Quotients of Essentially Euclidean Spaces

Tadeusz Figiel and William Johnson

Abstract. A precise quantitative version of the following qualitative statement is proved: If a finitedimensional normed space contains approximately Euclidean subspaces of all proportional dimensions, then every proportional dimensional quotient space has the same property.

1 Introduction

Given a function λ from (0,1) into the positive reals, a finite-dimensional normed space E is called λ essentially Euclidean provided that for every $\epsilon>0$ there is a subspace E_{ϵ} of E that has dimension at least $(1-\epsilon) \operatorname{dim} E$ and the Euclidean distortion $c_{2}\left(E_{\epsilon}\right)$ of E_{ϵ} is $\leq \lambda(\epsilon)$; that is, E_{ϵ} is $\lambda(\epsilon)$-isomorphic to the Euclidean space of its dimension. A family \mathcal{F} of finite-dimensional spaces is λ essentially Euclidean provided that each space in \mathcal{F} is λ essentially Euclidean, and \mathcal{F} is called essentially Euclidean if it is λ essentially Euclidean for some function λ, as above. Litwak, Milman, and Tomczak-Jaegermann [LMT-J] considered the concept of essentially Euclidean, but what we are calling an essentially Euclidean family they would term a 1-ess-Euclidean family. The most studied essentially Euclidean families are the class of all finite-dimensional spaces that have cotype two constant less than some numerical constant, and the set of all finite-dimensional subspaces of a Banach space that has weak cotype two [Pis, Chapter 10]. However, if one is interested in the proportional subspace theory of finite-dimensional spaces, cotype two and weak cotype two are unnecessarily strong conditions, because they are conditions on all subspaces rather than on just subspaces of proportional dimension. For example, let $0<\alpha<1$ and let \mathcal{F}_{α} be the family $\left\{\ell_{2}^{n-n^{\alpha}} \oplus_{2} \ell_{\infty}^{n^{\alpha}}: n=1,2,3, \ldots\right\}$ (throughout, we use the convention, standard in the local theory of Banach spaces, that when a specified dimension is not a positive integer, it should be adjusted to the next larger or smaller positive integer, depending on context). The cotype two constants of the spaces in \mathcal{F}_{α} are obviously unbounded and it is also well known that the family does not live in any weak cotype two space. Computing that \mathcal{F}_{α} is $\lambda_{\alpha}(\epsilon)$ essentially Euclidean with $\lambda_{\alpha}(\epsilon) \leq(1 / \epsilon)^{\alpha / 2(1-\alpha)}$ is straightforward: First, when $n^{\alpha} \leq \epsilon n$, the space $\ell_{2}^{n-n^{\alpha}} \oplus_{2} \ell_{\infty}^{n^{\alpha}}$ has a subspace of dimension at least $(1-\epsilon) n$ that is isometrically Euclidean. On the other hand, if $\epsilon n<n^{\alpha}$, then the entire space $\ell_{2}^{n-n^{\alpha}} \oplus_{2} \ell_{\infty}^{n^{\alpha}}$ is $n^{\alpha / 2}$-Euclidean, since that is the isomorphism constant between $\ell_{\infty}^{n^{\alpha}}$ and $\ell_{2}^{n^{\alpha}}$, and $n^{\alpha / 2} \leq(1 / \epsilon)^{\alpha / 2(1-\alpha)}$.

Received by the editors October 6, 2016.
Published electronically December 5, 2018.
Author W. J. was supported in part by NSF DMS-1565826.
AMS subject classification: 46B20, 46B07, 46B99.
Keywords: essentially euclidean.

It is also simple to check that the essentially Euclidean property passes to proportional dimensional subspaces. Suppose that E is an n-dimensional space that is λ essentially Euclidean, F is a subspace of E that has dimension αn, and $\epsilon>0$. Take a subspace E_{1} of E of dimension $(1-\epsilon \alpha) n$ with $c_{2}\left(E_{1}\right) \leq \lambda(\epsilon \alpha)$. Then $\operatorname{dim} E_{1} \cap F \geq \alpha n-$ $\epsilon \alpha n=(1-\epsilon) \alpha n$, which implies that F is λ_{F} essentially Euclidean with $\lambda_{F}(\epsilon) \leq \lambda(\epsilon \alpha)$. It is, however, not obvious that the essentially Euclidean property passes to proportional dimensional quotients; the main result of this note is that it does.

We use standard notation. We just mention that if A is a set of vectors in a normed space, $[A]$ denotes the closed linear space of A, and e_{i} denotes the i-th unit basis vector in a sequence space.

2 Main Result

The main tool we use is Milman's subspace of quotient theorem [Mil], [Pis, Chapters 7 \& 8]. In [LMT-J] this theorem is not used directly, but the ingredients of its proof are. The theorem says that there is a function $M:(0,1) \rightarrow \mathbb{R}^{+}$such that for every n and every $0<\delta<1$, if $\operatorname{dim} E=n$ then there is a subspace F of some quotient of E so that $\operatorname{dim} F=(1-\delta) n$ and $c_{2}(F) \leq M(\delta)$. It is known that $M(\delta) \leq(C / \delta)(1+|\log C \delta|)$, as $\delta \rightarrow 0$ [Pis, Theorem 8.4].

Theorem 2.1 Suppose that E is λ essentially Euclidean, $0<\alpha<1$, and Q is a quotient mapping from E onto a space F. Let $n=\operatorname{dim} E$ and assume that $\operatorname{dim} F=\alpha n$. Then F is γ essentially Euclidean, where $\gamma(\epsilon) \leq \lambda(\epsilon \alpha / 4) M(\epsilon / 4)$; in fact, for each $\epsilon>0$ there is a subspace E_{2} of E and operators $A: \ell_{2}^{(1-\epsilon) \alpha n} \rightarrow E_{2}$ and $B: Q E_{2} \rightarrow \ell_{2}^{(1-\epsilon) \alpha n}$ such that $B Q A$ is the identity on $\ell_{2}^{(1-\epsilon) \alpha n}$ and $\|A\| \cdot\|B\| \leq \lambda(\epsilon \alpha / 4) M(\epsilon / 4)$.

Proof Set $n:=\operatorname{dim} E$ and fix $0<\epsilon<1$. Let R be a quotient mapping from F onto a space G that has a subspace G_{2} of dimension $(1-\epsilon / 4) \alpha n$ such that $c_{2}\left(G_{2}\right) \leq M(\epsilon / 4)$. We want to find a subspace E_{2} of E with $\operatorname{dim} E_{2} \geq(1-\epsilon) \alpha n$ so that $R Q E_{2} \subset G_{2}$ and $R Q$ is a "good" isomorphism on E_{2}, which implies that Q is also a "good" isomorphism on E_{2}. Since $\|R\|=\|Q\|=1$, "good" means that $\|R Q x\|$ is bounded away from zero for x in the unit sphere of E_{2}. Since E is λ essentially Euclidean, there is a subspace E_{0} of E with $\operatorname{dim} E_{0}=(1-\alpha \epsilon / 4) n$ such that $c_{2}\left(E_{0}\right) \leq \lambda(\alpha \epsilon / 4)$. Put Euclidean norms $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ on E_{0} and G_{2}, respectively, to satisfy for all $x \in E_{0}$ and all $y \in G_{2}$ the inequalities

$$
\begin{equation*}
\|x\| \leq\|x\|_{1} \leq \lambda(\alpha \epsilon / 4)\|x\| \quad \text { and } \quad M(\epsilon / 4)^{-1}\|y\| \leq\|y\|_{2} \leq\|y\| . \tag{2.1}
\end{equation*}
$$

Define $E_{1}:=E_{0} \cap(R Q)^{-1} G_{2}$ so that $\operatorname{dim} E_{1}:=m \geq(1-\epsilon \alpha / 2) n$.
Now take an orthonormal basis $e_{1}, e_{2}, \ldots, e_{m}$ for the Euclidean space $\left(E_{1},\|\cdot\|_{1}\right)$ so that $R Q e_{1}, R Q e_{2}, \ldots, R Q e_{m}$ is orthogonal in the Euclidean space $\left(G_{2},\|\cdot\|_{2}\right)$ and ordered so that $\left\|R Q e_{1}\right\|_{2},\left\|R Q e_{2}\right\|_{2}, \ldots,\left\|R Q e_{m}\right\|_{2}$ is decreasing. We next compute that $\left\|R Q e_{j}\right\|_{2}$ is large for $j:=(1-\epsilon) \alpha n$. Now $\left\|R Q e_{j}\right\|_{2}$ is the norm of the restriction to $E_{3}:=\left[e_{j}, e_{j+1}, \ldots, e_{(1-\alpha \epsilon / 2) n}\right]$ of the operator $R Q$ when it is considered as an operator from the Euclidean space $\left(E_{1},\|\cdot\|_{1}\right)$ to the Euclidean space $\left(G_{2},\|\cdot\|_{2}\right)$, and $\operatorname{dim} E_{3}=m-j+1 \geq n \alpha \epsilon / 2+1$, which is strictly larger than the dimension of the kernel of $R Q$, because it has dimension at most $(1-\alpha) n+\epsilon \alpha n / 4$. By the
definition of quotient norms, the norm of $R Q_{\mid E_{3}}$ when $R Q$ is considered as an operator from E_{1} to G_{2} under their original norms is the maximum over points x in the unit sphere of E_{3} of the distance from x to the kernel of $R Q$. By a wellknown consequence of the Borsuk-Ulam antipodal mapping theorem (first observed in [KKM]; see also [Day]), this distance is one. In view of the relationship (2.1), we deduce that $\left\|R Q e_{j}\right\|_{2} \geq \lambda(\alpha \epsilon / 4)^{-1} M(\epsilon / 4)^{-1}$. Also by (2.1), the norm of $R Q$ is at most one when considered as an operator from $\left(E_{1},\|\cdot\|_{1}\right)$ to $\left(G_{2},\|\cdot\|_{2}\right)$. Finally, set $E_{2}:=\left[e_{1}, e_{2}, \ldots, e_{j}\right]$ and let U_{1} be the restriction to E_{2} of $R Q$, considered as a mapping onto $R Q E_{2}$. We have just shown that the identity on ℓ_{2}^{j} factors through U_{1} with factorization constant at most $\lambda(\alpha \epsilon / 4)^{-1} M(\epsilon / 4)^{-1}$, hence it factors with the same constant through the restriction of Q to E_{2}, considered as an operator from E_{2} to $Q E_{2}$.

Theorem 2.2 gives an improvement of the qualitative version of Theorem 2.1 when $E=\ell_{p}^{n}, 1 \leq p<2$. For $S \subset\{1, \ldots, n\}$, let ℓ_{p}^{S} be the span in ℓ_{p}^{n} of the unit vector basis elements $\left\{e_{i}: i \in S\right\}$.

Theorem 2.2 There is a function $g:(0,1)^{2} \rightarrow(1, \infty)$ so that for all $1 \leq p<2$, all natural numbers n, and all $\epsilon \in(0,1)$, the following is true. If Q is a quotient mapping from ℓ_{p}^{n} onto a normed space F and $\operatorname{dim} F=\alpha n$, then there is a subset S of $1,2, \ldots, n$ of cardinality $(1-\epsilon) \alpha n$ such that $\left\|\left(Q_{\mid e_{p}^{s}}\right)^{-1}\right\| \leq g(\alpha, \epsilon)$.

Sketch of proof The main point is the observation made in [JS, Theorem 2.1] that the proof of [BKT, Theorem 2.1] by Bourgain, Kalton, and Tzafriri shows that there is a constant $c>0$ so that if Q is a quotient mapping from $\ell_{p}^{n}, 1 \leq p<2$, onto a space of dimension at least βn, then there is a subset S of $1,2, \ldots, n$ of cardinality at least $c^{1 / \beta} n$ so that $\left\|\left(Q_{\mid \ell_{p}^{s}}\right)^{-1}\right\| \leq c^{-1 / \beta}$. Given a quotient mapping Q on ℓ_{p}^{n} whose range has dimension αn and given $0<\epsilon<1$, apply the observation iteratively with $\beta:=(1-\epsilon) \alpha$. At step one set $Q_{1}:=Q$ and get $S_{1} \subset\{1,2, \ldots, n\}$ of cardinality at least $c^{1 / \beta} n$ so that $\left\|\left(\left(Q_{1}\right)_{\mid e_{p}^{s_{1}}}\right)^{-1}\right\| \leq c^{-1 / \beta}$. At step two take the quotient mapping Q_{2} on ℓ_{p}^{n} whose kernel is the span of the kernel of Q_{1} and $\left\{e_{i}\right\}_{i \in S_{1}}$ and get $S_{2} \subset\{1,2, \ldots, n\}$ of cardinality at least $c^{1 / \beta} n$ so that $\left\|\left(\left(Q_{2}\right) \mid e_{2}^{s_{2}}\right)^{-1}\right\| \leq c^{-1 / \beta}$. Necessarily, S_{1} and S_{2} are disjoint. More importantly, from the definition of the norm in a quotient space we see that in $Q \ell_{p}^{n}$, the norm of the projection from $Q\left[e_{i}\right]_{i \in S_{1} \cup S_{2}}$ onto $Q\left[e_{i}\right]_{i \in S_{1}}$ that annihilates $Q\left[e_{i}\right]_{i \in S_{1}}$ is controlled by $c^{-1 / \beta}$, which implies that the norm of $\left(Q_{\mid \ell_{p} s_{1} \cup s_{2}}\right)^{-1}$ is also controlled. Then let Q_{3} be the quotient mapping on ℓ_{p}^{n} whose kernel is the span of the kernel of Q and $\left\{e_{i}\right\}_{i \in S_{1} \cup S_{2}}$ and use the observation to get S_{3}. The iteration stops once the dimension of the kernel of Q_{k} is larger than $(1-\beta n)$, which happens after fewer than $c^{-1 / \beta}$ steps; say, after k steps. By construction you can estimate the basis constant of $\left(Q\left[e_{i}\right]_{i \in S_{m}}\right)_{m=i}^{k-1}$, so that Q will be a good isomorphism on $\left[e_{i}: i \in \cup_{m=1}^{k-1} S_{m}\right]$, because it is a good isomorphism on each $\left[e_{i}: i \in S_{m}\right]$ for $1 \leq m<k$.
Remark 2.3. It is interesting to have the best estimates for γ in Theorem 2.1 and for g in Theorem 2.2. In Theorem 2.1 we gave the estimate for $\gamma(\epsilon)$ that the method gives and we think that this might be the order of the best estimate. We did not do the same in Theorem 2.2, because we think that a different argument is probably needed to obtain the best estimate for $g(\alpha, \epsilon)$.

References

[BKT] J. Bourgain, N. J. Kalton, and L. Tzafriri, Geometry of finite-dimensional subspaces and quotients of L_{p}. In: Geometric aspects of functional analysis (1987-88), Lecture Notes in Math., 1376, Springer, Berlin, 1989, pp. 138-175. http://dx.doi.org/10.1007/BFb0090053
[Day] M. M. Day, On the basis problem in normed spaces. Proc. Amer. Math. Soc. 13(1962), 655-658. http://dx.doi.org/10.1090/S0002-9939-1962-0137987-7
[JS] W. B. Johnson and G. Schechtman, Very tight embeddings of subspaces of $L_{p}, 1 \leq p<2$, into ℓ_{p}^{n}. Geom. Funct. Anal. 13(2003), no. 4, 845-851. http://dx.doi.org/10.1007/s00039-003-0432-9
[KKM] M. G. Krein, D. P. Milman, and M. A. Krasnosel'ski, On the defect numbers of linear operators in Banach space and some geometric questions. (Russian) Sbornik Trudov Inst. Acad. NAUK Uk. SSR 11(1948), 97-112.
[LMT-J] A. E. Litvak, V. D. Milman, and N. Tomczak-Jaegermann, Essentially-Euclidean convex bodies. Studia Math. 196(2010), no. 3, 207-221. http://dx.doi.org/10.4064/sm196-3-1
[Mil] V. D. Milman, Almost Euclidean quotient spaces of subspaces of a finite-dimensional normed space. Proc. Amer. Math. Soc. 94(1985), no. 3, 445-449. http://dx.doi.org/10.1090/S0002-9939-1985-0787891-1
[Pis] G. Pisier, The volume of convex bodies and Banach space geometry. Cambridge Tracts in Mathematics, 94, Cambridge University Press, Cambridge, 1989. http://dx.doi.org/10.1017/CBO9780511662454
Institute of Mathematics, Polish Academy of Sciences
Email: t.figiel@impan.pl
Department of Mathematics, Texas A \Leftarrow M University, College Station, TX 77843-3368, USA
Email: johnson@math.tamu.edu

