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Random Walks on Graphs

The theory of electrical networks is a fundamental tool for studying
the recurrence of reversible Markov chains. The Kirchhoff laws and
Thomson principle permit a neat proof of Pólya’s theorem for random
walk on a d-dimensional grid.

1.1 RandomWalks and Reversible Markov Chains

Abasic knowledge of probability theory is assumed in this volume. Readers
keen to acquire this are referred to [150] for an elementary introduction, and
to [148] for a somewhat more advanced account. We shall generally use the
letter P to denote a generic probability measure, with more specific notation
when helpful. The expectation of a random variable f will be written as
either P( f ) or E( f ).

Only a little knowledge is assumed about graphs, and many readers will
have sufficient acquaintance already. Others are advised to consult Section
1.6. Of the many books on graph theory, we mention [50].

LetG = (V , E) be a finite or countably infinite graph,whichwegenerally
assume, for simplicity, to have neither loops nor multiple edges. If G is
infinite, we shall usually assume in addition that every vertex-degree is
finite. A particle moves around the vertex-set V . Having arrived at the
vertex Sn at time n, its next position Sn+1 is chosen uniformly at random
from the set of neighbours of Sn. The trajectory of the particle is called a
symmetric random walk (SRW) on G.

Two of the basic questions concerning symmetric random walk are:
1. Under what conditions is the walk recurrent, in that it returns (almost

surely) to its starting point?
2. How does the distance between S0 and Sn behave as n→∞?
The above SRW is symmetric in that the jumps are chosen uniformly

from the set of available neighbours. In a more general process, we take a
function w : E → (0,∞), and we jump along the edge e with probability
proportional to we.
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2 Random Walks on Graphs

Any reversible Markov chain1 on the set V gives rise to such a walk as
follows. Let Z = (Zn : n ≥ 0) be a Markov chain on V with transition
matrix P , and assume that Z is reversible with respect to some positive
function π : V → (0,∞), which is to say that

(1.1) πu pu,v = πv pv,u, u, v ∈ V .

With each distinct pair u, v ∈ V , we associate the weight

(1.2) wu,v = πu pu,v,

noting by (1.1) that wu,v = wv,u . Then

(1.3) pu,v = wu,v

Wu
, u, v ∈ V ,

where
Wu =

∑
v∈V

wu,v, u ∈ V .

That is, given that Zn = u, the chain jumps to a newvertex vwith probability
proportional to wu,v . This may be set in the context of a random walk on
the graph with vertex-set V and edge-set E containing all e = 〈u, v〉 such
that pu,v > 0. With edge e ∈ E we associate the weight we = wu,v .

In this chapter, we develop the relationship between random walks on G
and electrical networks on G. There are some excellent accounts of this
subject area, and the reader is referred to the books of Doyle and Snell
[83], Lyons and Peres [221], and Aldous and Fill [19], amongst others. The
connection between these two topics is made via the so-called ‘harmonic
functions’ of the random walk.

1.4 Definition Let U ⊆ V , and let Z be a Markov chain on V with transi-
tion matrix P , that is reversible with respect to the positive function π . The
function f : V → R is harmonic on U (with respect to P) if

f (u) =
∑
v∈V

pu,v f (v), u ∈ U,

or, equivalently, if f (u) = E( f (Z1) | Z0 = u) for u ∈ U .

From the pair (P, π), we can construct the graph G as above, and the
weight function w as in (1.2). We refer to the pair (G, w) as the weighted
graph associated with (P, π). We shall speak of f as being harmonic (for
(G, w)) if it is harmonic with respect to P .

1Accounts of Markov chain theory are found in [148, Chap. 6] and [150, Chap. 12].
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1.2 Electrical Networks 3

The so-called hitting probabilities are basic examples of harmonic func-
tions for the chain Z . Let U ⊆ V , W = V \U , and s ∈ U . For u ∈ V , let
g(u) be the probability that the chain, started at u, hits s beforeW . That is,

g(u) = Pu(Zn = s for some n < TW ),

where
TW = inf{n ≥ 0 : Zn ∈ W }

is the first-passage time to W , and Pu(·) = P(· | Z0 = u) denotes the
conditional probability measure given that the chain starts at u.

1.5 Theorem The function g is harmonic on U \ {s}.
Evidently, g(s) = 1, and g(v) = 0 for v ∈ W . We speak of these values

of g as being the ‘boundary conditions’ of the harmonic function g. See
Exercise 1.13 for the uniqueness of harmonic functionswith given boundary
conditions.

Proof. This is an elementary exercise using the Markov property. For
u /∈ W ∪ {s},

g(u) =
∑
v∈V

pu,vPu
(
Zn = s for some n < TW

∣∣ Z1 = v
)

=
∑
v∈V

pu,vg(v),

as required. �

1.2 Electrical Networks

Throughout this section, G = (V , E) is a finite graph with neither loops
nor multiple edges, and w : E → (0,∞) is a weight function on the edges.
We shall assume further that G is connected.

We may build an electrical network with diagram G, in which the edge
e has conductance we (or, equivalently, resistance 1/we). Let s, t ∈ V
be distinct vertices termed sources, and write S = {s, t} for the source-set.
Supposewe connect a battery across the pair s, t . It is a physical observation
that electrons flow along the wires in the network. The flow is described by
the so-called Kirchhoff laws, as follows.

To each edge e = 〈u, v〉, there are associated (directed) quantities φu,v

and iu,v , called the potential difference from u to v, and the current from u
to v, respectively. These are antisymmetric,

φu,v = −φv,u, iu,v = −iv,u .
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4 Random Walks on Graphs

1.6 Kirchhoff’s potential law The cumulative potential difference around
any cycle v1, v2, . . . , vn, vn+1 = v1 of G is zero, that is,

(1.7)
n∑

j=1
φvj ,vj+1 = 0.

1.8 Kirchhoff’s current law The total current flowing out of any vertex
u ∈ V other than the source-set is zero, that is,

(1.9)
∑
v∈V

iu,v = 0, u 
= s, t.

The relationship between resistance/conductance, potential difference,
and current is given by Ohm’s law.

1.10 Ohm’s law For any edge e = 〈u, v〉,
iu,v = weφu,v .

Kirchhoff’s potential law is equivalent to the statement that there exists
a function φ : V → R, called a potential function, such that

φu,v = φ(v) − φ(u), 〈u, v〉 ∈ E .

Since φ is determined up to an additive constant, we are free to pick the
potential of any single vertex. Note our convention that current flows uphill:
iu,v has the same sign as φu,v = φ(v)− φ(u).

1.11 Theorem A potential function is harmonic on the set of all vertices
other than the source-set.

Proof. Let U = V \ {s, t}. By Kirchhoff’s current law and Ohm’s law,∑
v∈V

wu,v[φ(v)− φ(u)] = 0, u ∈ U,

which is to say that

φ(u) =
∑
v∈V

wu,v

Wu
φ(v), u ∈ U,

where
Wu =

∑
v∈V

wu,v.

That is, φ is harmonic on U . �
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1.2 Electrical Networks 5

We can use Ohm’s law to express potential differences in terms of cur-
rents, and thus the twoKirchhoff lawsmay be viewed as concerning currents
only. Equation (1.7) becomes

(1.12)
n∑

j=1

ivj ,vj+1
w〈vj ,vj+1〉

= 0,

valid for any cycle v1, v2, . . . , vn, vn+1 = v1. With (1.7) written thus, each
law is linear in the currents, and the superposition principle follows.

1.13 Theorem (Superposition principle) If i1 and i2 are solutions of the
two Kirchhoff laws with the same source-set then so is the sum i1 + i2.

Next we introduce the concept of a ‘flow’ on a graph.

1.14 Definition Let s, t ∈ V , s 
= t . An s/t-flow j is a vector j =
( ju,v : u, v ∈ V , u 
= v), such that:
(a) ju,v = − jv,u ,
(b) ju,v = 0 whenever u � v,
(c) for any u 
= s, t , we have that

∑
v∈V ju,v = 0.

The vertices s and t are called the ‘source’ and ‘sink’ of an s/t flow, and
we usually abbreviate ‘s/t flow’ to ‘flow’. For any flow j , we write

Ju =
∑
v∈V

ju,v, u ∈ V ,

noting by (c) above that Ju = 0 for u 
= s, t . Thus,

Js + Jt =
∑
u∈V

Ju =
∑
u,v∈V

ju,v = 1
2

∑
u,v∈V

( ju,v + jv,u) = 0.

Therefore, Js = −Jt , and we call |Js | the size of the flow j , denoted | j |. If
|Js | = 1, we call j a unit flow. We shall normally take Js > 0, in which
case s is the source and t is the sink of the flow, and we say that j is a flow
from s to t .

Note that any solution i to the Kirchhoff laws with source-set {s, t} is an
s/t flow.

1.15 Theorem Let i1 and i2 be two solutions of the Kirchhoff laws with
the same source and sink and equal size. Then i1 = i2.

Proof. By the superposition principle, j = i1 − i2 satisfies the two Kirch-
hoff laws. Furthermore, under the flow j , no current enters or leaves
the system. Therefore, Jv = 0 for all v ∈ V . Suppose ju1,u2 > 0 for
some edge 〈u1, u2〉. By the Kirchhoff current law, there exists u3 such that
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6 Random Walks on Graphs

ju2,u3 > 0. Since |V | < ∞, there exists by iteration a cycle ul, ul+1, . . . ,

um, um+1 = ul such that juk ,uk+1 > 0 for k = l, l + 1, . . . ,m. By Ohm’s
law, the corresponding potential function satisfies

φ(ul) < φ(ul+1) < · · · < φ(um+1) = φ(ul),

a contradiction. Therefore, ju,v = 0 for all u, v. �

For a given size of input current, and given source s and sink t , there can
be nomore than one solution to the twoKirchhoff laws,but is there a solution
at all? The answer is of course affirmative, and the unique solution can be
expressed explicitly in terms of counts of spanning trees.2 Consider first the
special case when we = 1 for all e ∈ E . Let N be the number of spanning
trees of G. For any edge 〈a, b〉, let�(s, a, b, t) be the property of spanning
trees that: the unique s/t path in the tree passes along the edge 〈a, b〉 in the
direction from a to b. Let N (s, a, b, t) be the set of spanning trees of G
with the property �(s, a, b, t), and let N(s, a, b, t) = |N (s, a, b, t)|.
1.16 Theorem The function

(1.17) ia,b = 1

N

[
N(s, a, b, t)− N(s, b, a, t)

]
, 〈a, b〉 ∈ E,

defines a unit flow from s to t satisfying the Kirchhoff laws.

Let T be a spanning tree of G chosen uniformly at random from the set
T of all such spanning trees. By Theorem 1.16 and the previous discussion,
the unique solution to the Kirchhoff laws with source s, sink t , and size 1 is
given by

ia,b = P
(
T has �(s, a, b, t)

)− P
(
T has �(s, b, a, t)

)
.

We shall return to uniform spanning trees in Chapter 2.
We prove Theorem 1.16 next. Exactly the same proof is valid in the case

of general conductanceswe. In that case, we define the weight of a spanning
tree T as

w(T ) =
∏
e∈T

we,

and we set

(1.18) N∗ =
∑
T∈T

w(T ), N∗(s, a, b, t) =
∑

T with �(s,a,b,t)

w(T ).

The conclusion of Theorem 1.16 holds in this setting with

ia,b = 1

N∗
[
N∗(s, a, b, t)− N∗(s, b, a, t)

]
, 〈a, b〉 ∈ E .

2This was discovered in an equivalent form by Kirchhoff in 1847, [188].
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1.2 Electrical Networks 7

Proof of Theorem 1.16. We first check the Kirchhoff current law. In every
spanning tree T , there exists a unique vertex b such that the s/t path of
T contains the edge 〈s, b〉, and the path traverses this edge from s to b.
Therefore,∑

b∈V
N(s, s, b, t) = N, N(s, b, s, t) = 0 for b ∈ V .

By (1.17), ∑
b∈V

is,b = 1,

and, by a similar argument,
∑

b∈V ib,t = 1.

Let T be a spanning tree of G. The contribution towards the quantity
ia,b, made by T , depends on the s/t path π of T and equals

N−1 if π passes along 〈a, b〉 from a to b,

−N−1 if π passes along 〈a, b〉 from b to a,(1.19)

0 if π does not contain the edge 〈a, b〉.

Let v ∈ V , v 
= s, t , and write Iv =
∑

w∈V iv,w. If v ∈ π , the contribution
of T towards Iv is N−1 − N−1 = 0 since π arrives at v along some edge of
the form 〈a, v〉 and departs from v along some edge of the form 〈v, b〉. If
v /∈ π , then T contributes 0 to Iv . Summing over T , we obtain that Iv = 0
for all v 
= s, t , as required for the Kirchhoff current law.

We next check the Kirchhoff potential law. Let v1, v2, . . . , vn, vn+1 = v1
be a cycle C of G. We shall show that

(1.20)
n∑

j=1
ivj ,vj+1 = 0,

and this will confirm (1.12), on recalling that we = 1 for all e ∈ E . It is
more convenient in this context to work with ‘bushes’ than spanning trees.
A bush (or, more precisely, an s/t bush) is defined to be a forest on V
containing exactly two trees, one denoted Ts and containing s, and the other
denoted Tt and containing t . We write (Ts, Tt ) for this bush. Let e = 〈a, b〉,
and let B(s, a, b, t) be the set of bushes with a ∈ Ts and b ∈ Tt . The
sets B(s, a, b, t) and N (s, a, b, t) are in one–one correspondence, since
the addition of e to B ∈ B(s, a, b, t) creates a unique member T = T (B)

of N (s, a, b, t), and vice versa.
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8 Random Walks on Graphs

By (1.19) and the above, a bush B = (Ts, Tt) makes a contribution to
ia,b of

N−1 if B ∈ B(s, a, b, t),

−N−1 if B ∈ B(s, b, a, t),

0 otherwise.

Therefore, B makes a contribution towards the sum in (1.20) that is equal to
N−1(F+−F−), where F+ (respectively, F−) is the number of pairs vj , vj+1
ofC , 1 ≤ j ≤ n, with vj ∈ Ts , vj+1 ∈ Tt (respectively, vj+1 ∈ Ts , vj ∈ Tt ).
Since C is a cycle, we have F+ = F−, whence each bush contributes 0 to
the sum and (1.20) is proved. �

1.3 Flows and Energy

Let G = (V , E) be a connected graph as before. Let s, t ∈ V be distinct
vertices, and let j be an s/t flow. With we the conductance of the edge e,
the (dissipated) energy of j is defined as

E( j ) =
∑

e=〈u,v〉∈E
j2u,v/we = 1

2

∑
u,v∈V
u∼v

j2u,v/w〈u,v〉.

The following piece of linear algebra will be useful.

1.21 Proposition Let ψ : V → R, and let j be an s/t flow. Then

[ψ(t)− ψ(s)]Js = 1
2

∑
u,v∈V

[ψ(v) − ψ(u)] ju,v.

Proof. By the properties of a flow,∑
u,v∈V

[ψ(v)− ψ(u)] ju,v =
∑
v∈V

ψ(v)(−Jv)−
∑
u∈V

ψ(u)Ju

= −2[ψ(s)Js + ψ(t)Jt ]

= 2[ψ(t)− ψ(s)]Js,

as required. �

Let φ and i satisfy the two Kirchhoff laws. We apply Proposition 1.21
with ψ = φ and j = i to find by Ohm’s law that

(1.22) E(i) = [φ(t)− φ(s)]Is .
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1.3 Flows and Energy 9

That is, the energy of the true current-flow i from s to t equals the energy
dissipated in a (notional) single 〈s, t〉 edge carrying the same potential dif-
ference and total current. The conductance Weff of such an edge would
satisfy Ohm’s law, that is,

(1.23) Is = Weff[φ(t)− φ(s)],

and we define the effective conductanceWeff by this equation. The effective
resistance is

(1.24) Reff = 1

Weff
,

which, by (1.22) and (1.23), equals E(i)/I 2s . We state this as a lemma.

1.25 Lemma The effective resistance Reff of the network between vertices
s and t equals the dissipated energy when a unit flow passes from s to t.

It is useful to be able to do calculations. Electrical engineers have devised
a variety of formulaic methods for calculating the effective resistance of a
network, of which the simplest are the series and parallel laws, illustrated
in Figure 1.1.

e

e f
f

Figure 1.1 Two edges e and f in parallel and in series.

1.26 Series law Two resistors of size r1 and r2 in series may be replaced
by a single resistor of size r1 + r2.

1.27 Parallel law Two resistors of size r1 and r2 in parallelmay be replaced
by a single resistor of size R, where R−1 = r−11 + r−12 .

A third such rule, the so-called ‘star–triangle transformation’, may be
found at Exercise 1.5. The following ‘variational principle’ has many uses.

1.28 Theorem (Thomson principle) Let G = (V , E) be a connected
graph and (we : e ∈ E) strictly positive conductances. Let s, t ∈ V ,
s 
= t . Amongst all unit flows through G from s to t, the flow that satisfies
the Kirchhoff laws is the unique s/t flow i that minimizes the dissipated
energy. That is,

E(i) = inf
{
E( j ) : j a unit flow from s to t

}
.
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10 Random Walks on Graphs

Proof. Let j be a unit flow from source s to sink t , and set k = j − i , where
i is the (unique) unit-flow solution to the Kirchhoff laws. Thus, k is a flow
with zero size. Now, with e = 〈u, v〉 and re = 1/we,

2E( j ) =
∑
u,v∈V

j2u,vre =
∑
u,v∈V

(ku,v + iu,v)
2re

=
∑
u,v∈V

k2u,vre +
∑
u,v∈V

i2u,vre + 2
∑
u,v∈V

iu,vku,vre.

Let φ be the potential function corresponding to i . By Ohm’s law and
Proposition 1.21,∑

u,v∈V
iu,vku,vre =

∑
u,v∈V

[φ(v)− φ(u)]ku,v

= 2[φ(t)− φ(s)]Ks,

which equals zero. Therefore, E( j ) ≥ E(i), with equality if and only if
j = i . �

The Thomson ‘variational principle’ leads to a proof of the ‘obvious’ fact
that the effective resistance of a network is a non-decreasing function of the
resistances of individual edges.

1.29 Theorem (Rayleigh principle) The effective resistance Reff of the
network is a non-decreasing function of the edge-resistances (re : e ∈ E).

It is left as an exercise to show that Reff is a concave function of the vector
(re). See Exercise 1.6.

Proof. Consider two vectors (re : e ∈ E) and (r ′e : e ∈ E) of edge-
resistances with re ≤ r ′e for all e. Let i and i ′ denote the corresponding unit
flows satisfying the Kirchhoff laws. By Lemma 1.25, with re = r〈u,v〉,

Reff = 1
2

∑
u,v∈V
u∼v

i2u,vre

≤ 1
2

∑
u,v∈V
u∼v

(i ′u,v)
2re by the Thomson principle

≤ 1
2

∑
u,v∈V
u∼v

(i ′u,v)
2r ′e since re ≤ r ′e

= R′eff,
as required. �
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1.4 Recurrence and Resistance 11

1.4 Recurrence and Resistance

Let G = (V , E) be an infinite connected graph with finite vertex-degrees,
and let (we : e ∈ E) be (strictly positive) conductances. We shall consider
a reversible Markov chain Z = (Zn : n ≥ 0) on the state space V with
transition probabilities given by (1.3). Our purpose is to establish a condition
on the pair (G, w) that is equivalent to the recurrence of Z .

Let 0 be a distinguished vertex of G, called the ‘origin’, and suppose
that Z0 = 0. The graph-theoretic distance between two vertices u, v is the
number of edges in a shortest path between u and v, denoted δ(u, v). Let

�n = {u ∈ V : δ(0, v) ≤ n},
∂�n = �n \�n−1 = {u ∈ V : δ(0, v) = n}.

We think of ∂�n as the ‘boundary’ of �n . Let Gn be the subgraph of G
induced by the vertex-set�n . We let Gn be the graph obtained from Gn by
identifying the vertices in ∂�n as a single composite vertex denoted In . The
resulting finite graph Gn may be considered as an electrical network with
sources 0 and In . Let Reff(n) be the effective resistance of this network. The
graph Gn may be obtained from Gn+1 by identifying all vertices lying in
∂�n∪{In+1}, and thus, by the Rayleigh principle, Reff(n) is non-decreasing
in n. Therefore, the limit

Reff = lim
n→∞ Reff(n)

exists.

1.30 Theorem The probability of ultimate return by Z to the origin 0 is
given by

P0(Zn = 0 for some n ≥ 1) = 1− 1

W0Reff
,

where W0 =
∑

v: v∼0 w〈0,v〉.

The return probability is non-decreasing as W0Reff increases. By the
Rayleigh principle, this can be achieved, for example, by removing an edge
of E that is not incident to 0. The removal of an edge incident to 0 can have
the opposite effect, sinceW0 decreaseswhile Reff increases (see Figure 1.2).

A 0/∞ flow is a vector j = ( ju,v : u, v ∈ V , u 
= v) satisfying (1.14)(a),
(b) and also (c) for all u 
= 0. That is, it has source 0 but no sink.

1.31 Corollary
(a) The chain Z is recurrent if and only if Reff = ∞.
(b) The chain Z is transient if and only if there exists a non-zero 0/∞ flow

j on G whose energy E( j ) =∑
e j2e /we satisfies E( j ) <∞.
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12 Random Walks on Graphs

e

0

Figure 1.2 This is an infinite binary tree with two parallel edges joining
the origin to the root. When each edge has unit resistance, it is an easy
calculation that Reff = 3

2 , so the probability of return to 0 is 2
3 . If the

edge e is removed, this probability becomes 1
2 .

It is left as an exercise to extend this to countable graphs G without the
assumption of finite vertex-degrees.

Proof of Theorem 1.30. Let

gn(v) = Pv(Z hits ∂�n before 0), v ∈ �n .

By Theorem 1.5 and Exercise 1.13, gn is the unique harmonic function on
Gn with boundary conditions

gn(0) = 0, gn(v) = 1 for v ∈ ∂�n .

Therefore, gn is a potential function on Gn viewed as an electrical network
with source 0 and sink In .

By conditioning on the first step of the walk, and using Ohm’s law,

P0(Z returns to 0 before reaching ∂�n)

= 1−
∑

v: v∼0
p0,vgn(v)

= 1−
∑

v: v∼0

w0,v

W0
[gn(v)− gn(0)]

= 1− |i(n)|
W0

,

where i(n) is the flow of currents in Gn , and |i(n)| is its size. By (1.23) and
(1.24), |i(n)| = 1/Reff(n). The theorem is proved on noting that

P0(Z returns to 0 before reaching ∂�n)→ P0(Zn = 0 for some n ≥ 1)

https://doi.org/10.1017/9781108528986.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108528986.002


1.5 Recurrence and Resistance 13

as n→∞, by the continuity of probability measures. �

Proof of Corollary 1.31. Part (a) is an immediate consequence of Theorem
1.30, and we turn to part (b). By Lemma 1.25, there exists a unit flow i(n)

in Gn with source 0 and sink In , and with energy E(i(n)) = Reff(n). Let i
be a non-zero 0/∞ flow; by dividing by its size, we may take i to be a unit
flow. When restricted to the edge-set En of Gn , i forms a unit flow from 0
to In . By the Thomson principle, Theorem 1.28,

E(i(n)) ≤
∑
e∈En

i2e /we ≤ E(i),

whence

E(i) ≥ lim
n→∞ E(i(n)) = Reff.

Therefore, by part (a), E(i) = ∞ if the chain is recurrent.

Suppose, conversely, that the chain is transient. By diagonal selection,3

there exists a subsequence (nk) along which i(nk) converges to some limit
j (that is, i(nk)e → je for every e ∈ E). Since each i(nk) is a unit flow
from the origin, j is a unit 0/∞ flow. Now,

E(i(nk)) =
∑
e∈E

i(nk)
2
e/we

≥
∑
e∈Em

i(nk)
2
e/we

→
∑
e∈Em

j (e)2/we as k →∞

→ E( j ) as m →∞.

Therefore,

E( j ) ≤ lim
k→∞

Reff(nk) = Reff <∞,

and j is a flow with the required properties. �

3Diagonal selection: Let (xm(n) : m, n ≥ 1) be a bounded collection of reals. There
exists an increasing sequence n1, n2, . . . of positive integers such that, for every m, the
limit limk→∞ xm(nk ) exists.
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14 Random Walks on Graphs

1.5 Pólya’s Theorem

The d-dimensional cubic latticeLd has vertex-setZd and edges between any
two vertices that are Euclidean distance one apart. The following celebrated
theorem can be proved by estimating effective resistances.4

1.32 Pólya’s theorem [242] Symmetric random walk on the lattice Ld in
d dimensions is recurrent if d = 1, 2 and transient if d ≥ 3.

The advantage of the following proof of Pólya’s theorem over more stan-
dard arguments is its robustness with respect to the underlying graph. Sim-
ilar arguments are valid for graphs that are, in broad terms, comparable to
Ld when viewed as electrical networks.

Proof. For simplicity, and with only little loss of generality (see Exercise
1.10), we shall concentrate on the cases d = 2, 3. Let d = 2, for which case
we aim to show that Reff = ∞. This is achieved by finding an infinite lower
bound for Reff , and lower bounds can be obtained by decreasing individual
edge-resistances. The identification of two vertices of a network amounts
to the addition of a resistor with 0 resistance, and, by the Rayleigh principle,
the effective resistance of the network can only decrease.

0 1 2 3

Figure 1.3 The vertex labelled i is a composite vertex obtained by
identifying all vertices with distance i from 0. There are 8i − 4 edges of
L2 joining vertices i − 1 and i .

From L2, we construct a new graph in which, for each k = 1, 2, . . . ,
the set ∂�k = {v ∈ Z2 : δ(0, v) = k} is identified as a singleton. This
transforms L2 into the graph shown in Figure 1.3. By the series/parallel
laws and the Rayleigh principle,

Reff(n) ≥
n−1∑
i=1

1

8i − 4
,

whence Reff(n) ≥ c log n→∞ as n→∞.
Suppose now that d = 3. There are at least two ways of proceeding.

We shall present one such route, taken from [222], and we shall then sketch

4An amusing story is told in [243] about Pólya’s inspiration for this theorem.
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1.5 Pólya’s Theorem 15

Cu

S

Fu,v

�(Fu,v)

0

Figure 1.4 The flow along the edge 〈u, v〉 is equal to the area of the
projection�(Fu,v) on the unit sphere centred at the origin, with a suitable
convention for its sign.

the second, which has its inspiration in [83]. By Corollary 1.31, it suffices
to construct a non-zero 0/∞ flow with finite energy. Let S be the surface
of the unit sphere of R3 with centre at the origin 0. Take u ∈ Z3, u 
= 0,
and position a unit cube Cu in R3 with centre at u and edges parallel to the
axes (see Figure 1.4). For each neighbour v of u, the directed edge [u, v〉
intersects a unique face, denoted Fu,v , of Cu .

For x ∈ R3, x 
= 0, let �(x) be the point of intersection with S of the
straight line segment from 0 to x . Let ju,v be equal in absolute value to the
surface measure of �(Fu,v). The sign of ju,v is taken to be positive if and
only if the scalar product of 1

2 (u+ v) and v− u, viewed as vectors in R3, is
positive. Let jv,u = − ju,v. We claim that j is a 0/∞ flow on L3. Parts (a)
and (b) of Definition 1.14 follow by construction, and it remains to check
(c).

The surface of Cu has projection�(Cu) on S. The sum Ju =
∑

v∼u ju,v

is the integral over x ∈ �(Cu), with respect to surface measure, of the
number of neighbours v of u (counted with sign) for which x ∈ �(Fu,v).
Almost every x ∈ �(Cu) is counted twice, with signs + and −. Thus the
integral equals 0, whence Ju = 0 for all u 
= 0.

It is easily seen that J0 
= 0, so j is a non-zero flow. Next, we estimate
its energy. By an elementary geometric consideration, there exist ci < ∞
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16 Random Walks on Graphs

such that:
(i) | ju,v| ≤ c1/|u|2 for u 
= 0, where |u| = δ(0, u) is the length of a

shortest path from 0 to u,
(ii) the number of u ∈ Z3 with |u| = n is smaller than c2n2.
It follows that

E( j ) ≤
∑
u 
=0

∑
v∼u

j2u,v ≤
∞∑
n=1

6c2n
2
( c1
n2

)2
<∞,

as required. �

Another way of showing Reff < ∞ when d = 3 is to find a finite upper
bound for Reff. Upper bounds canbeobtained either by increasing individual
edge-resistances or by removing edges. The idea is to embed a tree with
finite resistance in L3. Consider a binary tree Tρ in which each connection
between generation n−1 and generation n has resistanceρn, whereρ > 0. It
is an easy exercise using the series/parallel laws that the effective resistance
between the root and infinity is

Reff(Tρ) =
∞∑
n=1

(ρ

2

)n
,

which we make finite by choosing ρ < 2. We proceed to embed Tρ in Z3

in such a way that a connection between generation n − 1 and generation
n is a lattice-path with length of order ρn . There are 2n vertices of Tρ in
generation n, and their lattice-distance from 0 is of order

∑n
k=1 ρk , that

is, order ρn . The surface of the k-ball in R3 is of order k2, and thus it is
necessary that

c(ρn)2 ≥ 2n,

which is to say that ρ >
√
2.

Let
√
2 < ρ < 2. It is now fairly simple to check that Reff < c′Reff(Tρ).

This method was used in [138] to prove the transience of the infinite open
cluster of percolation on L3. It is related to, but different from, the tree
embeddings of [83].

1.6 Graph Theory

A graph G = (V , E) comprises a finite or countably infinite vertex-set V
and an associated edge-set E . Each element of E is an unordered pair u, v
of vertices, written 〈u, v〉. Two edges with the same vertex-pairs are said
to be in parallel, and edges of the form 〈u, u〉 are called loops. The graphs
discussed in this text will generally contain neither parallel edges nor loops,
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1.6 Graph Theory 17

and this is assumed henceforth. Two vertices u, v are said to be joined (or
connected) by an edge if 〈u, v〉 ∈ E . In this case, u and v are the endvertices
of e, and we write u ∼ v and say that u is adjacent to v. An edge e is said
to be incident to its endvertices. The number of edges incident to vertex u
is called the degree of u, denoted deg(u). The negation of the relation ∼ is
written �.

Since the edges are unordered pairs, we call such a graph undirected (or
unoriented). If some or all of its edges are ordered pairs, written [u, v〉, the
graph is called directed (or oriented).

A path ofG is defined as an alternating sequencev0, e0, v1, e1, . . . , en−1,
vn of distinct vertices vi and edges ei = 〈vi , vi+1〉. Such a path has length
n; it is said to connect v0 to vn , and is called a v0/vn path. A cycle or circuit
of G is an alternating sequence v0, e0, v1, . . . , en−1, vn, en, v0 of vertices
and edges such that v0, e0, . . . , en−1, vn is a path and en = 〈vn, v0〉. Such
a cycle has length n + 1. The (graph-theoretic) distance δ(u, v) from u to
v is defined to be the number of edges in a shortest path of G from u to v.

Wewriteu � v if there exists a path connectingu andv. The relation�

is an equivalence relation, and its equivalence classes are called components
(or clusters) ofG. The components ofG may be considered either as sets of
vertices or as graphs. The graphG is connected if it has a unique component.
It is a forest if it contains no cycle, and a tree if in addition it is connected.

A subgraph of the graph G = (V , E) is a graph H = (W, F) with
W ⊆ V and F ⊆ E . The subgraph H is a spanning tree of G if V = W
and H is a tree. A subset U ⊆ V of the vertex-set of G has boundary
∂U = {u ∈ U : u ∼ v for some v ∈ V \U }.

Lattice-graphs are the most important type of graph for applications in
areas such as statistical mechanics. Lattices are sometimes termed ‘crys-
talline’ since they are periodic structures of crystal-like units. A general
definition of a lattice may confuse readers more than help them, and instead
we describe some principal examples.

Let d be a positive integer. We write Z = {. . . ,−1, 0, 1, . . .} for the
set of all integers, and Zd for the set of all d-vectors v = (v1, v2, . . . , vd )

with integral coordinates. For v ∈ Zd , we generally write vi for the i th
coordinate of v, and we define

δ(u, v) =
d∑

i=1
|ui − vi |.

The origin of Zd is denoted by 0. We turn Zd into a graph, called the d-
dimensional (hyper)cubic lattice, by adding edges between all pairs u, v of
points of Zd with δ(u, v) = 1. This graph is denoted as Ld , and its edge-set
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18 Random Walks on Graphs

Figure 1.5 The square, triangular, and hexagonal (or ‘honeycomb’)
lattices. The solid and dashed lines illustrate the concept of ‘planar
duality’ discussed after (3.7).

as Ed : thus, Ld = (Zd , Ed). We often think of Ld as a graph embedded
in Rd , the edges being straight line-segments between their endvertices.
The edge-set EV of V ⊆ Zd is the set of all edges of Ld both of whose
endvertices lie in V .

The two-dimensional cubic lattice L2 is called the square lattice and is
illustrated in Figure 1.5. Two other lattices in two dimensions that feature
in this text are drawn there also.

1.7 Exercises

1.1 Let G = (V , E) be a finite connected graph with unit edge-weights. Show
that the effective resistance between two distinct vertices s, t of the associated
electrical network may be expressed as B/N , where B is the number of s/t bushes
of G, and N is the number of its spanning trees. (See the proof of Theorem 1.16
for an explanation of the term ‘bush’.)

Extend this result to general edge-weights we > 0.
1.2 Let G = (V , E) be a finite connected graph with strictly positive edge-

weights (we : e ∈ E), and let N∗ be given by (1.18). Show that

ia,b =
1

N∗
[
N∗(s, a, b, t)− N∗(s, b, a, t)

]
constitutes a unit flow through G from s to t satisfying Kirchhoff’s laws.

1.3 (continuation) Let G = (V , E) be finite and connected with given conduc-
tances (we : e ∈ E), and let (xv : v ∈ V ) be reals satisfying

∑
v xv = 0. To G

we append a notional vertex labelled∞, and we join∞ to each v ∈ V . Show that
there exists a solution i to Kirchhoff’s laws on the expanded graph, viewed as two
laws concerning current flow, such that the current along the edge 〈v,∞〉 is xv .
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A B B

C C

r1

r ′1
r2

r ′2 r ′3

r3

A

Figure 1.6 Edge-resistances in the star–triangle transformation. The
triangle T on the left is replaced by the star S on the right, and the
corresponding resistances are denoted as marked.

1.4 Prove the series and parallel laws for electrical networks.
1.5 Star–triangle transformation. The triangle T is replaced by a star S in an

electrical network, as illustrated in Figure 1.6. Explain the sense in which the
two networks are the same when the resistances are chosen such that rj r

′
j = c for

j = 1, 2, 3 and some c = c(r1, r2, r3) to be determined.
Note. The star–triangle transformation and its derivatives findmany important

applications in probability theory and mathematical physics. The transformation
was discovered first in 1899, in the above form, by Kennelly [185].

1.6 Let R(r) be the effective resistance between two given vertices of a finite
network with edge-resistances r = (r(e) : e ∈ E). Show that R is concave, in
that

1
2

[
R(r1)+ R(r2)

] ≤ R
( 1
2 (r1 + r2)

)
.

1.7 Maximum principle. Let G = (V , E) be a finite or infinite network with
finite vertex-degrees and associated conductances (we : e ∈ E). Let H = (W, F)

be a connected subgraph of G, and write


W = {v ∈ V \ W : v ∼ w for some w ∈ W }

for the ‘external boundary’ ofW . Let φ : V → [0,∞) be harmonic on the setW ,
and suppose the supremum of φ on W is achieved and satisfies

sup
w∈W

φ(w) = ‖φ‖∞ := sup
v∈V

φ(v).

Show that φ is constant on W ∪
W , where it takes the value ‖φ‖∞.
1.8 Let G be an infinite connected graph, and let ∂�n be the set of vertices at

distance n from the vertex labelled 0. With En the number of edges joining ∂�n
to ∂�n+1, show that a random walk on G is recurrent if

∑
n E−1n = ∞.

1.9 (continuation) Assume that G is ‘spherically symmetric’ in that: for all n,
for all x, y ∈ ∂�n , there exists a graph automorphism that fixes 0 and maps x to
y. Show that a random walk on G is transient if

∑
n E−1n <∞.

1.10 Let G be a countably infinite connected graph with finite vertex-degrees
and with a nominated vertex 0. Let H be a connected subgraph of G containing
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20 Random Walks on Graphs

0. Show that a simple random walk, starting at 0, is recurrent on H whenever it is
recurrent on G, but that the converse need not hold.
1.11 Let G be a finite connected network with strictly positive conductances

(we : e ∈ E), and let a, b be distinct vertices. Let ix,y denote the current along
an edge from x to y when a unit current flows from the source vertex a to the sink
vertex b. Run the associated Markov chain, starting at a, until it reaches b for the
first time, and let ux,y be the mean of the total number of transitions of the chain
between x and y. Transitions from x to y count as positive, and from y to x as
negative, so that ux,y is the mean number of transitions from x to y, minus the
mean number from y to x . Show that ix,y = ux,y .
1.12 [83] Let G be an infinite connected graph with bounded vertex-degrees.

Let k ≥ 1, and let Gk be obtained from G by adding an edge between any pair of
vertices that are non-adjacent (in G) but separated by a graph-theoretic distance k
or less. (The graph Gk is sometimes called the k-fuzz of G.) Show that a simple
random walk is recurrent on Gk if and only if it is recurrent on G.
1.13 Uniqueness theorem. Let G = (V , E) be a finite or infinite connected

network with finite vertex-degrees, and let W be a proper subset of V . Let f, g :
V → R be harmonic onW and equal on V \W . Show, by the maximum principle
or otherwise, that f ≡ g.
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