
Appendix A

SU(n)

A.1 Fundamental representation of SU(n)

In the following appendices we record some properties of the representa-
tions of the group SU(n). First we review the construction of a complete
basis set of Hermitian traceless n × n matrices, similar to the n = 2, 3
examples. We shall denote these matrices by λk, k = 1, 2, . . ., n2 − 1.
The symmetric off-diagonal matrices have the form

(λk)ab = δamδan + δbmδan k ↔ {m,n} (A.1)

and the antisymmetric matrices are given by

(λk)ab = i(δamδan − δbmδan), (A.2)

where a, b,m, n = 1, 2, . . ., n, m > n. The non-zero elements of the
diagonal matrices may be taken as

(λk)aa =

√
2

m+m2
a = 1, . . .,m, (A.3)

= −m
√

2
m+m2

a = m+ 1, (A.4)

where m = 1, 2, . . ., n− 1. We add the multiple of the unit matrix

λ0 =

√
2
n

11, (A.5)

such that the k = 0, 1, . . ., n2 − 1 matrices form a complete set of n× n

matrices. They satisfy

λk = λ†
k, (A.6)

Tr (λkλl) = 2δkl, (A.7)
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230 Appendix A. SU(n)

and either λk = λTk = λ∗
k or λk = −λTk = −λ∗

k. An arbitrary matrix X

can be written as a superposition of the λ’s,

X = Xkλk, (A.8)

Xk = 1
2 Tr (Xλk). (A.9)

For instance

λkλl = Λklmλm, (A.10)

Λklm = 1
2 Tr (λkλlλm). (A.11)

Let

Λklm = dklm + ifklm, (A.12)

where dklm and fklm are real. Then

dklm = 1
4 Tr (λkλlλm + λ∗

kλ
∗
l λ

∗
m) = 1

4 Tr (λkλlλm + λTk λ
T
l λ

T
m)

= 1
4 Tr (λkλlλm + λmλlλk) = 1

4 Tr (λkλlλm + λlλkλm)

= 1
4 Tr ({λk, λl}λm), (A.13)

and similarly,

ifklm = 1
4 Tr ([λk, λl]λm). (A.14)

These representations of the d’s and f ’s and the cyclic properties of the
trace imply that dklm is totally symmetric under interchange of any of its
labels. Likewise fklm is totally antisymmetric. Hence, (A.10) and (A.12)
imply

[λk, λl] = 2ifklmλm, (A.15)

{λk, λl} = 2dklmλm. (A.16)

We note in passing that

λ0λl =

√
2
n
λl → d0lm =

√
2
n
δlm, f0lm = 0. (A.17)

A standard choice for the generators tk of the group SU(n) in the
fundamental (defining) representation is given by

tk = 1
2 λk, k = 1, 2, . . ., n2 − 1. (A.18)

In the exponential parameterization an arbitrary group element can be
written as

U = exp(iαktk), (A.19)
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A.2 Adjoint representation of SU(n) 231

where the αk are n2 − 1 real parameters. From their occurence in the
commutation relations

[tk, tl] = ifklm tm, (A.20)

the fklm are called the structure constants of the group.
Next we calculate the value C2 of the quadratic Casimir operator

tktk in the defining representation. For this we need a useful formula
that follows from expanding the matrix X

(cd)
ab ≡ 2δadδbc in terms of

(λk)ab. According to (A.8) and (A.9) we have the expansion coefficients
X
(cd)
k = Tr (X(cd)λk)/2 = δadδbc(λk)ba = (λk)cd, hence,

(λk)ab(λk)cd = 2δadδbc, (A.21)

where the summation is over k = 0, 1, . . ., n2 − 1 on the left-hand side.
It follows that

(tk)ab(tk)cd =
1
4

(λk)ab(λk)cd −
1
4

(λ0)ab(λ0)cd

=
1
2
δadδbc −

1
2n

δabδcd (A.22)

(note that k = 0 is lacking for the tk). Contraction with δbc gives

(tktk)ad =
1
2

(
n− 1

n

)
δad ≡ C2 δad, (A.23)

or

Cfund
2 =

1
2

(
n− 1

n

)
. (A.24)

For n = 2, Cfund
2 = 3

4 which is just the usual value j(j+1) for the j = 1
2

representation of SU(2).

A.2 Adjoint representation of SU(n)

The adjoint (regular) representation R is the representation carried by
the generators,

U†tkU = Rkltl. U ∈ SU(n). (A.25)

Note that Tr (U†tkU) = Tr tk = 0, so that U†tkU can indeed be written
as a linear superposition of the tk. By eq. (A.9) we have the explicit
representation in terms of the group elements

Rkl = 2 Tr (U†tkUtl). (A.26)
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232 Appendix A. SU(n)

We shall now calculate R in terms of the parameters αk of the exponen-
tial parameterization of U . Let

U(y) = exp(iyαptp), Rkl(y) = 2 Tr (U†(y)tkU(y)tl). (A.27)

Then
∂

∂y
Rkl(y) = −iαp 2 Tr (U†(y)[tp, tk]U(y)tl)

= αpfpkn2 Tr (U†(y)tnU(y)tl)

= iαp(Fp)knRnl, (A.28)

where

(Fp)mn = −ifpmn. (A.29)

In matrix notation (A.28) reads

∂

∂y
R(y) = iαpFpR(y), (A.30)

which differential equation is solved by

R(y) = exp(iyαpFp), (A.31)

using the boundary condition R(0) = 1. Hence,

R = exp(iαpFp), (A.32)

and we see that the Fp are the generators in the adjoint representation.
By the antisymmetry of the structure constants we have

Fp = −F ∗
p = −FT

p , (A.33)

and it follows that the matrices R are real and orthogonal,

R = R∗, RT = R−1. (A.34)

Notice that the derivation of (A.28) uses only the commutation relations
of the generators, so that we have for an arbitrary representation D(U)

D(U)−1TkD(U) = RklTl, (A.35)

where the Tk are the generators in this representation D.
Next we calculate the value of the Casimir operator in the adjoint

representation, FpFp, using the results of the previous appendix:

(FpFp)km = ifkpliflpm

= 4 Tr (tktptl) iflpm = 8 Tr (tptltk) Tr ([tm, tl]tp)

= 8(tp)ab(tltk)ba [tm, tl]dc(tp)cd. (A.36)
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A.2 Adjoint representation of SU(n) 233

With (A.22) for (tp)ab(tp)cd, this gives

(FpFp)km = 4 Tr (tltk[tm, tl]), (A.37)

and using (A.22) again and tltl = [(n2 − 1)/2n]11 gives finally

FpFp = n11, Cadj
2 = n. (A.38)

The matrix Sk(α) introduced in (4.41) can be calculated as follows.
We write D(U(α)) = D(α) and consider (4.42),

M(y) = D(yα)D(yα+ yε)−1 = 1− iεkSk(α) +O(ε2) (A.39)

= eiyα
kTk e−iy(αk+εk)Tk . (A.40)

Then

∂

∂y
M(y) = D(yα)[iαkTk − i(αk + εk)Tk]D(yα+ yε)−1

= −iεkD(yα)TkD(yα)−1 +O(ε2)

= −iεkR−1
kl (yα)Tl +O(ε2). (A.41)

This differential equation can be integrated with the boundary condition
M(0) = 1, using R−1(yα) = exp(−iyα), α ≡ αpFp,

M(y) = 1− iεk
(

1− e−iyα

iα

)
kl

Tl +O(ε2). (A.42)

Setting y = 1 we find Sk(α) = Skl(α)Tl with

Skl(α) =
(

1− e−iα

iα

)
kl

, α = αpFp. (A.43)

We end this appendix with an expression for TrTkTl in an arbitrary
representation D. The matrix

Ikl = Tr (TkTl) (A.44)

is invariant under transformations in the adjoint representation,

Rkk′Rll′Ik′l′ = Tr (D−1TkDD−1TlD) = Ikl. (A.45)

By Schur’s lemma, Ikl must be a multiple of the identity matrix,

Ikl = ρ δkl. (A.46)

Putting k = l and summing over k gives the relation

(n2 − 1)ρ(D) = C2(D) dimension(D). (A.47)
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234 Appendix A. SU(n)

For the fundamental and adjoint representations we have

ρfund = 1
2 , (A.48)

ρadj = n. (A.49)

A.3 Left and right translations in SU(n)

Let Ω and U be elements of SU(n). We define left and right transfor-
mations by

U ′(L) = ΩU, U ′(R) = UΩ, (A.50)

respectively, which may be interpreted as translations in group space,
U → U ′. In a parameterization U = U(α), Ω = Ω(ϕ), this implies
transformations of the α’s,

α′k(L) = fk(α,ϕ, L), (A.51)

and similarly for R. We shall first concentrate on the L case. For Ω near
the identity we can write,

Ω = 1 + iϕmtm + · · ·, (A.52)

α′k(L) = αk + ϕmSk
m(α,L) + · · ·, (A.53)

Sk
m(α,L) =

∂

∂ϕm
fk(α,ϕ, L)|ϕ=0. (A.54)

The Sk
m(α,L) (which are analogous to the tetrad or ‘Vierbein’ in

General Relativity) can found in terms of the Skm(α) as follows,

U ′(L) = (1 + iϕmtm + · · ·)U, (A.55)

tmU = −i ∂

∂ϕm
U|ϕ=0 = −i ∂U

∂αk

∂αk

∂ϕm |ϕ=0

= −i ∂U
∂αk

Sk
m(α,L). (A.56)

Differentiating UU† = 1 gives

∂U

∂αk
= −U ∂U†

∂αk
U, (A.57)

and using this in (A.56) we get

tmU = iU
∂U†

∂αk
U Sk

m(α,L),= Sk(α,L)U Sk
m(α,L), (A.58)

where

Sk(α,L) ≡ iU
∂U†

∂αk
(A.59)
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A.3 Left and right translations in SU(n) 235

is the Sk introduced earlier in (4.41). The factor U can be canceled out
from the above equation,

tm = Sk(α,L)Sk
m(α,L). (A.60)

We have already shown in (4.43) that Sk is a linear superposition of the
generators, Sk(α,L) = Skn(α,L)tn, so we get

tm = tnSkn(α,L)Sk
m(α,L) (A.61)

or

δmn = Skn(α,L)Sk
m(α,L). (A.62)

Thus Sk
m(α,L) is the inverse (in the sense of matrices) of Skm(α,L).

Introducing the differential operators

Xm(L) = Sk
m(α,L)

∂

i ∂αk
(A.63)

we can rewrite (A.56) in the form

Xm(L)U = tmU. (A.64)

It follows from this equation that the Xm(L) have the commutation
relations

[Xm(L), Xn(L)] = −ifmnpXp(L). (A.65)

These differential operators may be called the generators of left transla-
tions.

For the right translations we get in similar fashion

Utm = −i ∂U
∂αk

Sk
m(α,R) = USk(α,R)Sk

m(α,R), (A.66)

Sk(α,R) ≡ −iU† ∂U
∂αk

= U†Sk(α,L)U = Skn(α,L)U†tnU

= Skp(α,L)Rpntn, (A.67)

Sk(α,R) = Skn(α,R)tn, (A.68)

Skn(α,R) = Skp(α,L)Rpn, (A.69)

δmn = Skn(α,R)Sk
m(α,R), (A.70)

Xm(R) = Sk
m(α,R)

∂

i ∂αk
, (A.71)

Xm(R)U = Utm, (A.72)

[Xm(R), Xn(R)] = +ifmnpXp(R) (A.73)
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236 Appendix A. SU(n)

The left and right generators commute,

[Xm(L), Xn(R)] = 0, (A.74)

which follows directly from (A.64) and (A.72), and their quadratic
Casimir operators are equal,

X2(L) = Xm(L)Xm(L), X2(R) = Xm(R)Xm(R), (A.75)

X2(R)U = Utmtm = C2U = tmtmU = X2(L)U. (A.76)

The differential operator X2 = X2(L) = X2(R) is invariant under
coordinate transformations on group space and is also known as a
Laplace–Beltrami operator.

Finally, the metric introduced in (4.91) can be expressed in terms of
the analogs of the tetrads,

gkl(α) = Skp(α,L)Slp(α,L) = Skp(α,R)Slp(α,R), (A.77)

Skp(α,L) = gkl(α)Sl
p(α,L), Skp(α,R) = gkl(α)Sl

p(α,R). (A.78)

For a parameterization that is regular near U = 1 (such as exp(iαktk)),

U = 1 + iαktk +O(α2), (A.79)

it is straightforward to derive that

Sk
p(α,L) = δkp − 1

2 fkplα
l +O(α2), (A.80)

Sk
p(α,R) = δkp + 1

2 fkplα
l +O(α2), (A.81)

gkl(α) = δkl +O(α2). (A.82)

A.4 Tensor method for SU(n)

It is sometimes useful to view the matrices U representing the fundamen-
tal representation of SU(n) as tensors. Products of U ’s then transform as
tensor products and integrals over the group reduce to invariant tensors.
It will be useful to write the matrix elements with upper and lower
indices, Uab → Ua

b . We start with the simple integral∫
dU Ua

b U
†p
q = Iapbq . (A.83)

By making the transformation of variables U → V UW †, it follows that
the right-hand side above is an invariant tensor in the following sense:

Iapbq = V a
a′W

p
p′V

†q′
q W †b′

b Ia
′p′

b′q′ . (A.84)
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A.4 Tensor method for SU(n) 237

Here V and W are arbitrary elements of SU(n) and similarly for their
matrix elements in the fundamental representation and their complex
conjugates V † and W †. We are using a notation in which matrix indices
of U are taken from the set a, b, c, d, . . ., while those of U† are taken
from p, q, r, s, . . .. Upper indices in the first set transform with V , upper
indices in the second set transform with W ; lower indices in the first set
transform with W †, lower indices in the second set transform with V †,
as in

Ua
b → V a

a′W
†b′
b Ua′

b′ , U†p
q →W p

p′V
†q′
q U†p′

q′ . (A.85)

This notation suffices for not-too-complicated expressions.
Returning to the above group integral, there is only one such invariant

tensor: Iapbq = cδaq δ
p
b , which is a simple product of Kronecker deltas. The

constant c can be found by contracting the left- and right-hand sides
with δpb , with the result ∫

dU Ua
b U

†p
q =

1
n
δaq δ

p
b . (A.86)

Invariant tensors have to be linear combinations of products of Kro-
necker tensors and the Levi-Civita tensors

εa1···an = + 1, even permutation of 1, . . ., n

= − 1, odd permutation of 1, . . ., n, (A.87)

and similarly for εa1···an , etc. They are invariant because

V a1
a′
1
· · ·V a1

a′
1
εa

′
1···a′

n = detV εa1···an . (A.88)

These tensors appear in∫
dU Ua1

b1
· · ·Uan

bn
=

1
n!

εa1···anεb1···bn (A.89)

=
1
n!

∑
permπ

(−1)πδa1
bπ1
· · · δan

bπn
. (A.90)

The coefficient can be checked by contraction with εa1···an
.

In writing down possible invariant tensors for group integrals we have
to keep in mind that, according to (A.85), there can be only Kronecker
deltas with one upper and one lower index, and furthermore one index
should correspond to a U and the other index to a U†, i.e. they should
be of the type δap or δpa. It is now straightforward to derive identities for
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integrals of the next level of complication:∫
dU Ua

b U
c
dU

e
f = 0, n > 3, (A.91)∫

dU Ua
b U

c
dU

†p
q U†r

s =
1

n2 − 1
(
δaq δ

c
sδ

p
b δ

r
d + δas δ

c
qδ

r
bδ

p
d

)
− 1
n(n2 − 1)

(
δas δ

c
qδ

p
b δ

r
d + δaq δ

c
sδ

r
bδ

p
d

)
, n > 2.

(A.92)

Note the symmetry under (a, b) ↔ (c, d) and (p, q) ↔ (r, s) in (A.92).
The coefficients follow, e.g. by contraction with δpd . By contracting (A.92)
with the generators (tk)sc(tl)

d
r we get an identity needed in the main text:∫

dU Ua
b U

†p
q Rkl(U) =

2
n2 − 1

(tk)aq (tl)
p
b , n > 2. (A.93)

where Rkl(U) is the adjoint representation of U (cf. (A.26)).
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