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Abstract : The effect of horizontal magnetic field on the onset of three-dimensional 
convection in a horizontal fluid layer is studied. It is found that the two-dimensional 
solutions are unstable to three-dimensional disturbances. A detailed bifurcation study is 
reported. 

Introduction: Convection in the presence of a vertical magnetic field has been extensively 
investigated because of its relevance in astrophysics and geophysics [1]. It is known that the 
penumbra of the sunspot is a well developed region for temperature about 5000°K where the 
magnetic field lines expand rapidly to become more horizontal of strength about 2 KG. 
Though small, they are important in providing a mechanism to cool the photosphere and 
upper convection zone [1-3]. Therefore, the effect of horizontal magnetic field on convection 
has been studied in [2-3] by considering only two-dimensional disturbances. Its effect on 
three-dimensional convection has not been given attention. This is considered in this paper 
with the object of showing that the two-dimensional solutions may become unstable to three-
dimensional disturbances which possess added degree of freedom in the study of heat 
transfer. We have investigated both linear and nonlinear convection in the presence of 
horizontal magnetic field. Due to want of space we present here only the results pertaining to 
linear theory. 

Mathematical Formulation: We consider a Boussinesq electrically conducting fluid layer 
bounded by stress-free surfaces. The basic equations of motion are conservation of mass, 
momentum, energy and magnetic field as given in [4]. The usual process of linearization and 
employing normal mode analysis, we get 

R = k ^ k 4 - p 2 / a + ( p 2 + Bk4)G/(p 2 + B 2 k 4 ) ] M 2 a 2 + ipk 2 N, (1) 

with N = k 2 ( a + l ) / 7 C 2 a 2 a + (B- l )G/ (p 2 +B 2 k 4 ) . Here R = pgATd^/vK, Q = u l ^ d 2 / p o v v m , 

B = v M / K , a = V/K, k 2 = 7 C 2 ( a 2 + l ) , a 2 = l 2 + m 2 , G = Q B T T 2 * 2 . Where i and m are 
wavenumbers in x and y directions and p is the frequency. R is a physical quantity, therefore 
(1) demands that either p = 0 or N = 0. These conditions help us to study the types of 
bifurcations. 

Direct bifurcation (p = 0): Now from (2), we get 

R(s) = k 2[k* + Q 7 c 2 4 2 ] / 7 t 2 a 2 (2) 

135 

E. R. Priest and V. Krishan (eds.), Basic Plasma Processes on the Sun, 135-136. 
© 1990 IAU. Printed in the Netherlands. 

https://doi.org/10.1017/S0074180900087866 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900087866


136 

This becomes minimum, for a fixed value of T, when a = a c is a root of 2a^ + 3 a * = 

6i 

l+Q< 2 / rc 2 As Q -> o o , ac ~ ^QIV2k2 and R<s> ~ Qrc 2 * 2 As Q -» 0, etc ~ 1/V2, R( s) ~ 

Hopf bifurcation ( p * 0, N = 0): There is a Hopf bifurcation at 

R(0) = k 6 (a+B) ( l+B) /OT 2 a 2 + k ^ a + B J G / ^ a ^ l + a ) , (3) 

provided p 2 = a 2 aB(R(s ) - R(0) ) / (a 2 +l ) ( l+o+B) = - B 2 k 4 + ( l - B ) a G / ( l + a ) > 0. So the 

necessary condition for the existence of a Hopf bifurcation is B < 1, Q > B ( l + a ) k 4 / 7 C 2 i 2 a ( l -

B). We note that when i = a (i.e. m = 0), (2) and (3) tend to those given in [2] for two-
dimensional disturbances. 

Conc lus ions : The critical Rayleigh numbers for direct and oscillatory motions are 
computed for different values of B and Q and the results are compared with those of two-
dimensional disturbances in Fig. 1. This shows that the two-dimensional solutions become 
unstable to three-dimensional disturbances. The nature of bifurcation, for different values of 

o , is depicted in Fig. 2. The bifurcation from steady to oscillatory solutions occurs earlier 

for small values of a compared to the large values of a. These conclusions are used in the 
study of nonlinear theory. 
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Fig.l Cri tical Rayleigh Fig.2 Curves of neutral stabili tynumber Vs.Q
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