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Abstract

This article explores the properties of fractal interpolation functions with variable scaling parameters,
in the context of smooth fractal functions. The first part extends the Barnsley–Harrington theorem
for differentiability of fractal functions and the fractal analogue of Hermite interpolation to the present
setting. The general result is applied on a special class of iterated function systems in order to develop
differentiability of the so-called α-fractal functions. This leads to a bounded linear map on the space
Ck(I) which is exploited to prove the existence of a Schauder basis for Ck(I) consisting of smooth fractal
functions.
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1. Introduction

Barnsley [1] proposed the concept of a fractal interpolation function (FIF), which
initiated a new research field in approximation theory. By a fractal function, we mean
a function whose graph is the attractor of an iterated function system (IFS). Fractal
functions not only form the basis of a constructive approximation for nondifferentiable
functions but also subsume various traditional smooth approximation techniques. For
certain problems, fractal functions provide better approximants than their classical
nonrecursive counterparts (see, for instance, [2, 12]).

In almost all cases, the FIFs are generated from IFSs whose free parameters, the so-
called scaling factors, are constant. To provide more flexibility and to fit complicated
curves that show less self-similarity, FIFs with variable scaling factors (function
scalings) have been introduced and their analytical properties, such as smoothness,
stability and sensitivity, investigated (see [18]). In the first part of this article, we
seek conditions on elements of the IFS with variable scaling factors so that the
corresponding FIF is Ck-continuous. Towards this end, we extend the theorem on
differentiability of FIFs due to Barnsley and Harrington [3] to the present setting of
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function scalings. Thus, this part of the article may be viewed as a sequel to [18]. This
leads naturally to the construction of Hermite FIFs, which were introduced in [11], but
now with the setting of variable scalings, and provides a solution procedure with more
flexibility to the classical Hermite interpolation problem using differentiable fractal
functions.

Barnsley [1] and Navascués [7] observed that by a suitable choice of IFS whose
elements are selected in terms of a prescribed continuous function f , an entire family
of fractal functions f α, called the α-fractal functions, can be constructed to interpolate
and approximate f . We apply our theorem on differentiability of FIFs with variable
scalings to obtain conditions for fractal functions f α to be k-times continuously
differentiable whenever the source function f is. This gives a correspondence f 7→ f α

on the space Ck(I) of all k-times continuously differentiable functions on a real
compact interval I. We establish properties of this map which eventually helps to
prove that Ck(I) admits a Schauder basis consisting of smooth fractal functions with
variable scaling parameters. Overall, the current article demonstrates anew that the
fractal functions are not as strange as they may appear at first glance. On the contrary,
they enjoy interesting connections with other branches of mathematics, including
approximation theory, numerical analysis, functional analysis and operator theory.

2. Notation and preliminaries

We reserve the notation C(I) for the Banach space of real-valued continuous
functions defined on a real compact interval I with the norm

‖ f ‖∞ := max
x∈I
| f (x)|.

Further, we denote by Ck(I) the Banach space of real-valued functions having k
continuous derivatives with the norm

‖ f ‖k := max{‖ f (r)‖∞ : r = 0, 1, . . . , k},

although, as proved in [8], all the results obtained can be generalised to the complex
field. For any r ∈ N, let Nr = {1, 2, . . . , r} and N0

r := Nr ∪ {0}. As usual, we shall
denote by X∗ the topological dual of a normed linear space X. For any m ∈ N and for
an arbitrary set A, Am denotes the cartesian product A × A × · · · × A (m times). For a
bounded linear operator T : (X, ‖ · ‖X)→ (Y, ‖ · ‖Y ), the operator norm is defined as

‖T‖ = sup{‖T x‖Y : x ∈ X, ‖x‖X ≤ 1}.

Let (X,d) be a complete metric space. Suppose that m continuous maps f1, f2, . . . , fm
on X are given. We set F = { f1, f2, . . . , fm}. The pair {X; F} is called an Iterated
Function System (IFS). A subset A of X is said to be invariant with respect to F if

A =

m⋃
i=1

fi(A).
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For a given set F of contractions, it can be shown that there is a unique nonempty
compact subset A of X which is invariant with respect to F. This invariant set A is
referred to as an attractor or a deterministic fractal. Barnsley [1] explored the notion
of IFS to define a function which interpolates a prescribed data set and whose graph is
a fractal, as follows.

Consider a data set {(xi, yi) ∈ R2 : i ∈ NN}, N > 2, with strictly increasing
abscissae. Let I = [x1, xN], Ii = [xi, xi+1] for i ∈ NN−1 and Li : I → Ii be contraction
homeomorphisms such that

Li(x1) = xi, Li(xN) = xi+1. (2.1)

Suppose 0 ≤ ri < 1 for i ∈ NN−1 and consider continuous maps Fi : I × R → R
satisfying

Fi(x1, y1) = yi, Fi(xN , yN) = yi+1,

|Fi(x, y) − Fi(x, y∗)| ≤ ri|y − y∗| x ∈ I, y, y∗ ∈ R.
(2.2)

Now one can define functions Wi : I × R→ Ii × R ⊆ I × R by

Wi(x, y) = (Li(x), Fi(x, y)) ∀i ∈ NN−1.

Let W := {Wi : i ∈ NN−1}.

Theorem 2.1 [1]. The IFS {I × R; W} has a unique attractor G which is the graph of
a continuous function g : I → R satisfying g(xi) = yi for all i ∈ NN . Furthermore, if
Cy1,yN (I) := {h ∈ C(I) : h(x1) = y1, h(xN) = yN} is endowed with the uniform metric and
T : Cy1,yN (I)→ Cy1,yN (I) is defined by Th(x) = Fi(L−1

i (x), h(L−1
i (x))), x ∈ Ii, i ∈ NN−1

then the function g is the unique fixed point of T .

The function g appearing in the preceding theorem is a FIF; g satisfies the functional
equation

g(Li(x)) = Fi(x, g(x)) x ∈ I, i ∈ NN−1.

A common IFS in the study of FIFs emanates from the maps

Li(x) = aix + bi, Fi(x, y) = αiy + qi(x), (2.3)

where {αi : αi ∈ (−1,1), i ∈ NN−1} acts as a family of parameters termed vertical scaling
factors, and for each i ∈ NN−1, qi : I → R is a continuous function satisfying

qi(x1) = yi − αiy1, qi(xN) = yi+1 − αiyN .

On account of Theorem 2.1, the FIF defined through the IFS with the maps in (2.3)
satisfies the functional equation

g(x) = αig(L−1
i (x)) + qi(L−1

i (x)) x ∈ Ii, i ∈ NN−1. (2.4)

Barnsley pointed out that the special class of IFSs in (2.3) can be used to associate
a family of continuous fractal functions with a prescribed f ∈ C(I). In (2.3), take

qi(x) = f (Li(x)) − αib(x),
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where b ∈ C(I) interpolates f at the extremes of the interval I. In view of Theorem 2.1,
the IFS under consideration provides a FIF which we denote by f α

∆,b = f α, where
∆ = {x1, x2, . . . , xN} is a chosen partition of I and α := (α1, α2, . . . , αN−1) ∈ (−1, 1)N−1

is called a scale vector. Note that f 0 = f and

f α(x) = f (x) + αi( f α − b)(L−1
i (x)) x ∈ Ii, i ∈ NN−1.

Navascués [7] observed that if the ‘base function’ b depends linearly on f , say
b = L f , where L : C(I)→ C(I) is a bounded linear map, then the correspondence
f 7→ f α determines a bounded linear (fractal) operator F α on C(I). This operator
connects fractal functions with fields such as functional analysis, operator theory and
approximation theory (see, for instance, [8, 9, 16]). In [17], suitable values of the
scaling factors are identified so that f α preserves fundamental shape properties such
as positivity, monotonicity and convexity inherent in the function f .

Recently, Wang and Yu [18] extended the class of FIFs appearing in (2.3) by
considering variable scaling parameters (function scaling factors) αi ∈ C(I) satisfying
‖αi‖∞ := sup{|αi(x)| : x ∈ I} < 1 instead of constant scaling factors αi ∈ (−1, 1), i ∈
NN−1. The corresponding FIF satisfies

g(x) = αi(L−1
i (x))g(L−1

i (x)) + qi(L−1
i (x)) x ∈ Ii, i ∈ NN−1 (2.5)

and the α-fractal function f α satisfies

f α(x) = f (x) + αi(L−1
i (x))[ f α(L−1

i (x)) − b(L−1
i (x))] x ∈ Ii, i ∈ NN−1. (2.6)

In [18], analytical properties such as Hölder continuity, stability and sensitivity of the
FIF g (cf. (2.5)) are studied. In the next section, we shall investigate differentiability
of the fractal function g and related issues.

3. Smooth FIFs with variable scalings

The Barnsley–Harrington (BH) theorem [3], which is stated below, gives conditions
on the parameters for the Ck-continuity of the FIF g (cf. (2.4)).

Theorem 3.1 [3]. Let {(xi, yi) : i ∈ NN} be a given data set with strictly increasing
abscissae. Let Li(x) = aix + bi and Fi(x, y) = αiy + qi(x) satisfy (2.1) and (2.2)
respectively for i ∈ NN−1. Suppose that for some integer k ≥ 0, |αi| < ak

i and qi ∈ C
k(I)

for i ∈ NN−1. Let

Fi,p(x, y) =
αiy + q(p)

i (x)

ap
i

, y1,p =
q(p)

1 (x1)

ap
1 − α1

, yN,p =
q(p)

N−1(xN)

ap
N−1 − αN−1

p ∈ Nk.

If Fi−1,p(xN , yN,p) = Fi,p(x1, y1,p) for i = 2, 3, . . . , N − 1 and p ∈ Nk then the IFS
{I × R; (Li(x), Fi(x, y)) : i ∈ NN−1} determines a FIF g ∈ Ck(I). Further, g(p) is the FIF
determined by {I × R; (Li(x), Fi,p(x, y)) : i ∈ NN−1} for p ∈ Nk.
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In [3], the construction of a smooth fractal function starts with the fact that the
indefinite integral of a C0-FIF is again a FIF, albeit for a different IFS. However, due
to the appearance of the variable scaling functions, it is not clear whether the integral
of g appearing in (2.5) is a FIF. Therefore, in contrast to the ‘integral approach’ of [3],
we obtain k-times continuously differentiable fractal functions with variable scalings
as the fixed point of a suitable operator. This approach unifies various methods for
constructing fractal splines (see, for instance, [4, 13]) in the more general setting of
function scalings. We now state the main theorem of this section.

Theorem 3.2. Let {(xi, yi) : i ∈ NN} be a given set of interpolation data with strictly
increasing abscissae. For i ∈ NN−1, let Li(x) = aix + bi and Fi(x, y) = Fi,0(x, y) =

αi(x)y + qi(x) satisfy (2.1) and (2.2) respectively. Suppose y1,p and yN,p, p ∈ N0
k , are

arbitrarily chosen real numbers except that y1,0 = y1 and yN,0 = yN . For i ∈ NN−1,
assume that there exist functions αi and qi in Ck(I) such that ‖αi‖k < (ai/2)k and for
i = 2, 3, . . . ,N − 1, p ∈ Nk,∑p

j=0

(
p
j

)
y1, j α

(p− j)
i (x1) + q(p)

i (x1)

ap
i

=

∑p
j=0

(
p
j

)
yN, j α

(p− j)
i−1 (xN) + q(p)

i−1(xN)

ap
i−1

, (3.1)

q(p)
1 (x1) = y1,p ap

1 −

p∑
j=0

(
p
j

)
y1, j α

(p− j)
1 (x1),

q(p)
N−1(xN) = yN,p ap

N−1 −

p∑
j=0

(
p
j

)
yN, j α

(p− j)
N−1 (xN).

(3.2)

Then the corresponding FIF g ∈ Ck(I) and, for p ∈ Nk,

g(p)(Li(x)) = a−p
i

[ p∑
j=0

(
p
j

)
α

(p− j)
i (x)g( j)(x) + q(p)

i (x)
]

x ∈ I, i ∈ NN−1.

Proof. We begin by noting that

Dk(I) := {h ∈ Ck(I) : h(p)(x1) = y1,p, h(p)(xN) = yN,p, p ∈ N0
k}

endowed with the norm ‖ · ‖k is a complete metric space. Define T : Dk(I)→Dk(I)
via

(Th)(x) = αi(L−1
i (x))h(L−1

i (x)) + qi(L−1
i (x)) x ∈ Ii, i ∈ NN−1. (3.3)

Since the functions h, αi and qi are in Ck(I), Th is k-times continuously differentiable
on (xi, xi+1) for each i ∈ NN−1. Bearing in mind that Li : I → [xi, xi+1] for i ∈ NN−1
satisfies Li(x1) = Li−1(xN) = xi,

(Th)(p)(x+
i ) ap

i =

p∑
j=0

(
p
j

)
h( j)(x1)α(p− j)

i (x1) + q(p)
i (x1),

(Th)(p)(x−i ) ap
i−1 =

p∑
j=0

(
p
j

)
h( j)(xN)α(p− j)

i−1 (xN) + q(p)
i−1(xN).
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In conjunction with (3.1), this yields

(Th)(p)(x+
i ) = (Th)(p)(x−i ) i = 2, 3, . . . ,N − 1, p ∈ N0

k .

From the conditions prescribed in (3.2),

(Th)(p)(x1) = y1,p, (Th)(p)(xN) = yN,p p ∈ N0
k .

Therefore, Th is well defined and it is an element of Dk(I). By successive
differentiation on (3.3), we observe that for h, h∗ inDk(I) and x ∈ Ii,

|(Th)(p)(x) − (Th∗)(p)(x)| = a−p
i

∣∣∣∣∣ p∑
j=0

(
p
j

)
α

(p− j)
i (L−1

i (x))(h − h∗)( j)(L−1
i (x))

∣∣∣∣∣
≤ a−p

i ‖αi‖p‖h − h∗‖p
p∑

j=0

(
p
j

)
. (3.4)

For p ∈ N0
k , using the assumption on the scaling functions αi,

‖(Th)(p) − (Th∗)(p)‖∞ ≤ max
{2k

ak
i

‖αi‖k : i ∈ NN−1

}
‖h − h∗‖k < ‖h − h∗‖k.

Therefore, ‖Th − Th∗‖k < ‖h − h∗‖k and T is a contraction on Dk(I) and has a unique
fixed point (by the Banach fixed point theorem) g ∈ Dk(I) ⊂ Ck(I). Further, g(p),
p ∈ Nk, satisfies the functional equation stated in the theorem. �

Remark 3.3. Theorem 3.2 includes the Barnsley–Harrington theorem as a special case.
Consider αi(x) = αi for all x ∈ I. Then only one term (which corresponds to j = p) in
the summation appearing in the right-hand side of (3.4) is nonzero, and consequently

|(Th)(p)(x) − (Th∗)(p)(x)| < a−p
i |αi| ‖h − h∗‖p.

As in the theorem, T is a contraction if the scaling factors satisfy |αi| < ak
i for all

i ∈ NN−1. Note also that (3.1) reduces to

a−p
i [αiy1,p + q(p)

i (x1)] = a−p
i−1[αi−1yN,p + q(p)

i−1(xN)],

that is, Fi−1,p(xN , yN,p) = Fi,p(x1, y1,p), and the equations in (3.2) reduce to

y1,p =
q(p)

1 (x1)

ap
1 − α1

, yN,p =
q(p)

N−1(xN)

ap
N−1 − αN−1

,

which coincide with the conditions prescribed in Theorem 3.1.

The following theorem generalises a result in [17] to the setting of variable scaling.

Theorem 3.4. Let f ∈ Ck(I) be a prescribed function. If the scaling functions αi and
the base function b in Ck(I) fulfil the conditions ‖αi‖k < (ai/2)k for i ∈ NN−1 and

b(p)(x1) = f (p)(x1), b(p)(xN) = f (p)(xN) p ∈ N0
k
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then the corresponding α-fractal function f α (cf. (2.6)) belongs to Ck(I). Further,
( f α)(p)(xi) = f (p)(xi) for p ∈ N0

k , i ∈ Nk, and ( f α)(p) satisfies

( f α)(p)(Li(x)) = f (p)(Li(x)) + a−p
i

( p∑
j=0

(
p
j

)
α

(p− j)
i (x)( f α − b)( j)(x)

)
.

Proof. The result follows from Theorem 3.2 by considering the particular choice
qi(x) := f (Li(x)) − αi(x)b(x) and observing that the constraints imposed on b yield
the required conditions on qi. �

Remark 3.5. Note that the function b = H f , the two-point Hermite interpolant of
contact k for f with knots at x1 and xN , satisfies the conditions prescribed in the
preceding theorem. Further, this b depends linearly on f .

4. Hermite FIF with variable scaling factors

A natural question arises in connection with Theorem 3.2 about the existence
of function tuples α := (α1, α2, . . . , αN−1) with ‖αi‖k < (ai/2)k for all i ∈ NN−1 and
q := (q1, q2, . . . , qN−1) in (Ck(I))N−1 such that the system governed by (3.1)–(3.2)
is solvable for arbitrarily chosen points y1,p and yN,p. Theorem 3.4 addresses this
only for a special choice of qi. In practice, one is less likely to want a Ck-FIF than
to construct an interpolant passing through specified points with specified slopes.
The following theorem establishes the existence of αi and qi in Ck(I) so that the
corresponding FIF g not only belongs to Ck(I) but possesses prescribed k + 1 derivative
values (including function values) at the abscissae. That is, for a prescribed set of data
{(xi, yi,p) : i ∈ NN , p ∈ N0

k}, where yi,p are arbitrary, g solves a Hermite interpolation
problem g(p)(xi) = yi,p for i ∈ NN and p ∈ N0

k .

Theorem 4.1. For arbitrary real numbers x1 < x2 < · · · < xN and yi,p, i ∈ NN , p ∈ N0
k ,

there exist scaling functions αi and functions qi in Ck(I) such that the FIF g determined
through the maps Li(x) = aix + bi satisfying (2.1) and the maps Fi(x, y) = αi(x)y + qi(x)
satisfying (2.2) is Ck-continuous. Furthermore, g(p)(xi) = yi,p for i ∈ NN and p ∈ N0

k .

Proof. Let a−p
i {

∑p
j=0

(
p
j

)
y1, j α

(p− j)
i (x1) + q(p)

i (x1)} = yi,p for i ∈ NN−1 and p ∈ Nk.
Then (3.1)–(3.2), prescribed in Theorem 3.2, can be recast as

a−p
i

{ p∑
j=0

(
p
j

)
y1, j α

(p− j)
i (x1) + q(p)

i (x1)
}

= yi,p i ∈ NN−1,

a−p
i−1

{ p∑
j=0

(
p
j

)
yN, j α

(p− j)
i−1 (xN) + q(p)

i−1(xN)
}

= yi,p i = 2, 3, . . . ,N, p ∈ Nk.
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The above set of equations is equivalent to

a−p
i

{ p∑
j=0

(
p
j

)
y1, j α

(p− j)
i (x1) + q(p)

i (x1)
}

= yi,p,

a−p
i

{ p∑
j=0

(
p
j

)
yN, j α

(p− j)
i (xN) + q(p)

i (xN)
}

= yi+1,p i ∈ NN−1, p ∈ Nk.

(4.1)

The interpolation and continuity conditions imposed on the maps Fi,

Fi(x1, y1) = αi(x1)y1 + qi(x1) = yi = yi,0,

Fi(xN , yN) = αi(xN)yN + qi(xN) = yi+1 = yi+1,0 i ∈ NN−1,

complete the equations (cf. (4.1)) for the case p = 0. We choose scaling functions
αi ∈ C

k(I), i ∈ NN−1 arbitrarily except for ‖α(p)
i ‖∞ < (ai/2)k for all p ∈ N0

k and then
select qi ∈ C

k(I) such that

q(p)
i (x1) = yi,pap

i −

p∑
j=0

(
p
j

)
y1, j α

(p− j)
i (x1),

q(p)
i (xN) = yi+1,pap

i −

p∑
j=0

(
p
j

)
yN, j α

(p− j)
i (xN) p ∈ N0

k .

(4.2)

These requirements ensure the conditions of Theorem 3.2. Thus the solution of
the system (3.1) and (3.2) reduces to the existence of Ck-continuous functions
qi fulfilling (4.2) which is is evident. For instance, qi can be taken as a two-
point Hermite interpolant of degree 2k + 1. Therefore there exist (α1, α2, . . . , αN−1)
and (q1, q2, . . . , qN−1) in (Ck(I))N−1 satisfying the hypotheses of Theorem 3.2 and
consequently the corresponding FIF g is Ck-continuous. Finally, for p ∈ N0

k and i ∈ NN ,

g(p)(xi) = g(p)(Li(x1)) = a−p
i

[ p∑
j=0

(
p
j

)
α

(p− j)
i (x1)g( j)(x1) + q(p)

i (x1)
]

= yi,p.

This concludes the proof. �

The proof relies on the solution of the Hermite interpolation problem, a classical
problem in numerical analysis. However, for the sake of completeness, we provide an
explicit expression for the maps qi of the IFS (see also [15]). For arbitrary numbers
x0 < x1 < · · · < xm and fi,p, i ∈ N0

m, p ∈ Nni−1, there exists precisely one polynomial
P ∈ Pn, n + 1 :=

∑m
i=0 ni which satisfies P(p)(xi) = fi,p for i ∈ N0

m, p ∈ Nni−1. The
Hermite interpolating polynomial P ∈ Pn can be given explicitly in the form

P(x) =

m∑
i=0

ni−1∑
p=0

fi,pLi,p(x),
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where the polynomials Li,p ∈ Pn are generalised Lagrange polynomials defined as
follows. Starting with the auxiliary polynomials

li,p(x) =
(x − xi)p

p!

m∏
j=0, j,i

( x − x j

xi − x j

)n j

0 ≤ i ≤ m, 0 ≤ p ≤ ni − 1,

put Li,ni−1(x) = li,ni−1(x) for i = 0, 1, . . . , m and, recursively for p = ni − 2,
ni − 3, . . . , 1, 0,

Li,p(x) := li,p(x) −
ni−1∑
ν=p+1

l(ν)i,p(xi)Li,ν(x).

Since ni − 1 = k for the case under consideration,

qi(x) =

k∑
j=0

[
yi, ja

j
i −

j∑
r=0

(
j
r

)
y1,r α

( j−r)
i (x1)

]
L1, j(x)

+

k∑
j=0

[
yi+1, ja

j
i −

j∑
r=0

(
j
r

)
yN,r α

( j−r)
i (xN)

]
LN, j(x),

where

L1,k(x) = l1,k(x), LN,k(x) = lN,k(x),

L1, j(x) = l1, j(x) −
k∑

ν= j+1

l(ν)1, j(x1)L1,ν(x) j = k − 1, k − 2, . . . , 1, 0,

LN, j(x) = lN, j(x) −
k∑

ν= j+1

l(ν)N, j(xN)LN,ν(x) j = k − 1, k − 2, . . . , 1, 0,

l1, j(x) =
(x − x1) j

j!

( x − xN

x1 − xN

)k+1
,

lN, j(x) =
(x − xN) j

j!

( x − x1

xN − x1

)k+1
j ∈ N0

k .

Let us denote the resulting FIF g ∈ Ck(I) that satisfies the conditions g(p)(xi) = yi,p for
i ∈ NN and p ∈ N0

k by H, or, more explicitly, by Hα (to make evident the dependence
of H on the scaling (function) vector α = (α1, α2, . . . , αN−1)). If αi ≡ 0 for all i ∈ NN−1,
then H(x) = qi(L−1

i (x)) for x ∈ Ii = [xi, xi+1]. Therefore, H is a polynomial of degree
not exceeding 2k + 1 on Ii and consequently H is a Hermite function, that is, a function
in the space Hk+1 := {φ : I → R|φ ∈ Ck(I), φ|Ii ∈ P2k+1}. We call H a Hermite fractal
interpolation function (HFIF) with variable scaling factors. It generalises the HFIF
with constant scaling factors studied in [11].

Remark 4.2. Note that the conditions prescribed involve only the values of the scaling
functions on the extremes of the interval. This fact provides flexibility, since the
remaining αi can be arbitrarily chosen, subject to the restrictions on their magnitudes.
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5. A fractal operator with function scalings

In this section we shall establish some basic properties of a fractal operator which
are implicit in Theorem 3.4. For a fixed set of scaling functions αi and a base function
b satisfying the conditions in Theorem 3.4, define

Dα∆,b : Ck(I)→ Ck(I), Dα∆,b( f ) = f α.

Even though f α is k-times continuously differentiable, we refer to it as a fractal
function because its graph is a union of transformed copies of itself, that is,

G( f α) =
⋃

i∈NN−1

Wi(G( f α)).

The corresponding operator Dα
∆,b is termed a fractal operator. We assume further that

b = L f , where L is a bounded linear operator on Ck(I) and Id is the identity operator
on Ck(I). Note that due to the conditions required on b, we need L to be a linear
operator satisfying L f (p)(x j) = f (p)(x j) for p ∈ N0

k and j = 1, N. The corresponding
fractal operator is denoted byDα

∆,L. The construction has connections with [8], but we
have a new set of conditions on the scaling and a different domain space.

Theorem 5.1. The operatorDα
∆,L is a bounded linear operator on Ck(I).

Proof. The linearity of L and the unicity of the fixed point of the functional equation
for α-fractal functions give (λ f + µg)α = λ f α + µgα for any λ, µ ∈ R and any functions
f , g in Ck(I), so the mapDα

∆,L is linear. Arguing as in Theorem 3.2,

‖ f α − f ‖k ≤ max{(2/ai)k‖αi‖k : i ∈ NN−1}‖ f α − L f ‖k ≤
K

1 − K
‖ f − L f ‖k, (5.1)

where K = max{(2/ai)k‖αi‖k : i ∈ NN−1}. A little manipulation yields

‖Dα∆,L( f )‖k = ‖ f α‖k ≤
(K‖Id − L‖

1 − K
+ 1

)
‖ f ‖k. (5.2)

Consequently,Dα
∆,L is a bounded operator and ‖Dα

∆,L‖ ≤ (K‖Id − L‖/(1 − K) + 1). �

Theorem 5.2. For α = (α1, α2, . . . , αN−1) ∈ (Ck(I))N−1 with ‖αi‖k < ‖L‖−1(ai/2)k for all
i ∈ NN−1, the fractal operator Dα

∆,L is injective and bounded below. In particular, the
range ofDα

∆,L, denoted by Rg(Dα
∆,L), is a closed subspace of Ck(I).

Proof. From the proof of the previous theorem,

‖ f α − f ‖k ≤ K‖ f α − L f ‖k (5.3)

where K := max{(2/ai)k‖αi‖k : i ∈ NN−1} < ‖L‖−1. LetDα
∆,L( f ) = f α = 0. From (5.3),

‖ f ‖k ≤ K‖L‖ ‖ f ‖k.
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Since K‖L‖ < 1, we deduce that f = 0, establishing the injectivity of the linear operator
Dα

∆,L. From (5.3) we also see that

‖ f ‖k − ‖ f α‖k ≤ ‖ f − f α‖k ≤ K‖ f α − L f ‖ ≤ K(‖ f α‖k + ‖L‖ ‖ f ‖k),

and hence

‖ f ‖k ≤
K + 1

1 − K‖L‖
‖ f α‖k. (5.4)

Consequently, the operatorDα
∆,L is bounded below. In fact, from (5.2) and (5.4),

1 − K‖L‖
K + 1

‖ f ‖k ≤ ‖Dα∆,L( f )‖ ≤
(K‖Id − L‖

1 − K
+ 1

)
‖ f ‖k.

Now it is a routine exercise to show that Rg(Dα
∆,L) is closed. Let g ∈ Rg(Dα

∆,L).

Then, there exists a sequence ( fn) in Ck(I) such that Dα
∆,L( fn)

‖·‖k
−−→ g as n→∞. In

particular, (Dα
∆,L( fn)) = ( f αn ) is a Cauchy sequence. Using (5.4) we note that

‖ fn − fm‖k ≤
K + 1

1 − K‖L‖
‖ f αn − f αm ‖k.

Therefore, the sequence ( fn) is a Cauchy sequence in the Banach space Ck(I) and

hence convergent, say, fn
‖·‖k
−−→ f in Ck(I). Boundedness of the map Dα

∆,L implies that

Dα
∆,L( fn)

‖·‖k
−−→Dα

∆,L( f ) and hence that g =Dα
∆,L( f ). Thus, g ∈ Rg(Dα

∆,L), demonstrating
that Rg(Dα

∆,L) is closed. �

As a prelude to our next theorem, we recall the following fundamental result from
operator theory (see, for instance, [6]).

Lemma 5.3. If T is a bounded linear operator from a Banach space into itself such that
‖T‖ < 1, then I − T has a bounded inverse and the Neumann series

∑∞
k=0 T k converges

in the operator norm to (I − T )−1.

Theorem 5.4. If α = (α1, α2, . . . , αN−1) ∈ (Ck(I))N−1 and ‖αi‖k < (ai/2)k(1 + ‖Id − L‖)−1

for all i ∈ NN−1 thenDα
∆,L is an isomorphism (linear, bijective and bicontinuous map).

Proof. From Theorem 5.2,Dα
∆,L is bounded, linear and injective. From (5.1),

‖ f α − f ‖k ≤
K

1 − K
‖ f − L f ‖k

where K < (1 + ‖Id − L‖)−1 by the assumption on the scaling functions. Thus,

‖Dα∆,L − Id‖ ≤
K‖Id − L‖

1 − K
< 1.

From Lemma 5.3,Dα
∆,L has a bounded inverse, and the result follows. �
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6. Fractal basis for C k(I)

Let us now recall some definitions and results relating to Schauder bases.

Definition 6.1. We call ({xn}, { βn}) (or simply {xn}) a Schauder basis (or simply a
basis) for a Banach space X if for each x ∈ X there exist unique scalars ci = βi(x) such
that x =

∑∞
i=1 cixi (that is, the sequence of partial sums

∑M
i=1 cixi converges to x in

norm as M tends to infinity). Note that each βn is an element of the dual space X∗.
The partial sum operators, or natural projections, associated with the basis ({xn}, { βn})
are the mappings S N : X → X defined by S N(x) =

∑N
i=1 βi(x)xi. A basis ({xn}, { βn}) is

said to be interpolatory with nodes {tn} if, for each x ∈ X, its Nth approximation S N x
coincides with x at the nodes t1, t2, . . . , tN .

Definition 6.2. A countable family (en, e∗n)n∈N ⊂ X × X∗ is said to be (i) biorthogonal if
e∗n(em) = δm,n for all m, n ∈ N, (ii) fundamental or complete if span{en : n ∈ N} is dense
in X, and (iii) total if for each x ∈ X with e∗n(x) = 0 for all n ∈ N it follows that x = 0.
A biorthogonal, fundamental and total sequence (en, e∗n)n∈N is called a Markushevich
basis or simply an M-basis.

Remark 6.3. Every Schauder basis of a Banach space X is an M-basis for X.

Theorem 6.4 [5]. The space C(I) endowed with the supremum norm possesses a
Schauder basis of polygonal (piecewise linear) functions.

A system of polygonal functions {gm}
∞
m=0 forming a basis for C(I), called the Faber–

Schauder system, is constructed as follows. Consider an arbitrary countable sequence
of points {a = x0, c = x1, x2, . . . } that is everywhere dense in the interval I = [a, c]. Set
g0(x) ≡ 1 and g1(x) = (x − a)/(c − a) on [a, c]. For m > 1, divide the interval into m − 1
parts by the points x0, x1, . . . , xm−1 and choose the interval [xi, x j] that contains xm.
Set gm(xi) = gm(x j) = 0, gm(xm) = 1 and extend gm(x) linearly to [xi, xm] and [xm, x j].
Outside [xi, x j], set gm to be zero. Note that for f ∈ C(I), the partial sum projection
S N f of f coincides with the piecewise linear continuous function on [a, c] with nodes
x0, x1, . . . , xN interpolating f at those nodes. Thus, the Faber–Schauder system is an
interpolatory Schauder basis for C(I) with the node points {a = x0, c = x1, x2, . . . }.

The following theorem demonstrates the existence of a Schauder basis of fractal
functions for the space C(I).

Theorem 6.5 [10]. Consider a sequence of scale vectors (αm) with
∑∞

m=0 |α
m|∞ < ∞.

The system (gα
m

m )∞m=0, where gα
m

m is the affine fractal interpolation function with respect
to the same interpolation data as that of gm and scale vectors (αm), is a Schauder basis
for C(I).

Remark 6.6. Since gα
m

m interpolates gm at chosen partition points and {gm}
∞
m=0 is an

interpolatory Schauder basis for C(I), the system {gα
m

m }
∞
m=0 is an interpolatory Schauder

basis of fractal functions forC(I) which we refer to as a fractal Faber–Schauder system.
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Remark 6.7. The following easy and elegant construction of bases for Ck(I) seems to
be less widely known than it deserves. In fact, any Schauder basis in C(I) gives a
corresponding basis in the space Ck(I) (see [14] for details).

For simplicity, let us consider I = [0, 1]. Let ({φn}, {µn}) be any basis for C(I). Let
f1(x) = 1, γ1( f ) = f (0) and for n ≥ 1 let fn(x) =

∫ x
0 φn−1(t) dt and γn( f ) = µn−1( f ′) for

f ∈ C1(I), x ∈ I. Then ({ fn}, {γn}) is a basis for C1(I). One can obtain a basis for Ck(I)
by repeating the above process k times. Let

f1(x) = 1,
f2(x) = x,

fk(x) = xk−1/(k − 1)!,

fn(x) =

∫ x

0

∫ tk−1

0
. . .

∫ t2

0

∫ t1

0
φn−k(t) dt dt1 . . . dtk−1

for n = k + 1, k + 2, . . . and
γ1( f ) = f (0),
γ2( f ) = f (1)(0),
γk( f ) = f (k−1)(0),
γn( f ) = µn−k( f (k))

for n = k + 1, k + 2, . . . and f ∈ Ck(I), x ∈ I. Then ({ fn}, {γn}) is a basis for Ck(I).

The next theorem is a direct consequence of Theorem 5.1 and the fact that the bases
are preserved by topological isomorphisms.

Theorem 6.8. The space Ck(I) admits a Schauder basis, and hence in particular a
Markushevich basis, consisting of Ck-continuous fractal functions.

Proof. Let { fn} be a Schauder basis for Ck(I) with associated coefficient functionals
{ βn}. Consider a partition ∆ of the interval, the scaling functions αi, i ∈ NN−1 and
an operator L satisfying the conditions of Theorem 5.4 so that Dα

∆,L is a topological
isomorphism on Ck(I). Let f ∈ Ck(I). Then (Dα

∆,L)−1( f ) ∈ Ck(I) and for suitable linear
functionals { βn},

(Dα∆,L)−1( f ) =

∞∑
n=1

βn((Dα∆,L)−1( f )) fn.

By the continuity ofDα
∆,L,

f =

∞∑
n=1

βn((Dα∆,L)−1( f )) f αn .

To prove the unicity of the representation, let f =
∑∞

n=1 γn f αn be another representation
of f . From the continuity of (Dα

∆,L)−1 we see that (Dα
∆,L)−1( f ) =

∑∞
n=1 γn fn and hence

γn = βn((Dα
∆,L)−1( f )) for all n ∈ N. Thus, { f αn } is a Schauder basis for Ck(I). It can be
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further noted that if { βn} are the coefficient functionals associated with the Schauder
basis { fn} then the coefficient functionals associated with the corresponding fractal
Schauder basis { f αn } are given by { βn ◦ (Dα

∆,L)−1}. �

Remark 6.9. The existence of a Schauder basis {gαm}
∞
m=0 consisting of fractal functions

for C(I) is reported in Theorem 6.5. Therefore, it might be possible to prove
Theorem 6.8 by applying the ‘repeated integration’ method in Remark 6.7 to the
Schauder basis {gαm}

∞
m=0, keeping in mind that the integral of a FIF obtained from an

IFS with constant scalings is again a FIF. We adopted a different method because it is
not known whether the primitive of a fractal function with variable scalings is a fractal
function.

Proposition 6.10. Let (gn, g∗n)n∈N be an M-basis for Ck(I). For α = (α1, α2, . . . , αN−1) ∈
(Ck(I))N−1 with ‖αi‖k < ‖L‖−1(ai/2)k for all i ∈ NN−1, the system (gαn , h

∗
n)n∈N, where

h∗n = g∗n ◦ (Dα
∆,L)−1, is an M-basis forDα

∆,L(Ck(I)).

Proof. First, note that with the stated assumption on α, Dα
∆,L(Ck(I)) is a closed

subspace of the Banach space Ck(I) (cf. Theorem 5.2) and hence a Banach space.
Furthermore,Dα

∆,L is injective. For m, n ∈ N,

h∗n(gαm) = (g∗n ◦ (Dα∆,L)−1)(gαm) = g∗n(gm) = δm,n.

Therefore, (gαn , h
∗
n)n∈N is biorthogonal. Let h∗n(gα) = 0 for all n ∈ N. This implies

g∗n(g) = 0 for all n ∈ N, which in conjunction with the fact that (gn, g∗n)n∈N is an M-
basis gives g = 0, which in turn implies gα = 0. This shows that (gαn , h

∗
n)n∈N is total. Let

g ∈ Dα
∆,L(Ck(I)). Then there exists f ∈ Ck(I) such that g = Dα

∆,L( f ). Since (gn, g∗n)n∈N

is an M-basis for Ck(I),

g =Dα
∆,L( f ) =Dα

∆,L

(
lim

N→∞

N∑
i=1

kigi

)
= lim

N→∞

N∑
i=1

kigαi ,

implying that span{gαn : n ∈ N} =Dα
∆,L(Ck(I)). We conclude that

(gαn , h
∗
n)n∈N ⊂ D

α
∆,L(Ck(I)) × (Dα∆,L(Ck(I)))∗

is an M-basis forDα
∆,L(Ck(I)), completing the proof. �
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