Appendix A
SU(n)

A.1 Fundamental representation of SU(n)

In the following appendices we record some properties of the representa-
tions of the group SU (n). First we review the construction of a complete
basis set of Hermitian traceless n X n matrices, similar to the n = 2,3
examples. We shall denote these matrices by A\, k = 1,2,..., n? — 1.
The symmetric off-diagonal matrices have the form

(Ak)ab = O0amOan + OpmOan k < {m, n} (Al)
and the antisymmetric matrices are given by
(/\k)ab = i(damdan - 5bm5an)7 (A2)

where a,b,m,n = 1,2,...,n, m > n. The non-zero elements of the
diagonal matrices may be taken as

2
aa — :1,...7 , A,
(oo =\ =g a=1..m (a3
2
= —m m a:m+17 (A.4)

where m = 1,2,..., n — 1. We add the multiple of the unit matrix

Ao = \/211, (A.5)

such that the k = 0,1,..., n?> — 1 matrices form a complete set of n x n
matrices. They satisfy

Ap = AL (A.6)
Tr ()\/c)\l) = 2(5“, (A?)
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230 Appendiz A. SU(n)

and either A\, = )\E = A, or A\, = —)\;f = —A;. An arbitrary matrix X
can be written as a superposition of the \’s,

X = Xk)\ka (Ag)
Xj = 2 Tr (X \g). (A.9)
For instance
A AL = AgimAm, (A.10)
Agim = % Tr (AxAiAm). (A.11)
Let
Aiim = diim + % frim., (A.12)

where dy., and fg, are real. Then

diim = 2 Tr AN A + MATAL) = LT (McNdm + ALATAL)
= i Tr ()\k)\l)\m + )\m)\l)\k) = iTI‘ (>\k)\l)\m + >\l>\k)\m)
= 1 Tr ({Xe, A} Am), (A.13)
and similarly,
ifklm == % Tr ([)\k, /\l] )\m) (A14)
These representations of the d’s and f’s and the cyclic properties of the
trace imply that dg;,, is totally symmetric under interchange of any of its
labels. Likewise fginm, is totally antisymmetric. Hence, (A.10) and (A.12)
imply
Ay Al = 21 frim A, (A.15)
s M} = 2dgimAm. (A.16)

We note in passing that

[2 2
)\0)\[ = — )\l — dOlm == \/7517,“ fOlm = 0 (Al?)
n n

A standard choice for the generators t; of the group SU(n) in the
fundamental (defining) representation is given by

te=2X, k=12,...,n°— L (A.18)

In the exponential parameterization an arbitrary group element can be
written as

U = exp(ia*ty), (A.19)
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A.2 Adjoint representation of SU(n) 231

where the o are n? — 1 real parameters. From their occurence in the
commutation relations

[t ti] = i frim tm, (A.20)

the fiimn are called the structure constants of the group.

Next we calculate the value Cy of the quadratic Casimir operator
tity in the defining representation. For this we need a useful formula
that follows from expanding the matrix Xézd) = 20440 In terms of
(Ak)ab- According to (A.8) and (A.9) we have the expansion coefficients

XIECd) = Tr (XDN;)/2 = 6uadpe(Me)ba = (Ak)ca, hence,
(Ak)ab(Ak)ed = 20aadye, (A.21)

where the summation is over k = 0,1,..., n?> — 1 on the left-hand side.
It follows that

() a(ts)ea = § AdasMk)ea — § (Mo)as(Ro)e

4
L b — b0 (A.22)
—2 adYbc m abYcd .

(note that k£ = 0 is lacking for the t;). Contraction with d. gives

1 1
(tetr)aqd = 3 (n — ) bad = C5 044, (A.23)
n
or
1 1
fund — ~(n— =), A.24
) (A.21)

For n = 2, Cf"d = 2 which is just the usual value j(j + 1) for the j = 1
representation of SU(2).

A.2 Adjoint representation of SU(n)

The adjoint (regular) representation R is the representation carried by
the generators,

UttyU = Ryt;. U € SU(n). (A.25)

Note that Tr (UTtkU) =Trt, =0, so that UTt,U can indeed be written
as a linear superposition of the t;. By eq. (A.9) we have the explicit
representation in terms of the group elements

Ry = 2Tr (UTt,Ut)). (A.26)
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232 Appendiz A. SU(n)

We shall now calculate R in terms of the parameters o of the exponen-
tial parameterization of U. Let

Uly) = expliya’ty),  Rialy) =2Tc U U )h).  (A27)
Then
0 )
By Ry(y) = —ia? 2 Tr (U (y)[t, tk)U (y)t1)
= apfpan Tr (U]L (y)tnU(y)tl)
= iap(Fp)kanl, (A.28)
where
In matrix notation (A.28) reads
55 Ro) = 10 F,R(y), (A.30)

which differential equation is solved by
R(y) = exp(iya?Fp), (A.31)
using the boundary condition R(0) = 1. Hence,
R = exp(ia?F)), (A.32)

and we see that the F}, are the generators in the adjoint representation.
By the antisymmetry of the structure constants we have

F,=-F;=-F), (A.33)
and it follows that the matrices R are real and orthogonal,
R=R*, RT =R (A.34)

Notice that the derivation of (A.28) uses only the commutation relations
of the generators, so that we have for an arbitrary representation D(U)

DU)'TyD(U) = R Ty, (A.35)

where the T}, are the generators in this representation D.
Next we calculate the value of the Casimir operator in the adjoint
representation, F,F},, using the results of the previous appendix:

(Fpr)km = Z'fk:pliflp?ﬂ
=4Tr (tktptl) iflpm =8Tr (tptltk) Tr ([tm, tl}tp)

= 8(tp)av(titk)va [tm,ti)ac(tp)ecd- (A.36)
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With (A.22) for (t,)ap(tp)ed, this gives
(FpFp)km = 4Tr (titx[tm, t]), (A.37)
and using (A.22) again and t;t; = [(n? — 1)/2n]1 gives finally
F,F,=nl, C3Y=n. (A.38)

The matrix Si(«) introduced in (4.41) can be calculated as follows.
We write D(U(a)) = D(«) and consider (4.42),

M(y) = D(ya)D(ya +ye) ' =1 —ie"Sp(a) + O(e®)  (A.39)
= o T o—iy(a"+e")Ty (A.40)
Then

gy MW = Dwe)lie! T —i(a" + )T D(ya +yo)~*

= —ie"D(ya)T.D(ya) ™t + O(€?)

= —ie" R (ya) Ty + O(€2). (A.41)
This differential equation can be integrated with the boundary condition

M(0) = 1, using R~ (ya) = exp(—iya), a = aPF,,

1— e*iya

M(y)zl—iek( — )lel+0(62). (A.42)

Setting y = 1 we find S (a) = Sk ()T} with
1—e

Skl(a)< — )kl, a = a’F,. (A.43)

We end this appendix with an expression for Tr7};7; in an arbitrary
representation D. The matrix

Iy = Tr (T, Th) (A.44)
is invariant under transformations in the adjoint representation,
Ry Ry Iy = Te (DT D D™, D) = Iy. (A.45)
By Schur’s lemma, Ij; must be a multiple of the identity matrix,
Iy = pOg- (A.46)
Putting £ = [ and summing over k gives the relation

(n? — 1)p(D) = Co(D) dimension(D). (A.47)
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234 Appendiz A. SU(n)
For the fundamental and adjoint representations we have

Pfund = %7 (A48)
Padj = M. (A.49)

A.3 Left and right translations in SU(n)

Let © and U be elements of SU(n). We define left and right transfor-
mations by

U'(L)=QU, U (R)=UQ, (A.50)
respectively, which may be interpreted as translations in group space,
U — U’'. In a parameterization U = U(a), @ = Q(p), this implies
transformations of the a’s,

O/k(L) = fk(av 2 L)’ (A51)

and similarly for R. We shall first concentrate on the L case. For () near
the identity we can write,

Q=14ip"ty + -, (A.52)
O/k(L) = ak + meskm(av L) + - K (A53)
0
Skm(a,L) = &’7 fk(a,gp,L)W:O. (A.54)

The S* (a,L) (which are analogous to the tetrad or ‘Vierbein’ in
General Relativity) can found in terms of the Sk, () as follows,

U'(L)=(1+ip™ty +--)U, (A.55)
0 oU ook
tnU = —i —— U) = —
¢ (‘%Om l=0 t aak: a(pm‘ -0
Differentiating UUT = 1 gives
ou out
and using this in (A.56) we get
. aUT k k
tnU = iU Sk US”, (a,L),= Sk(e, L)YU S* (v, L), (A.58)
where
__ouft
Sk(a, L) =iU ok (A.59)

https://doi.org/10.1017/9781009402705.010 Published online by Cambridge University Press


https://doi.org/10.1017/9781009402705.010

A.3 Left and right translations in SU(n) 235

is the Sk introduced earlier in (4.41). The factor U can be canceled out
from the above equation,

= Sp(a, L) S* (o, L). (A.60)

We have already shown in (4.43) that Sy is a linear superposition of the
generators, Si(a, L) = Sgn(a, L)t,, so we get

tm = tnSpn(a, L)S* (a, L) (A.61)

or

mn = Skn(a, L)S* (a, L). (A.62)

Thus S*, (, L) is the inverse (in the sense of matrices) of Sy, (c, L).
Introducing the differential operators

0
Xm(L) =S (a,L) —— A.
(L) = 80, L) o (4.63)
we can rewrite (A.56) in the form
Xm (DU =t,U. (A.64)
It follows from this equation that the X,,(L) have the commutation
relations
(X (L), Xn(L)] = =i frmnpXp(L). (A.65)
These differential operators may be called the generators of left transla-
tions.
For the right translations we get in similar fashion
ou .
Ut,, = —18— S* (a,R) = USk(a, R)S (a, R), (A.66)
ou
=yt
Sk(a, R) = —iU Dok
=U'Sk(o, L)U = Sip (o, L) U't,U
= Skp(a, L)Ryntn, (A.67)
Sk(a, R) = Skn(a, R)tn, (A.68)
Skn(a R) = Skp( ) p’m (A69)
Omn = Skn( ) (o, R), (A.70)
0
X (R)U = Utyy, (A.72)
[Xon (R), Xn(R)] = +ifimnp Xp(R) (A.73)
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The left and right generators commute,
[Xn (L), Xn(R)] = 0, (A.74)

which follows directly from (A.64) and (A.72), and their quadratic
Casimir operators are equal,

X3(L) = Xpn(L) X (L), X*(R) = X, (R)Xn(R), (A.75)

X2(R)U = Utyptyy, = OoU = tyt,, U = X*(L)U. (A.76)

The differential operator X2 = X?2(L) = X?(R) is invariant under

coordinate transformations on group space and is also known as a
Laplace—Beltrami operator.

Finally, the metric introduced in (4.91) can be expressed in terms of
the analogs of the tetrads,

gkl(a) = Skp(a, L)Slp(a, L) = Skp(oz, R)Slp(a, R), (A.77)
Skp(o, L) = gkl(a)Slp(a,L), Skp(a, R) = gkl(a)Slp(a,R). (A.78)

For a parameterization that is regular near U = 1 (such as exp(ia*t},)),
U =1+id"t, + 0(a?), (A.79)

it is straightforward to derive that

S* (. L) = 6kp — 3 fepa! + O(0?), (A.80)
Sk (., R) = 0kp + & fupa! + O(a?), (A.81)
gkl(oz) = 0p + 0(042). (A.82)

A.4 Tensor method for SU(n)

It is sometimes useful to view the matrices U representing the fundamen-
tal representation of SU (n) as tensors. Products of U’s then transform as
tensor products and integrals over the group reduce to invariant tensors.
It will be useful to write the matrix elements with upper and lower
indices, Uy, — U'. We start with the simple integral

/ dU UgUP = IY. (A.83)

By making the transformation of variables U — VUWT, it follows that
the right-hand side above is an invariant tensor in the following sense:

a a ’ b/ a/ ’
LY =vawhviewl i h. (A.84)
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A.4 Tensor method for SU(n) 237

Here V' and W are arbitrary elements of SU(n) and similarly for their
matrix elements in the fundamental representation and their complex
conjugates V1T and WT. We are using a notation in which matrix indices
of U are taken from the set a, b, ¢, d, ..., while those of UT are taken
from p, q, r, s, . ... Upper indices in the first set transform with V', upper
indices in the second set transform with T; lower indices in the first set
transform with W7, lower indices in the second set transform with V7,
as in

v —vewltug, Ul - whviiulr (A.85)

This notation suffices for not-too-complicated expressions.

Returning to the above group integral, there is only one such invariant
tensor: Iy, = cdgdy, which is a simple product of Kronecker deltas. The
constant ¢ can be found by contracting the left- and right-hand sides
with 67, with the result

1
/ dU UgUJP = — 930 (A.86)
Invariant tensors have to be linear combinations of products of Kro-
necker tensors and the Levi-Civita tensors
a1ay,

= + 1, even permutation of 1,...,n
= —1, odd permutation of 1,...,n, (A.87)

€

and similarly for €g,...q, , €tc. They are invariant because
Vaa,l1 e Vaa,lleal'”“” =det Vet on, (A.88)

These tensors appear in

1
/dU 1;111 .. U;:‘ — = €y (A.89)
1 T™sa An
= D ()T gy (A90)
permm

The coefficient can be checked by contraction with €4, ...q,, -

In writing down possible invariant tensors for group integrals we have
to keep in mind that, according to (A.85), there can be only Kronecker
deltas with one upper and one lower index, and furthermore one index
should correspond to a U and the other index to a UT, i.e. they should
be of the type d, or df. It is now straightforward to derive identities for
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integrals of the next level of complication:
/dU UyUUs =0, n>3, (A.91)

1
/ AU URUGUIPUL" = —— (5050703 + 0304067)
1 a scC T a scC ST
_ m(éséqéféd +60056,64), n > 2.
(A.92)
Note the symmetry under (a,b) < (c¢,d) and (p,q) < (r,s) in (A.92).

The coefficients follow, e.g. by contraction with ¢%. By contracting (A.92)
with the generators (¢1)3(#;) we get an identity needed in the main text:

2
n?—1
where Ry (U) is the adjoint representation of U (cf. (A.26)).

/dU U;UJPRM(U) = (tk)g(tl)€7 n > 2. (A.93)
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