = K_1 \cup K_2 \subset$ $r_1 \cup r_2$ and K touches the sides of the rectangle r = ABCD it follows that there are lines through E, F, G, H forming a quadrilateral q whose vertices L, M, N, O are not in the interior of r, and q covers K. We pass through these vertices lines parallel to a and b as in Fig. 2. Here it suffices to prove that

$$\overline{X_1T_1}/\overline{C_1D_1} + \overline{Z_1Y_1}/\overline{A_1D_1} \rightarrow 1$$
 or

$$\overline{X_1T_1}$$
. $\overline{A_1D_1} + \overline{C_1D_1}$ $\overline{Z_1Y_1} \geqslant \overline{A_1D_1}$ $\overline{C_1D_1}$

(To be continued on page 168)

(Continued from page 154)

or $\[\[\] + \[\] + \[\] + \[\] \le \]$ area (EFGH) where $\[\] \[\] \[\] \[\] \[\] \[\] \]$ denote the areas of the rectangles containing them. From the similar triangles $00_1 E$ and $EL_1 L$, $\overline{00_1}$, $\overline{LL}_1 = \overline{E0}_1$. \overline{EL}_1 or $\[\] \[\] \[\] \[\]$

and the proof is complete.

REFERENCES

- 1. Th. Bang, On coverings by parallel-strips, Tidskr B. (1950), 49-53; M.R. 12, 352.
- 2. _____, A solution of the plank problem, Proc. Amer. Math. Soc. 2 (1951), 990-993; M.R. 13, 769.
- 3. _____, Some remarks on the Union of Convex bodies, Tolfte Skand. Kong. (1954), 5-11; M.R. 16, 395.
- 4. W. Fenchol, On Th. Bang's solution of the plank problem, Math. Tidskr. B (1951), 49-51; M.R. 13, 863.
- 5. Lee, Tzer-Yee et al, A solution of Bang's "plank problem", J. Chinese Math. Soc. 2 (1953), 139-143; M.R. 17, 185.
- 6. D. Ohmann, Eine Abschätzung für die Dicke bei Überdeckung durch konvexe Korper, J. Reine angew. Math. 190 (1952), 195-128; M.R. 14, 788.
- 7. ______, Kurzer Beweis einer Abschatzung für die Breite bei Uberdeckung durch konvexe Korper, Arch. Math. 8 (1957), 150-152.
- 8. S. Straszewics, <u>Un theoreme sur la largeur des ensembles convexes</u>, Ann. Soc. Polon. Math. 21 (1948), 90-93; M.R. 10, 205.

University of Saskatchewan and Research Institute C.M.C.

(To be continued on page 174)

168

174