
Bull. Aust. Math. Soc. 83 (2011), 470–485
doi:10.1017/S0004972710002017

CONVOLUTION OF ORBITAL MEASURES IN
SYMMETRIC SPACES

BOUDJEMÂA ANCHOUCHE and SANJIV KUMAR GUPTA ˛

(Received 5 September 2010)

Abstract

Let G/K be a noncompact symmetric space, Gc/K its compact dual, g= k⊕ p the Cartan decomposition
of the Lie algebra g of G, a a maximal abelian subspace of p, H be an element of a, a = exp(H), and
ac = exp(i H). In this paper, we prove that if for some positive integer r , νr

ac
is absolutely continuous

with respect to the Haar measure on Gc, then νr
a is absolutely continuous with respect to the left Haar

measure on G, where νac (respectively νa) is the K -bi-invariant orbital measure supported on the double
coset K ac K (respectively K aK ). We also generalize a result of Gupta and Hare [‘Singular dichotomy
for orbital measures on complex groups’, Boll. Unione Mat. Ital. (9) III (2010), 409–419] to general
noncompact symmetric spaces and transfer many of their results from compact symmetric spaces to their
dual noncompact symmetric spaces.
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1. Introduction

In [1], Dunkl proved that the convolution of the surface measure of the sphere in
Rn with itself is absolutely continuous with respect to the Lebesgue measure in Rn.

Ragozin [11, 12] generalized Dunkl’s result to the setup of symmetric spaces; more
precisely, he proved [12, Theorem 2.5] that if G/K is a Riemannian symmetric
space and {νi }

dim G/K
i=1 are K -bi-invariant continuous zonal measures on G, then the

convolution ν1 ∗ · · · ∗ νdim G/K is absolutely continuous with respect to the left Haar
measure on G, and he conjectured [12, p. 375] that dim G/K may be improved
to [(dim G/K − 1)/j] + 1, where j is the minimum dimension of the nonfinite
K -orbits in G/K . In a series of papers, Hare and the second author of this paper
have partially improved Ragozin’s result mentioned above. In [6, Theorem 3.1] they
proved that if a ∈ SU(n)\NSU(n)(SO(n)), where NSU(n)(SO(n)) is the normalizer
of SO(n) in SU(n), and νa = mSO(n) ∗ δa ∗ mSO(n), where mSO(n) denotes the Haar
measure on SO(n) and δa denotes the point mass at a, then νn

a is absolutely continuous
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with respect to the Haar measure on SU(n). Moreover, they proved that there
exists a ∈ SU(n)\NSU(n)(SO(n)) such that νn−1

a is singular with respect to the
Haar measure on SU(n). Note that dim SU(n)/SO(n)= (n2

+ n − 2)/2. In [4,
Theorem 3.1] they proved that for a compact symmetric space Gc/K , there is a dense
subset D ⊆ Gc such that if a1, a2 ∈ D, then νa1 ∗ νa2 is absolutely continuous with
respect to Haar measure on Gc. Finally, in [2, Theorem 4.1], they proved if Gc is a
compact, connected, simple, classical Lie group, GC

c the complexification of Gc, gc
the Lie algebra of Gc, and H ∈ gc is such that a = exp(iH) ∈ GC

c \NGC
c
(Gc), then νa

is absolutely continuous with respect to the left Haar measure on GC
c if and only if µr

H
is absolutely continuous with respect to the Lebesgue measure on gc, where µH is the
Gc-invariant orbital measure supported on the adjoint orbit of H in gc. The aim of this
paper is to extend some of the results mentioned above.

Our main theorem, Theorem 3.1 below, is an extension of Gupta and Hare’s result
in [2, Theorem 4.1] to general symmetric spaces (the notation is as in Section 2).

Combining the main theorem with some results of Hare and the second author,
which were mentioned above, we obtain several interesting results, which will be listed
in Section 4. In order not to duplicate the results, we will skip those results and invite
the interested reader to go directly to that section.

This paper is organized as follows. In Section 2 we collect some basic facts about
symmetric spaces, restricted roots, and orbital measures. In Section 3 we prove the
main theorem. In Section 4 we extend some of the results obtained in [4, 6] to the
noncompact symmetric spaces using the main theorem. In the final section we show
that the inequality of the general transference result Theorem 3.1(1) can be strict and
suggest some open problems.

2. Notation and basic facts

Let M be a symmetric space of noncompact type and let G be the connected
component of the isometry group of M which contains the identity. Then G is a
semisimple Lie group with trivial center which acts transitively on M . Fix a point
p ∈ M and let K be the subgroup of G that fixes p. Then K is a compact subgroup of
G and M is diffeomorphic to G/K via the map

9 : G/K −→ M

gK 7−→ g · p.

Throughout what follows we will identify M with G/K , and put M = G/K . Let g be
the Lie algebra of G, θ : g−→ g be a Cartan involution, and let

k= {X ∈ g | θ(X)= X} and p= {X ∈ g | θ(X)=−X}.

The decomposition
g= k⊕ p
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is called the Cartan decomposition of the Lie algebra g. It is easy to check that

[k, k] ⊆ k, [k, p] ⊆ p, [p, p] ⊆ k.

Inside the complexification gC of g we consider the subset

gc = k⊕ ip.

The Lie bracket of g induces a Lie bracket on the complexification on gC, and therefore
gc inherits a Lie bracket from gC, which makes gc a real subalgebra of gC. Let Gc be
a Lie group with Lie algebra gc. Then Gc is a compact Lie group and Mc = Gc/K is a
compact symmetric space, called the compact dual of M = G/K .

Fix a maximal abelian (as a subalgebra of g) subspace a of p, and denote by a∗ its
dual. For α ∈ a∗, α 6= 0, consider the set

gα = {X ∈ g | [H, X ] = α(H)X for all H ∈ a}.

The set 6 of restricted roots is defined by

6 = {α ∈ a∗ | gα 6= 0}.

Then it is very well known that 6 is finite and nonempty, and we have the
decomposition

g= g0 ⊕
∑
α∈6

gα,

where
g0 = {X ∈ g | [H, X ] = 0 for all H ∈ a} = a⊕m,

with
m= Zk(a)= {X ∈ k | [X, Y ] = 0, for all Y ∈ a} .

It is easy to check that

[gα, gβ ] ⊆ gα+β , θgα = g−α, [Xα, θXα] = B(Xα, θXα)Hα,

where Hα is defined by B(H, Hα)= α(H), in which B is the Killing form.
Clearly, we have

k= span{X + θX | X ∈ gα, α ∈6} ⊕m.

and
p= span{X − θX | X ∈ gα, α ∈6} ⊕ a.

Since on a compact Lie group left Haar measures coincide with right Haar
measures, and since all left Haar measures are, up to a constant, the same on a fixed
Lie group, throughout the paper we will fix Haar measures on Gc and K and a left
Haar measure on G and we will talk of ‘the’ Haar measure on Gc and K and ‘the’ left
Haar measure on G. A basic reference on symmetric spaces is [8].
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2.1. Compact Lie groups seen as symmetric spaces. Let Gc be a compact Lie
group and consider the map

θ : Gc × Gc −→ Gc × Gc
(g1, g2) 7−→ (g2, g1).

Then θ is an involution, that is, θ2
= id, with fixed point set

1Gc = {(g, g) | g ∈ Gc},

which can be clearly identified with Gc. Then the compact group Gc can be identified
with the symmetric space (Gc × Gc)/1Gc via the map

ρ : Gc −→ (Gc × Gc)/1Gc

g 7−→ (g, e)1Gc ,
(2.1)

which is easily seen to be a diffeomorphism.
Now let us describe the dual of Gc, seen as a symmetric space. Put G̃ = Gc × Gc

and let gc (respectively g̃) be the Lie algebra of Gc (respectively G̃). Then the
decomposition of g̃ under the action of dθ is given by

g̃= k⊕ p

where
k=1gc = {(X, X) | X ∈ gc} and p= {(X,−X) | X ∈ gc}.

Let
g̃dual = k⊕ ip.

Then g̃dual is a real Lie subalgebra of the complexification

g̃C
= g̃⊕ i g̃

of the Lie algebra g̃. It is easy to prove that g̃dual is isomorphic to gC
c via the map

σ : g̃dual = k⊕ ip −→ gC
c

(X, X)+ i(Y,−Y ) 7−→ X + iY.

Then the Lie group with Lie algebra g̃dual can be identified with the complexification
GC

c of Gc. Consider the involution

τ : gC
c = gc ⊕ igc −→ gC

c
X + iY 7−→ X − iY,

and denote also by τ the involution on GC
c induced by the involution τ of gC

c . The fixed
point of τ on GC

c is Gc. Therefore GC
c /Gc is a symmetric space, dual of the compact

Lie group Gc, seen as a symmetric space. For example, the dual of SU(n), seen as a
symmetric space, is SL(n, C)/SU(n). Let

Ca = {gag−1
| g ∈ Gc}

be the orbit of an element a ∈ Gc under conjugation. Under the diffeomorphism (2.1),
Ca corresponds to the double coset 1G(a, e)1G , which we will identify (after
identifying 1Gc with Gc), with Gc(a, e)Gc.
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2.2. Orbital measures. Before introducing the orbital measures which will be of
interest in this paper, let us first recall the definition of the convolution of positive
measures on a Lie group. Let ν1, . . . , νr be r positive measures on a Lie group G
(actually G need only be a locally compact group). Then the convolution ν1 ∗ · · · ∗ νr
of the measures ν1, . . . , νr is defined by

〈ν1 ∗ · · · ∗ νr , f 〉 =
∫

G
f (g) d(ν1 ∗ · · · ∗ νr )(g)

=

∫
G
· · ·

∫
G

f (g1 · · · gr ) dν1(g1) · · · dνr (gr ); f ∈ Cc(G).

If νi is supported on Si , i = 1, . . . r , then the measure ν1 ∗ · · · ∗ νr is supported on
S1 · · · Sr , and in this case

〈ν1 ∗ · · · ∗ νr , f 〉 =
∫

S1

dν1(g1)

∫
S2

dν2(g2)

· · ·

∫
Sr

f (g1 · · · gr ) dνr (gr ); f ∈ Cc(G).

We now define four different types of orbits and continuous singular measures
supported on them.

(1) Fix a maximal torus T in Gc. Let h ∈ Gc, and let Ch be the conjugacy class
containing h, that is,

Ch = {ghg−1
: g ∈ Gc}.

Every conjugacy class contains an element in the maximal torus T . Conjugacy
classes are homogeneous submanifolds of proper dimension in Gc (as their co-
dimension in Gc is at least rank(Gc)) and thus have Haar measure zero.
For an element h ∈ Gc, the orbital measure, νh , supported on Ch , is the Gc-
invariant measure defined by

〈νh, f 〉 =
∫

Gc

f dνh

=

∫
Gc

f (ghg−1) dmGc(g); f ∈ C(Gc)

where mGc is the Haar measure on Gc. Orbital measures νh are singular (with
respect to the Haar measure mGc on Gc [10]), probability measures, and are
continuous measures if and only if h does not belong to the center Z(Gc) of Gc.
They are also central measures, meaning they commute with all other measures
under convolution.

(2) The group Gc acts on its Lie algebra gc by the adjoint action. Let H ∈ gc and
OH denote its adjoint orbit,

OH = {Ad(g)H : g ∈ Gc}.
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Let t be the Lie algebra of the maximal torus T mentioned above. Every adjoint
orbit OH contains an element in the Cartan subalgebra t of the Lie algebra gc.
Adjoint orbits are submanifolds of proper dimension in gc [13] (as their co-
dimension in gc is at least rank(gc) and so have the Lebesgue measure zero.
For any H ∈ gc, the Gc invariant orbital measure µH , supported on OH , is
given by

〈µH , f 〉 =
∫

gc

f dµH

=

∫
Gc

f (Ad(g)H) dmGc(g); f ∈ C(gc).

Orbital measures µH are singular (with respect to Lebesgue measure on gc) and
are continuous measures if and only if H 6= 0.

(3) Let H ∈ p. The orbit of H under the adjoint action of K on p, denoted by OK ,H ,
is given by

OK ,H = {Ad(k)H | k ∈ K }.

Since p=
⋃

k∈K Ad(k)a, every orbit OK ,H contains an element of a. Orbits
OK ,H are of proper dimension in p (as their co-dimension in p is greater than or
equal to the rank of the noncompact symmetric space M).
For H ∈ p, define a K -invariant measure µK ,H supported on OK ,H as follows:
for f ∈ C(p), we put

〈µK ,H , f 〉 :=
∫

K
f (Ad(g)H) dmK (g),

where mK is the Haar measure of K . It is clear that µK ,H is a singular measure
(with respect to Lebesgue measure on p) and is continuous if and only if H 6= 0.

(4) Let G/K be a symmetric space (not necessarily noncompact). Consider the
natural action of K × K on G defined by

χ : (K × K )× G −→ G
((k1, k2), a) 7−→ k1ak2.

The orbit of a point a ∈ G is the double coset space K aK , which we can assume
without loss of generality to be of the form K exp(H)K , for some H ∈ a [9,
p. 485]. Double cosets K aK are of proper dimension in G (as their co-dimension
in G is greater than or equal to the rank of the symmetric space G/K ). Each orbit
is equipped with a unique K × K invariant (bi-K -invariant) measure νa , defined
as follows: for f ∈ C(G), we put

〈νa, f 〉 =
∫

G
f (g) dνa(g)

=

∫
K

∫
K

f (k1ak2) dmK (k1) dmK (k2).
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The set of the measures νa is a Banach algebra under convolution and is denoted
by M(K\G/K ). It can be seen that νa = mK ∗ δa ∗ mK , where δa denotes the
point mass at a. It is clear that νa is singular with respect to the left Haar measure
on the group G. Clearly, νa is continuous if and if only a is not in the normalizer
of K in G.

3. Convolution of orbital measures in symmetric spaces

Let M = G/K be a noncompact Riemannian symmetric space and Gc/K its
compact dual. In this section we give a proof of our main theorem which consists
of two parts: the first describes a transference result from a compact symmetric space
to its dual, and the second generalizes Gupta and Hare’s result in [2, Theorem 4.1] to
general symmetric spaces.

THEOREM 3.1. Let H be an element of a, H 6= 0, a = exp(H), ac = exp(iH), and
let

na
def
:=min{r ∈ N | νr

a � mG},

nac

def
:=min{r ∈ N | νr

ac
� mGc},

n(K , a)
def
:=min{r ∈ N | µr

K ,H � µp},

where the symbol ‘�’ means ‘is absolutely continuous with respect to’, and mG
(respectively mGc ; µp) denotes the left Haar measure on G (respectively Haar measure
on Gc; Lebesgue measure on p). Then:

(1) na ≤ nac ;
(2) na = n(K , a).

REMARK 3.2. In Section 5 it will be shown that the inequality in part (1) of
Theorem 3.1 can be strict.

Before proving the theorem, we need the following preliminary results.

LEMMA 3.3. Let H ∈ a, and let Xα ∈ gα . Then:

(1) Ad(exp(iH))(Xα ± θXα)= cos(α(H))(Xα ± θXα)+ i sin(α(H))(Xα ∓ θXα);

(2) Ad(exp(H))(Xα ± θXα)= sinh(α(H))(Xα ∓ θXα)+ cosh(α(H))(Xα ± θXα).

PROOF. (1) From the identities

Ad(exp(i H))(Xα)= exp(ad(i H))Xα = eiα(H)Xα,

Ad(exp(i H))(θXα)= exp(ad(i H))θXα = e−iα(H)(θXα),

we deduce that

Ad(exp(i H))(Xα ± θXα)

= exp(ad(i H))(Xα ± θXα)= eiα(H)Xα ± e−iα(H)θXα
= cos(α(H))(Xα ± θXα)+ i sin(α(H))(Xα ∓ θXα).
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(2) Similarly, from the identities

Ad(exp(H))(Xα) = eα(H)Xα,

Ad(exp(H))(θXα) = e−α(H)(θXα),

we deduce that

Ad(exp(H))(Xα ± θXα) = exp(ad(H))(Xα ± θXα)

= eα(H)Xα ± e−α(H)θXα
= sinh(α(H))(Xα ∓ θXα)+ cosh(α(H))(Xα ± θXα).

This concludes the proof. 2

Put

V(ac, k2, . . . , kn)= k+ Ad(ac)k+ Ad(ack2ac)k+ · · · + Ad(ack2ac · · · knac)k,

V(a, k2, . . . , kn)= k+ Ad(a)k+ Ad(ak2a)k+ · · · + Ad(ak2a · · · kna)k,

and

W(ac, k2, . . . , kn) = k+ i(Tac + Ad(ack2)Tac

+ Ad(ack2ack3)Tac + · · · + Ad(ack2 · · · ackn)Tac),

W(a, k2, . . . , kn) = k+ Ta + Ad(ak2)Ta

+ Ad(ak2ak3)Ta + · · · + Ad(ak2 · · · akn)Ta,

where

Tac = span{(Xα − θXα) | α restricted root such that α(H) 6≡ 0(mod π)},

Ta = span{(Xα − θXα) | α restricted root such that α(H) 6= 0}.

PROPOSITION 3.4. Let V(ac, k2, . . . , kn) and W(ac, k2, . . . , kn) be as above. Then:

(1) V(ac, k2, . . . , kn)=W(ac, k2, . . . , kn);
(2) V(a, k2, . . . , kn)=W(a, k2, . . . , kn).

PROOF. Let α ∈6 and M ∈m. From Lemma 3.3(1),

Ad(exp(i H))(Xα + θXα + M) = cos(α(H))(Xα + θXα)

+ i sin(α(H))(Xα − θXα).

Hence
Ad(ac)k⊆ k+ i Tac . (3.1)

Consequently

Ad(ack2ac)k ⊆ Ad(ack2)(k+ i Tac)

⊆ k+ i(Tac + Ad(ack2)(Tac)).
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By induction we get

V(ac, k2, . . . , kn)⊆W(ac, k2, . . . , kn). (3.2)

Again, from Lemma 3.3,

i sin(α(H))(Xα − θXα) = −cos(α(H))(Xα + θXα)
+ Ad(exp(i H))(Xα + θXα).

(3.3)

Therefore
k+ i Tac ⊆ k+ Ad(ac)k.

From (3.3), we deduce that

i sin(α(H)) Ad(ack2)(Xα − θXα)

= Ad(ack2)[−cos(α(H))(Xα + θXα)+ Ad(exp(i H))(Xα + θXα)].

Hence
iAd(ack2)Tac ⊆ Ad(ac)k+ Ad(ack2ac)k.

Then
W(ac, k2)⊆ V(ac, k2).

By induction,
W(ac, k2, . . . , kn)⊆ V(ac, k2, . . . , kn). (3.4)

Part (1) of the proposition is a consequence of (3.2) and (3.4).
The proof of part (2) of the proposition follows the same lines. 2

Let

Fc(a, k2, . . . , kn)= k+ i(Ta + Ad(k2)Ta + Ad(k2k3)Ta + · · · + Ad(k2 · · · kn)Ta)

and

F(a, k2, . . . , kn)= k+ Ta + Ad(k2)Ta + Ad(k2k3)Ta + · · · + Ad(k2 · · · kn)Ta .

COROLLARY 3.5.

(1) V(ac, k2, . . . , kn)⊆ Fc(a, k2, . . . , kn).
(2) V(a, k2, . . . , kn)= F(a, k2, . . . , kn).

REMARK 3.6. The inclusion in (1) of Corollary 3.5 is strict as will be seen in
Section 5.

PROOF. (1) By Proposition 3.4, it is enough to prove that

W(ac, k2, . . . , kn)⊆ Fc(a, k2, . . . , kn).

Then
Ad(k2)(Xα − θXα)=

∑
β∈6

cβ(Xβ − θXβ)+ X (3.5)
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for some X ∈ a depending on k2 and α. Combining Lemma 3.3 and (3.5) gives

iAd(ack2)(Xα − θXα) = iAd(ac)

(∑
β∈6

cβ(Xβ − θXβ)+ X

)
= i

∑
β∈6

cβ Ad(ac)(Xβ − θXβ)+ iAd(ac)X

= −

∑
β∈6

cβ sin β(H)(Xβ + θXβ)

+ i
∑
β∈6

cβ cos β(H)(Xβ − θXβ)+ i X.

(3.6)

Combining (3.5) and (3.6), we get

iAd(ack2)(Xα − θXα)− iAd(k2)(Xα − θXα)

=−

∑
β∈6

cβ sin β(H)(Xβ + θXβ)

+ i
∑
β∈6

cβ(cos β(H)− 1)(Xβ − θXβ)

∈ k+ i Ta .

Therefore
iAd(ack2)Ta ⊆ k+ i(Ta + Ad(k2)Ta). (3.7)

Since Tac ⊆ Ta , it follows that

iAd(ack2)Tac ⊆ k+ i(Ta + Ad(k2)Ta). (3.8)

From (3.7) and (3.8) we deduce that

iAd(ack2ack3)Tac = Ad(ack2)(iAd(ack3)Tac)

⊆ k+ i(Ta + Ad(k2)Ta + Ad(k2k3)Ta).

By induction, we get

W(ac, k2, . . . , kn)⊆ Fc(a, k2, . . . , kn).

Hence part (1) of the corollary.
(2) Using (3.5) and Lemma 3.3,

Ad(ak2)(Xα − θXα)− Ad(k2)(Xα − θXα)

=

∑
β∈6

cβ(cosh β(H)− 1)(Xβ − θXβ)

+

∑
β∈6

cβ sinh β(H)(Xβ + θXβ) ∈ k+ Ta .

Therefore

Ad(ak2)Ta ⊆ k+ Ta + Ad(k2)Ta and Ad(k2)Ta ⊆ k+ Ta + Ad(ak2)Ta . (3.9)
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Thus
V(a, k2)= F(a, k2).

From arguments similar to Corollary 3.5(1), we obtain

V(a, k2, k3)⊆ F(a, k2, k3).

Also, using (3.9), we get

F(a, k2, k3) ⊆ k+ Ta + Ad(ak2)Ta + Ad(ak2) Ad(k3)Ta

⊆ k+ Ta + Ad(ak2)Ta + Ad(ak2)(k+ Ta + Ad(ak3)Ta)

= V(a, k2, k3).

Hence
V(a, k2, k3)= F(a, k2, k3).

Continuing inductively, we get

V(a, k2, . . . , kn)= F(a, k2, . . . , kn).

This concludes the proof. 2

PROPOSITION 3.7. Let G/K be a symmetric space and a1, . . . , ar ∈ G. Suppose
that νa1, . . . , νar are the orbital measures on G supported on the double cosets
K a1K , . . . , K ar K . Then:

(1) νa1 ∗ · · · ∗ νar is absolutely continuous with respect to the left Haar measure on
G if and only if the function 9 given by

9 : K r+1
−→ G

(k1, . . . , kr+1) 7−→ k1a1k2 · · · kr ar kr+1

has full rank at some point (k1, . . . , kr+1) ∈ K r+1;
(2) for X1, . . . , Xr+1 ∈ k and (k1, . . . , kr+1) ∈ K r+1,

(d9)(k1,...,kr+1)(X1, . . . , Xr+1)

= X1 + Ad(k1a1)X2 + · · · + Ad(k1a1 · · · kr ar )Xr+1.

PROOF. (1) Ragozin [12, Theorem 2.5] proved that if the rank of 9 is equal to
the dimension of G at one point (k1, k2, . . . , kr+1) in K r+1, then νa1 ∗ · · · ∗ νar is
absolutely continuous. Conversely, if rank 9 is less than the dimension of G at every
(k1, k2, . . . , kr+1), then Sard’s theorem says the measure of the image of 9 is zero.
But the image is the product of the double cosets, K a1K · · · K ar K , which supports
the measure νa1 ∗ · · · ∗ νar , and hence this measure is singular.

(2) Let X1 be an element of Tk1 K ∼= k, and f a smooth function in a neighborhood
of k1a1k2a2 · · · kr ar kr+1. Then

d9(k1,...,kr+1)(X1, 0, . . . , 0) f =
d

dt
f (exp(t X1)k1a1 · · · kr ar kr+1)

∣∣∣∣
t=0

= X1 f.
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Similarly, for X2 an element of Tk2 K ∼= k, and f as above,

d9(k1,...,kr+1)(0, X2, . . . , 0) f

=
d

dt
f (k1a1 exp(t X2)k2a2 · · · kr ar kr+1)

∣∣∣∣
t=0

=
d

dt
f (exp(Ad(k1a1)t X2)k1a1k2a2 · · · kr ar kr+1)

∣∣∣∣
t=0

= Ad(k1a1)X2.

Hence
d9(k1,...,kr+1)(0, X2, . . . , 0)= Ad(k1a1)X2.

By induction, we get

d9(k1,...,kr+1)(0, . . . , 0, X i , 0, . . . , 0)= Ad(k1a1 · · · ki−1ai−1)X i .

Therefore

d9(k1,...,kr+1)(X1, X2, . . . , Xr+1)

= X1 + Ad(k1a1)X2 + · · · + Ad(k1a1 · · · ki−1ai−1)X i + · · ·

+ Ad(k1a1 · · · kr−1ar−1)Xr + Ad(k1a1 · · · kr ar )Xr+1.

This completes the proof. 2

REMARK 3.8. Note that d9(k1,...,kr+1) is independent of kr+1.

Our next proposition is similar to Proposition 3.7.

PROPOSITION 3.9. Let H1, . . . , Hr ∈ p and suppose that µK ,H1, . . . , µK ,Hr are the
orbital measures on p supported on the orbits OK ,Hi . Then:

(1) µK ,H1 ∗ · · · ∗ µK ,Hr is absolutely continuous with respect to the Lebesgue
measure on p if and only if the function

ψ : OK ,H1 × · · · × OK ,Hr −→ p
(X1, . . . , Xr ) 7−→ X1 + · · · + Xr

has full rank at some point (X1, . . . , Xr ) ∈ OK ,H1 × · · · × OK ,Hr ;
(2) letting Y ∈ OK ,H , the tangent space TY (OK ,H ) of OK ,H at Y is {[X, Y ] | X ∈ k};
(3) letting Y1, . . . , Yr ∈ k, (X1, . . . , Xr ) ∈ OK ,H1 × · · · × OK ,Hr , we have

(dψ)(X1,...,Xr ) : TX1(OK ,H1)× · · · × TXr (OK ,Hr )−→ p

([X1, Y1], . . . , [Xr , Yr ]) 7−→ [X1, Y1] + · · · + [Xr , Yr ].

PROOF. (1) This is similar to the proof of Proposition 3.7.
(2) Let X ∈ k. Then the curve γ (t)= Ad(exp(t X))Y is inside OK ,H and passes

through Y at t = 0. Since the derivative of γ at t = 0 is [X, Y ], we deduce that

TY (OK ,H )= {[X, Y ] | X ∈ k}.

(3) This follows from (2). 2
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PROOF OF THEOREM 3.1. (1) Suppose that there exists a positive integer r such
that νr

ac
is absolutely continuous with respect to the Haar measure on Gc. Then, by

Proposition 3.7, we deduce that there exist (k1, k2, . . . , kr ) such that

k+ Ad(k1ac)k+ Ad(k1ack2ac)k+ · · · + Ad(k1ac · · · kr ac)k= gc. (3.10)

The fact that Ad(k−1
1 )k= k, along with the definition of V(ac, k2, . . . , kn), shows

that (3.10) is equivalent to

V(ac, k2, . . . , kn)= gc. (3.11)

From Corollary 3.5(1) and (3.11) we get

gc = V(ac, k2, . . . , kn)⊆ Fc(a, k2, . . . , kn). (3.12)

From (3.12) and the definition of V(ac, k2, . . . , kn) it follows that

gc = k+ i(Ta + Ad(k2)Ta + Ad(k2k3)Ta + · · · + Ad(k2 · · · kn)Ta).

Hence
p= Ta + Ad(k2)Ta + Ad(k2k3)Ta + · · · + Ad(k2 · · · kn)Ta .

Consequently

F(a, k2, . . . , kn) = k+ Ta + Ad(k2)Ta + Ad(k2k3)Ta + · · · + Ad(k2 · · · kn)Ta

= g.

Combining Corollary 3.5(2), and Proposition 3.7(2), we deduce that νr
a is absolutely

continuous with respect to the left Haar measure on G. Therefore na ≤ nac .

(2) µr
K ,H is absolutely continuous with respect to the Lebesgue measure on p if and

only if there exist points x1, . . . , xr ∈ K , such that for i = 1, . . . , r, X i = Ad(xi )H
and

TX1(OK ,H )+ · · · + TXr (OK ,H )= p. (3.13)

Since TX i (OK ,H )= Ad(xi )TH (OK ,H ) for i = 1, . . . , r , Equation (3.13) holds if and
only if

Ad(x1)TH (OK ,H )+ · · · + Ad(xr )(OK ,H )= p. (3.14)

Without loss of generality we can assume that x1 = e in the identity (3.13). Let
k2 = x2, k3 = k−1

2 x2 and kr = k−1
r−1 · · · k

−1
2 xr . Using (3.14), Corollary 3.5 and the

observation TH (OK ,H )= Ta , we deduce that (3.14) holds if and only if

k+ Ta + Ad(k2)Ta + · · · + Ad(k2 · · · kr )Ta = g. (3.15)

But (3.15) holds if and only if νr
a is absolutely continuous with respect to the left Haar

measure on G. 2
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The following corollary of Theorem 3.1(2) was proved by second author and Hare
in [2, Theorem 4.1].

COROLLARY 3.10. Let Gc be a compact connected simple Lie group and gc be its
Lie algebra. Let t be a Cartan subalgebra of gc, H ∈ t, a = exp(i H) and r a positive
integer. Then νr

a is absolutely continuous with respect to the left Haar measure on GC
c

if and only if µr
H is absolutely continuous with respect to Lebesgue measure on gc.

PROOF. Consider the noncompact symmetric space GC
c /Gc. In this case p is igc and

a is it. Therefore the corollary follows from Theorem 3.1(2). 2

4. Transference of results

In this section we transfer results of the second author with Hare, mentioned in the
introduction, to noncompact symmetric spaces. Before we state our first transference
result, we need the following definition.

DEFINITION 4.1. Given a restricted root α ∈6 and a ∈ exp a, say a = exp(H) for
H ∈ a, we set α(a)= α(H) (this is well defined, as exp is a diffeomorphism from a
onto exp(a)). We call the element a ∈ exp a regular if α(a) 6= 0 for all α ∈6. We say
that ac = exp(i H) is regular if α(a) 6= 0 (mod π) for all α ∈6. It is clear from the
definitions of regular elements that if ac is regular then a is also regular.

The following theorem is proved in [4, Theorem 3.1].

THEOREM 4.2. Suppose that A, B ∈ a, and put ac = exp(i A) and bc = exp(iB). If ac
and bc are regular elements in Gc and νac , νbc are the associated K -orbital measures,
then νac ∗ νbc is absolutely continuous with respect to the Haar measure on Gc.

Using Theorems 3.1(1) and 4.2, we have the following analogue of Theorem 4.2 on
noncompact symmetric spaces.

THEOREM 4.3. Let A, B ∈ a, a = exp(A), b = exp(B), and let νa, νb be the
associated K -orbital measures on G. If a and b are regular elements in G then νa ∗ νb
is absolutely continuous with respect to the left Haar measure on G.

PROOF. Let t0 ∈ R be such that ac(t0)= exp(i t0 A) and bc(t0)= exp(i t0 B) are regular
elements in Gc. Then by Theorem 4.2, νac(t0) ∗ νbc(t0) is absolutely continuous with
respect to the Haar measure on Gc. Therefore by Theorem 3.1(1), νa(t0) ∗ νb(t0) is
absolutely continuous on G with respect to the left Haar measure on G. Hence by
Theorem 3.1(2),µK ,t0 A ∗ µK ,t0 B is absolutely continuous with respect to the Lebesgue
measure on p. So, OK ,t0 A + OK ,t0 B = t0(OK ,A + OK ,B) contains an open set in it
and therefore (OK ,A + OK ,B) has an open set in it. Hence µK ,A ∗ µK ,B is absolutely
continuous with respect to the Lebesgue measure on p. Therefore νa ∗ νb is absolutely
continuous with respect to the left Haar measure on G by Theorem 3.1(2). 2
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For the next result, take G = SL(n, R) and K = SO(n). Then Gc = SU(n). For
a ∈ G\NG(K ) (respectively ac ∈Gc\NGc(K )), Ragozin [12, Theorem 2.5] had shown
that νr

a ∈ L1(G) (respectively νr
ac
∈ L1(Gc)) for r = dim G/K = (n2

+ n − 2)/2. He
had speculated that dim G/K is not sharp, but had conjectured that (approximately)
r = n/2 would work [12, p. 375]. Improving upon the result of Ragozin, the following
result was proved in [6, Theorem 3.1].

THEOREM 4.4. If A ∈ a, a = exp(A), and ac is not in the normalizer of SO(n) in
SU(n), then νn

ac
is absolutely continuous with respect to the Haar measure on SU(n).

Using Theorems 3.1(1) and 4.4, we obtain the following analogue of Ragozin’s
result for the noncompact symmetric space SL(n, R)/SO(n).

THEOREM 4.5. If A ∈ a, a = exp(A), and a is not in the normalizer of SO(n) in
SL(n, R), then νn

a is absolutely continuous with respect to the left Haar measure on
SL(n, R).

PROOF. The proof is similar to the proof of Theorem 4.3 and is left to the reader. 2

5. Final remarks

The aim of this section is to show that the inequality in Theorem 3.1(1) can be strict.
For this let Gc = SO(2n + 1), the group of (2n + 1)× (2n + 1) orthogonal matrices
of determinant 1. Then the complexification GC

c of Gc is equal to

SO(n, C)= {g ∈ SL(n, C) : gt g = 1}.

As was explained in Section 2.1, the dual of the compact Lie group Gc = SO(2n + 1),
seen as a symmetric space, is GC

c /Gc. Let Ei j denote the (2n + 1)× (2n + 1) matrix
with (i, j)th entry 1 and all other entries zero. Set H =

∑n
i=1 iπ(E2i−1,2i − E2i,2i−1),

a = exp(H) and ac = exp(iH).
It is shown in [5, Theorem 6.8] (respectively [7, Theorem 8.2] or [3, Theorem 6.6])

that ν(2n−1)
ac is singular with respect to the Haar measure on Gc, (respectively µn

i H is
absolutely continuous with respect to Lebesgue measure on the Lie algebra so(2n + 1)
of SO(2n + 1)).

Also, it follows from Corollary 3.10 that νn
a is absolutely continuous with respect

to the left Haar measure on SO(n, C) if and only if µn
i H is absolutely continuous with

respect to Lebesgue measure on so(2n + 1). Therefore νn
a is absolutely continuous

with respect to the left Haar measure on SO(n, C) but νn
ac

is singular with respect to
the Haar measure on SO(2n + 1). This shows that inequality in Theorem 3.1(1) can
be strict.

OPEN PROBLEM. Let G/K be a noncompact symmetric space. Let H ∈ a and r be
a positive integer. It is shown in [2, Theorem 3.1] that for a noncompact symmetric
space GC

c /Gc, µr
gc,H
∈ L2(gc) if and only if νr

exp(H) ∈ L2(GC
c ). It is an open problem

whether µr
K ,H ∈ L2(p) if and only if νr

exp(H) ∈ L2(G).
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