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Abstract

Let G be a graph with no isolated vertex. A semitotal forcing set of G is a (zero) forcing set S such that
every vertex in S is within distance 2 of another vertex of S. The semitotal forcing number Ft2(G) is the
minimum cardinality of a semitotal forcing set in G. In this paper, we prove that it is NP-complete to
determine the semitotal forcing number of a graph. We also prove that if G � Kn is a connected graph of
order n ≥ 4 with maximum degree Δ ≥ 2, then Ft2(G) ≤ (Δ − 1)n/Δ, with equality if and only if either
G = C4 or G = P4 or G = KΔ,Δ.

2020 Mathematics subject classification: primary 05C69.
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1. Introduction

Forcing and its variations in graphs are now well studied. The (zero) forcing number of
a graph was first introduced by the AIM Minimum Rank–Special Graphs Work Group
[2] to bound the maximum nullity/minimum rank of the family of symmetric matrices
associated with a graph. Total forcing and semitotal forcing are two variations of
forcing, which were first introduced and studied by Davila and Kenter [8] and Chen [6].
The definitions are as follows.

For any two-colouring of the vertex set V of a graph G, say black and white for the
two colours, define the colour-change rule: a white vertex v is converted to black if it
is the only white neighbour of some black vertex u. We say u forces v, written u→ v,
and also that u is a forcing vertex. Let S be a subset of V. Define a two-colouring of
G by colouring S black and all other vertices white. The derived set D(S) of S is the
set of black vertices obtained by iteratively applying the colour-change rule until no
more changes are possible. If D(S) = V , then we say S is a forcing set (also called a
zero forcing set) of G. The procedure of colouring a graph using the colour-change
rule applied to S is called a forcing process with respect to S. A minimum forcing set
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of G is a forcing set of G of minimum cardinality and the forcing number, denoted by
F(G), is the cardinality of a minimum forcing set. If S is a forcing set of G and G[S]
contains no isolated vertex, then S is a total forcing set of G; if S is a forcing set of G
and every vertex in S is within distance 2 of another vertex of S, then S is a semitotal
forcing set of G. The total forcing number (respectively, semitotal forcing number) of
G is the cardinality of a minimum total forcing set (respectively, semitotal forcing set)
in G and denoted by Ft(G) (respectively, Ft2(G)).

Determining the forcing number and the total forcing number for a graph are
NP-complete (see [1, 5] and [7], respectively). Therefore, it is difficult to compute the
forcing number or the total forcing number of a graph accurately and it is interesting
to establish some bounds on these two parameters. Amos et al. [3] proved F(G) ≤
((Δ − 2)n + 2)/(Δ − 1) for a connected graph G of order n and maximum degree Δ ≥ 2,
with equality if and only if G is either Cn, Kn or KΔ,Δ (see Gentner et al. [9] and Lu
et al. [11]). Caro and Pepper [4] used a greedy algorithm to obtain an improved bound
F(G) ≤ ((Δ − 2)n − (Δ − δ) + 2)/(Δ − 1), where δ is the minimum degree of G. We
gave a complete characterisation of the extremal graphs for this bound in [10]. For the
total forcing number, Davila and Henning [7] showed that if G is a connected graph
of order n ≥ 3 with maximum degree Δ ≥ 2, then Ft(G) ≤ Δn/(Δ + 1), with equality if
and only if G = KΔ+1 or K1,Δ.

In this paper, we study the semitotal forcing number of a graph. In Section 2, we give
some basic definitions as preliminaries. In Section 3, we prove that it is NP-complete
to determine the semitotal forcing number of a graph. In Section 4, we provide some
upper bounds on the semitotal forcing number of a graph in terms of its order and
maximum degree.

2. Preliminaries

Throughout this paper, we only consider simple, undirected and finite graphs.
Let G = (V(G), E(G)) be a graph with vertex set V(G) and edge set E(G). Let u, v

be two vertices of G. If uv ∈ E(G), then we say u, v are adjacent, u is a neighbour of
v and vice versa. The open neighbourhood of v is NG(v) = {u ∈ V(G) | uv ∈ E(G)} and
the closed neighbourhood of v is NG[v] = NG(v) ∪ {v}. Similarly, for any set X ⊆ V(G),
NG(X) = ∪v∈XNG(v) and NG[X] = NG(X) ∪ X. The degree dG(v) of v is the number of
vertices in NG(v). The minimum degree and maximum degree of G are denoted by δ(G)
and Δ(G), respectively. We call a path connecting u and v a (u, v)-path. The distance
between u and v is the length of a shortest (u, v)-path in G, denoted by dG(u, v). For a
vertex v and a vertex set X, let dG(v, X) = min{dG(u, v) | u ∈ X}. If the graph G is clear
from the context, we write V, E, N(v), N[v], N(X), N[X], d(v), δ, Δ, d(u, v), d(v, X) for
short.

An independent set of a graph is a set of pairwise nonadjacent vertices, whereas a
clique of a graph is a set of pairwise adjacent vertices. A dominating set in a graph G
is a set D of vertices of G such that every vertex not in D is adjacent to at least one
vertex in D. For a set of vertices X ⊆ V(G), the induced subgraph by X, denoted by
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[3] The semitotal forcing number of graphs 179

G[X], is the graph with vertex set X, in which two vertices are adjacent if and only if
they are adjacent in G. We denote by G − X the induced subgraph G[V \ X]; if X = {x},
we write G − x for short.

Denote a path, a cycle and a complete graph on n vertices by Pn, Cn and Kn,
respectively. A complete bipartite graph with parts of sizes a and b is denoted Ka,b.

Two vertices u and v in a nontrivial connected graph G are twins if u and v have the
same neighbours in V(G) \ {u, v}.

OBSERVATION 2.1. If u and v are twins of a connected graph G, then every forcing set
of G contains at least one vertex of {u, v}.

3. Complexity of semitotal forcing

In this section, we show that the semitotal forcing problem is NP-complete. The
decision version of the semitotal forcing problem is as follows.

PROBLEM 3.1 (Semitotal Forcing). Instance: a graph G = (V , E) of order n and a
positive integer k ≤ n. Question: does G have a semitotal forcing set of size at most k?

THEOREM 3.2. The semitotal forcing problem is NP-complete.

PROOF. We first show that the semitotal forcing problem is in NP. Given a set S of
vertices of G, it can be checked in polynomial time whether there is a vertex in S
with exactly one neighbour not in S. Moreover, there cannot be more than |V | steps in
a forcing process. Thus, a nondeterministic algorithm can check in polynomial time
whether a subset of vertices of V is forcing and further semitotal forcing, and whether
it has size at most k + 1.

To show the hardness, we give a polynomial reduction from the forcing problem,
which has been shown to be NP-complete in [1, 5].

Let G = (V , E) be a graph, where V = {v1, . . . , vn}. We construct a connected graph
G′ = (V ′, E′) with vertex set V ′ = V ∪ {u, w1, w2} and edge set

E′ = E ∪ {uvi | i ∈ [n]} ∪ {uw1, uw2}.

We will show that G has a forcing set of size at most k if and only if G′ has a semitotal
forcing set of size at most k.

Suppose that G has a forcing set S of size at most k. We claim that S′ = S ∪ {w1}
is a semitotal forcing set of G′. First, we colour all vertices in S′ black and the other
vertices of G′ white. Then w1 → u and further all vertices of V(G) can be forced by
applying the colour-change rule to S. Finally, u→ w2. Hence, S′ is a forcing set of G′.
Since every vertex in S is within distance 2 of the vertex w1, S′ is a semitotal forcing
set of G′ of size at most k + 1.

Conversely, suppose that G′ has a semitotal forcing set S′ of size at most k + 1. By
Observation 2.1, at least one vertex of {w1, w2} belongs to S′. Renaming vertices if
necessary, we may assume that w1 ∈ S′. We can choose a semitotal forcing set S′ such
that u does not force any vertex of V(G). This is because if u forces a vertex v of V(G),
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then w2 ∈ S′, and S′′ = (S′ \ {w2}) ∪ {v} is also a semitotal forcing set of G′. Thus, each
force between vertices of V(G) in G′ can also be applied for S := S′ ∩ V(G) in G, since
if v ∈ V(G) has a single white neighbour in G′ at some step of the forcing process, it
will have the same white neighbour in G. Moreover, since u does not force any vertex
in V(G), all vertices in V(G) must be forced by the vertices of S′ which are in V(G).
Thus, S is a forcing set of G. Additionally, |S| = |S′ ∩ V(G)| ≤ k + 1 − 1 = k, so S has
size at most k. �

4. General upper bounds

We emphasise that it is NP-hard to compute the semitotal forcing number for a
general graph, so it is particularly interesting to find efficient bounds for the semitotal
forcing number. In this section, we give some upper bounds on the semitotal forcing
number of a graph in terms of its order and maximum degree. We use the following
result.

THEOREM 4.1 (Davila and Henning, [7]). If G is a connected graph of order n ≥ 3
with maximum degree Δ ≥ 2, then

Ft(G) ≤ Δ

Δ + 1
n,

with equality if and only if G = Kn or G = K1,n−1.

Since every total forcing set is also a semitotal forcing set, we have the consequence.

COROLLARY 4.2. If G is a connected graph of order n ≥ 3 with maximum degree
Δ ≥ 2, then

Ft2(G) ≤ Δ

Δ + 1
n,

with equality if and only if G = Kn or G = P3.

We will give two improved upper bounds for the semitotal forcing number.
We define a weak partition (V1, . . . , Vk) of the set V as a partition where some

of the sets may be empty. Algorithm 1 outputs a weak partition of the vertex set
V of G. According to Algorithm 1, lines 3–8 iteratively find a pair of vertices u
and v with distance 2 in the current graph Gk−1, set vk = v and delete all vertices
in NGk−1 [NGk−1 [vk]] until the remaining connected components are complete graphs.
Again, lines 10–14 iteratively delete the connected components whose order is greater
than 2 in the remaining graph. Hence, G[R] is a null graph or every component of G[R]
is either an edge or an isolated vertex. For each vertex in A ∪ A′, its neighbours are in
B ∪ B′ ∪ C. Thus, the set A ∪ A′ is independent. Similarly, for 1 ≤ i < j ≤ r, there is no
edge between Bi and Bj; and there is no edge between R and A ∪ A′ ∪ B ∪ B′.

We now restrict to G � Kn. By using Algorithm 1, we present another upper bound
on the semitotal forcing number of G in terms of its order and maximum degree.

https://doi.org/10.1017/S000497272300045X Published online by Cambridge University Press

https://doi.org/10.1017/S000497272300045X


[5] The semitotal forcing number of graphs 181

Algorithm 1 Weak partition.

Input: A graph G = (V , E) on n vertices
Output: A partition (A, B, C, A′, B′, R) of V

1: k := 0 and Gk := G
2: A := ∅, B := ∅, C := ∅, A′ := ∅ and B′ := ∅
3: while u, v ∈ V(Gk) and dGk (u, v) = 2 do
4: k := k + 1
5: vk := v and add vk to A
6: Bk := NGk−1 (vk) and add Bk to B
7: Ck := NGk−1 (Bk) \ NGk−1 [vk] and add Ck to C
8: Gk := Gk−1 − vk − Bk − Ck

9: r := k and Gr := Gk

10: while v ∈ V(Gr) and dGr (v) ≥ 2, do
11: r := r + 1
12: vr := v and add vr to A′

13: Br := NGr−1 (vr) and add Br to B′

14: Gr := Gr−1 − vr − Br

15: R := V(Gr)

THEOREM 4.3. If G � Kn is a connected graph of order n ≥ 4 with maximum degree
Δ ≥ 2, then

Ft2(G) ≤ Δ − 1
Δ

n,

with equality if and only if G = C4 or G = P4 or G = KΔ,Δ.

PROOF. Let G � Kn be a connected graph of order n ≥ 4 with maximum degree Δ ≥ 2.
If Δ = 2, then G = Pn or G = Cn. In both cases, Ft2(G) = 2 ≤ n/2 = (Δ − 1)n/Δ, as
desired. Further, if Ft2(G) = (Δ − 1)n/Δ, then n = 4. Thus, G = C4 or G = P4. Hence,
we assume that Δ ≥ 3 in what follows.

Applying Algorithm 1 to G = (V , E), we get a weak partition (A, B, C, A′, B′, R)
of V, and A = {v1, . . . , vk}, B = {B1, . . . , Bk}, C = {C1, . . . , Ck}, A′ = {vk+1, . . . , vr}, B′ =
{Bk+1, . . . , Br}. Since G � Kn, the sets A, B and C are not empty. For 1 ≤ i ≤ k, let Gi
be the graph induced by {vi} ∪ Bi ∪ Ci; for k + 1 ≤ i ≤ r, let Gi be the graph induced
by {vi} ∪ Bi. Note that r may be equal to k. Let Gi have order ni and |Bi| = bi, |Ci| = ci.
In what follows, we consider Gi and divide into two cases.

Case 1: 1 ≤ i ≤ k. We divide into two subcases.

Subcase 1.1: bi = 1 and ci = 1. In this subcase, Gi = P3 and ni = 3. Let Si = {vi} ∪ Bi.
Then Si is a semitotal forcing set of Gi and

|Si| = 2 =
2
3
× 3 ≤ Δ − 1

Δ
ni. (4.1)
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Subcase 1.2: bi ≥ 2 or ci ≥ 2. By Algorithm 1, we note that the set Bi dominates the
set Ci. Let Di be a minimum set of vertices in Bi that dominate Ci and |Di| = di. Note
that 1 ≤ di ≤ bi. Let Di = {xi

1, . . . , xi
di
}. By the minimality of the set Di, each vertex xi

j in
Di dominates a vertex yi

j in Ci that is not dominated by the other vertices in Di, where
j ∈ [di]. Now, let D′i = {yi

1, . . . , yi
di
} and Li = Ci \ D′i . Let |Li| = li. Then ci = di + li and

ni = bi + ci + 1 = bi + di + li + 1. Each vertex in Di is adjacent to vi and to exactly
one vertex in D′i , and therefore is adjacent to at most Δ − 2 vertices in Li, implying
that li ≤ di(Δ − 2). Let Si = V(Gi) \ (D′i ∪ {x

i
1}). By the construction, Si is semitotal.

Further, the set Si is a forcing set of Gi since vi → xi
1 first, and then xi

j → yi
j for j ∈ [di].

Thus, the set Si is a semitotal forcing set of Gi. Moreover,

|Si| = bi + li ≤ bi + di(Δ − 2) = bi − di + di(Δ − 1)
≤ Δ − 1 + di(Δ − 1) = (di + 1)(Δ − 1), (4.2)

which implies that di + 1 ≥ |Si|/(Δ − 1). Thus, ni = bi + li + di + 1 = |Si| + di + 1 ≥
|Si| + |Si|/(Δ − 1) and further |Si| ≤ (Δ − 1)ni/Δ.

Case 2: k + 1 ≤ i ≤ r. In this case, Gi = G[{vi} ∪ {Bi}] is a complete graph. Since G �
KΔ+1, we have 2 ≤ bi ≤ Δ − 1. Let Si = Bi. It is clear that Si is a semitotal forcing set
of Gi. Thus, ni = bi + 1 and

|Si| = bi ≤
Δ − 1
Δ

(bi + 1) =
Δ − 1
Δ

ni.

The set Si constructed for each i ∈ [r] (see Cases 1 and 2 above) is a semitotal
forcing set of Gi. We now let S′ = ∪r

i=1 Si. Thus,

|S′| =
r∑

i=1

|Si| ≤
r∑

i=1

Δ − 1
Δ

ni =
Δ − 1
Δ

r∑
i=1

ni.

If R = ∅, then V(G) = ∪r
i=1 V(Gi). We claim that S = S′ is a semitotal forcing set

of G. As shown earlier, each set Si is a semitotal forcing set of Gi for all i ∈ [r]. By
the construction, S is semitotal. We colour all vertices in S black and the other vertices
white. When we apply the colour-change rule, all vertices of Gi will become black in
the order i and

|S| = |S′| ≤ Δ − 1
Δ

r∑
i=1

ni =
Δ − 1
Δ

n.

Now we consider R � ∅. Suppose G[R] has order nR. Recall that every component
of G[R] is either an edge or an isolated vertex and there is no edge between R and
A ∪ A′ ∪ B ∪ B′. Since G is connected, every component of G[R] is adjacent to some
vertex of C. If there exists a vertex v ∈ R which is not adjacent to some vertex of C,
then v belongs to a P2-component of G[R] and its neighbour is adjacent to some vertex
of C. Take all the vertices that are the same as v and put them into T. Let |T | = t
and W = R \ T . Note that W � ∅. Let D ⊆ C be a minimum dominating set of W and
|D| = d, D = {x1, . . . , xd}. By the minimality of the set D, each vertex xj in D dominates
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a vertex yj in W that is not dominated by the other vertices in D, where j ∈ [d]. Let
D′ = {y1, . . . , yd} and L = W \ D′. Let |L| = l so that nR = d + l + t.

If l = 0, then S = S′ is a semitotal forcing set of G. Additionally,

|S| = |S′| ≤ Δ − 1
Δ

r∑
i=1

ni <
Δ − 1
Δ

n.

Now assume that l � 0. If d(v, L ∪ S′) ≤ 2 for any v ∈ L, then set S′′ = L. Then
S = S′ ∪ S′′ is a semitotal forcing set of G; we will justify this claim at the end of the
proof. Since each vertex in D (⊆ C) is adjacent to a vertex of B and to exactly one vertex
in D′i , we have l ≤ d(Δ − 2). Recall that nR = d + l + t ≥ d + l, so |S′′| = l ≤ d(Δ − 2) ≤
(nR − |S′′|)(Δ − 2). This implies that |S′′| ≤ ((Δ − 2)/(Δ − 1))nR < ((Δ − 1)/Δ)nR.
Thus,

|S| = |S′| + |S′′| < Δ − 1
Δ

r∑
i=1

ni +
Δ − 1
Δ

nR =
Δ − 1
Δ

( r∑
i=1

ni + nR

)
=
Δ − 1
Δ

n.

Suppose that there exists v ∈ L such that d(v, L ∪ S′) ≥ 3. Take all the vertices that
are the same as v and put them into X. For any w ∈ X, there exists u ∈ D such that u is
adjacent to w and u ∈ Ci for some i as in Subcase 1.2. Here, u is adjacent to xi

1, that is,
u = yi

1 and xi
1 is its neighbour in Gi. Since d(w, L ∪ S′) ≥ 3, we have NR(yi

1) = {w, w′},
where w′ ∈ D′. Take all the vertices that are the same as w′ and put them into Y. Now
replace Gi with G′i = Gi ∪ {w, w′} and again divide into two cases. In the case bi ≥ 2,
we set x ∈ Bi \ {xi

1} and S′i = (Si \ {x}) ∪ {xi
1, w}. In the case bi = 1, ci ≥ 2, clearly,

Di = {xi
1}, D′i = {yi

1} and Li � ∅. Since Li ⊆ Si, we set y ∈ Li and S′i = (Si \ y) ∪ {yi
1, w}.

In both cases, it is not hard to check that S′i is a semitotal forcing set of G′i .
Then for G′i , n′i = ni + 2 = bi + di + li + 3 and |S′i | = |Si| + 1 = bi + li + 1 ≤ bi +

di(Δ − 2) + 1 = bi − di + di(Δ − 1) + 1 ≤ Δ − 1 + di(Δ − 1) + 1 = (di + 1)(Δ − 1) + 1,
which implies that di + 1 ≥ (|S′i | − 1)/(Δ − 1). Thus, n′i = bi + li + di + 3 = |S′i | + di +

2 ≥ |S′i | + (|S′i | − 1)/(Δ − 1) + 1 = (Δ|S′i | + Δ − 2)/(Δ − 1) > Δ|S′i |/(Δ − 1) and further
|S′i | < ((Δ − 1)/Δ)n′i .

Now return to W. Let W′ = W \ (X ∪ Y), D′′ = D′ \ Y and S′′ = L \ X. Let R′ =
W ′ ∪ T(= (D′ \ Y) ∪ (L \ X) ∪ T) and GR′ have order nR′ . Then nR′ = d′′ + |S′′| + t ≥
d′′ + |S′′|, where d′′ = |D′′|. Thus, S = S′ ∪ S′′ is a semitotal forcing set of G, where
some Si in S′ is replaced by S′i . We have |S′′| ≤ (Δ − 2)d′′ ≤ (Δ − 2)(nR′ − |S′′|) =
(Δ − 2)nR′ − (Δ − 2)|S′′|. This implies |S′′| ≤ ((Δ − 2)/(Δ − 1))nR′ < ((Δ − 1)/Δ)nR′ .
Thus,

|S| = |S′| + |S′′| < Δ − 1
Δ

r∑
i=1

ni +
Δ − 1
Δ

nR′ =
Δ − 1
Δ

( r∑
i=1

ni + nR′

)
=
Δ − 1
Δ

n.

We now show that the set S is a semitotal forcing set in G. By the construction, S
is semitotal. In the first stage of the forcing process, we colour all vertices in Gi for
i ∈ [r] black. As shown earlier, when we apply the colour-change rule to Si in Gi with
the order from small to large, all vertices of Gi turn black.
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In the second stage of the forcing process, we colour all vertices of R black. Now
we play each of the vertices of D in turn, thereby colouring all vertices in D′ black.
Finally, all vertices of T can be forced and all vertices of G are coloured black.

Thus, Ft2(G) ≤ |S| ≤ ((Δ − 1)/Δ)n, as desired. Suppose next that Ft2(G) =
((Δ − 1)/Δ)n. Then S is a minimum semitotal forcing set in G and |S| = ((Δ − 1)/Δ)n.
Recall that by our earlier assumptions, Δ ≥ 3. If R � ∅, then, as shown above,
|S| < ((Δ − 1)/Δ)n, which is a contradiction. Hence, R = ∅, implying that |Si| =
((Δ − 1)/Δ)ni. For all i ∈ [k], the set Si must have been constructed as in Subcases 1.1
and 1.2 and equality holds in (4.1) and (4.2), which implies that (Δ = 3, Gi = P3) and
(bi = Δ, di = 1, li = Δ − 2), respectively.

We claim that G is a regular graph. Otherwise, δ < Δ and we can choose a weak
partition (A, B, C, A′, B′, R) of V such that v1 is a vertex of minimum degree. Thus,
b1 � Δ. Further, Δ = 3 and G1 = P3, where d(v1) = 1. Let B1 = {z}. We find that
d(z) = 2. Now we reselect a weak partition (A, B, C, A′, B′, R) of V such that v1 = z.
Then d(v1) = bi = 2 < Δ and, by the previous analysis, equality holds in (4.1) and (4.2)
for i = 1, which is a contradiction. Thus, δ = Δ ≥ 3.

Now consider i = 1. With S1 constructed as in Subcase 1.2, we have b1 = Δ, d1 =

1, l1 = Δ − 2. Then, d(v1) = d(x1
1) = Δ. First, we show that B1 is an independent set.

Otherwise, there exist u, v ∈ B1 different from x1 such that u is adjacent to v. Since
Δ is the maximum degree, there exists w ∈ C1 such that w is not adjacent to v. Let
S′1 = V(G1) \ {u, x1, w}. Then v→ u and further v1 → x1

1 → w. Thus, S′1 is a semitotal
forcing set of G1 smaller than S1, and so (S \ S1) ∪ S′1 is a semitotal forcing set of G
smaller than S, which is a contradiction. Since Δ is the maximum degree, it is not hard
to see that N(v) = {v1} ∪ C1 for each v ∈ B1. Therefore, G = KΔ,Δ, as desired.

This completes the proof. �

As an immediate consequence of Theorem 4.3, we have the following result.

THEOREM 4.4. If G is a connected graph of order n ≥ 3 with maximum degree Δ ≥ 2,
then

Ft2(G) ≤ (Δ − 1)n + 1
Δ

,

with equality if and only if G = Kn or G = P3.

PROOF. Let G be a connected graph of order n ≥ 3 with maximum degree Δ ≥ 2.
If G = Kn, then Ft2(G) = n − 1 = ((Δ − 1)n + 1)/Δ. Now consider G � Kn. If n = 3,
then G = P3 and Ft2(G) = 2 = ((Δ − 1)n + 1)/Δ, as desired. If n ≥ 4, then Ft2(G) ≤
(Δ − 1)n/Δ < ((Δ − 1)n + 1)/Δ by Theorem 4.3. Thus, Ft2(G) ≤ ((Δ − 1)n + 1)/Δ,
with equality if and only if G = Kn or G = P3. �

If G is a connected graph of order n with maximum degree Δ, then n ≥ Δ + 1 and

(Δ − 1)n + 1
Δ

≤ Δ

Δ + 1
n. (4.3)
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The equality holds in (4.3) if and only if n = Δ + 1. Thus, Ft2(G) = ((Δ − 1)n + 1)/Δ =
Δn/(Δ + 1) if and only if G = Kn or G = P3. Thus, the upper bound of Theorem 4.2
follows as an immediate consequence of the upper bound of Theorem 4.4.
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