
Isometric actions on Lp-spaces: dependence on the
value of p

Amine Marrakchi and Mikael de la Salle

Compositio Math. 159 (2023), 1300–1313.

doi:10.1112/S0010437X23007121

https://doi.org/10.1112/S0010437X23007121 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007121
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1112/S0010437X23007121&domain=pdf
https://doi.org/10.1112/S0010437X23007121


Compositio Math. 159 (2023) 1300–1313
doi:10.1112/S0010437X23007121

Isometric actions on Lp-spaces: dependence on the
value of p

Amine Marrakchi and Mikael de la Salle

Abstract

Answering a question by Chatterji–Druţu–Haglund, we prove that, for every locally
compact group G, there exists a critical constant pG ∈ [0,∞] such that G admits a
continuous affine isometric action on an Lp space (0 < p <∞) with unbounded orbits
if and only if p ≥ pG. A similar result holds for the existence of proper continuous affine
isometric actions on Lp spaces. Using a representation of cohomology by harmonic
cocycles, we also show that such unbounded orbits cannot occur when the linear part
comes from a measure-preserving action, or more generally a state-preserving action on
a von Neumann algebra and p > 2. We also prove the stability of this critical constant
pG under Lp measure equivalence, answering a question of Fisher.

1. Introduction

The study of affine isometric actions of groups on Banach spaces is an important theme in
mathematics that is related to many other topics such as group cohomology, fixed point properties
and geometric group theory. The case of actions on Hilbert spaces is very well-studied. For
example, it is known that a second countable locally compact group G has an affine isometric
action on Hilbert spaces without fixed points (respectively, proper) if and only if G does not
have Kazhdan’s property (T) (respectively, has the Haagerup property). The question of the
behaviour of actions on other Lp spaces (raised by Gromov in [Gro93, § 6.D3]) is less well-
understood. There are interesting phenomena that can occur: while the groups G = Sp(n, 1)
have property (T), Pansu showed in [Pan89] that they admit affine isometric actions without
fixed points on Lp(G) for all p > 4n+ 2 (and actually proper actions by [DCTV08]). This was
generalized by Bourdon and Pajot in [BP03]. In [Yu05], Yu proved that any hyperbolic group Γ
admits a proper affine isometric action on �p(Γ × Γ) for all p large enough, see also [Nic13]. For
more results and references, we refer to [BFGM07] where a systematic study of affine isometric
actions of groups on Lp-spaces was undertaken. As suggested by the previous results, it is natural
to expect that for a given group G, it should be ‘easier’ to act isometrically on an Lp-space when
the value of p gets larger. The following questions by Chatterji, Druţu and Haglund makes this
expectation precise.

Question 1.1 [CDH10, Question 1.8]. Let G be a group and p > q ≥ 2. If every isometric action
of G on an Lp space has a fixed point, is the same true for Lq spaces? If G admits a proper
isometric action on an Lq space, does it also admit a proper isometric action on an Lp space?
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Isometric actions on Lp-spaces: dependence on the value of p

The fact that these questions have a positive answer is sometimes referred to as Druţu’s
conjecture [Now15, LO21].

The main result of this paper confirms this intuition and, in particular, answers these
questions. In this statement as in the whole paper, Lp space means Lp(X,μ) for a standard
measure space (X,μ).

Theorem 1. Let G be a topological group. Take 0 < p ≤ q <∞. Then for every continuous
affine isometric action α : G � Lp, there exists a continuous affine isometric action β : G � Lq

such that ‖αg(0)‖p
Lp

= ‖βg(0)‖q
Lq

for all g ∈ G.

Theorem 1 implies, in particular, that if a group G has a continuous action by isometries on
an Lp space with unbounded (respectively, metrically proper) orbits, then it has such an action
on an Lq space.

Corollary 2. For every topological group G:

(i) the set of values of p ∈ (0,∞) such that G admits a continuous action by isometries on
an Lp space with unbounded orbits is an interval of the form (pG,∞) or [pG,∞) for some
pG ∈ {0} ∪ [2,∞];

(ii) the set of values of p ∈ (0,∞) such that G admits a proper continuous action by isometries
on an Lp space is an interval of the form (p′G,∞) or [p′G,∞) for some p′G ∈ {0} ∪ [2,∞].

Recall that for 1 ≤ p <∞, an action by isometries on an Lp space has a fixed point if and
only if it has bounded orbits ([BFGM07, Lemma 2.14] for p �= 1, [BGM12] for p = 1). Thus,
Corollary 2 answers positively Question 1.1. A partial answer for �p spaces had already been
obtained independently by Czuroń [Czu17] and Lavy and Olivier [LO21]. In [LO21] actions com-
ing from ergodic probability measure-preserving actions were also covered. Unlike these previous
results, it is worth mentioning that in Theorem 1, the linear part of the action β that we con-
struct is very different from the linear part of the original action α. We refer to Theorem 4.3 for
a more precise statement.

When G is a second countable locally compact group, it is known that pG > 0 if and only if
G has property (T) [BFGM07], in which case we must have pG ≥ 2 (in fact, by an argument of
Fisher and Margulis from [FM05] that appears in [BFGM07], one can even show that pG > 2 and
that G admits a continuous action by isometries on an Lp space without fixed points for p = pG,
see also [LO21, DK18, Sal19]). Similarly, it is known that p′G > 0 if and only if G does not have
the Haagerup property, in which case p′G ≥ 2 (see [Now06]). This last fact, as well as the fact
that pG /∈ (0, 2), if often stated for second countable locally compact groups, but they are true
for arbitrary topological groups, see Proposition 3.1 (but the fact that p′G /∈ (0, 2) is meaningful
only for locally compact groups, as p′G = ∞ trivially for nonlocally compact groups). The critical
constant pG and p′G are different in general. For example, if G is a locally compact group that
has neither Kazhdan’s property (T) nor Haagerup property, then pG = 0 and p′G ≥ 2. It is also
known that, among Gromov-hyperbolic groups, the value of pG is unbounded, and explicit lower
bounds have been obtained for random groups [DM19] (see also [LS21, Opp20]).

The linear part of the action β constructed in Theorem 1 comes from an action on (X,μ)
preserving an infinite measure. It is not possible to achieve the same with a finite measure.
Indeed, when G has property (T), any affine action on Lp (1 ≤ p <∞) whose linear part comes
from a probability measure-preserving action has a fixed point. This is known when G is dis-
crete [LO21] or when G admits a finite Kazhdan set [CK20]. In general, this is a particular
case of the following result dealing with noncommutative Lp spaces. Its proof relies on a general
observation of independent interest: under a spectral gap and uniform convexity assumption,
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any cohomology class with values in an isometric representation has a unique harmonic
representant (Lemma 5.1).

Theorem 3. Let G be a locally compact property (T) group. An action α : G � Lp(M) by
affine isometries on the noncommutative Lp space of a von Neumann algebra M has a fixed
point in the following two cases:

• 1 < p ≤ 2 and M = B(H) for a Hilbert space H;
• 2 ≤ p <∞ and the linear part of α comes from an action by automorphisms of M preserving

a faithful normal state.

We insist that the first conclusion of the theorem is not trivial. It is indeed an open question
by Masato Mimura whether a locally compact property (T) group can have an unbounded
action by isometries on a noncommutative Lp space for p < 2 (as explained previously this is not
possible for usual Lp spaces), and the previous result provides a negative answer for Schatten
classes.

It is known that the metric space (Lp, ‖ · ‖p/q
p ) isometrically embeds into (Lq, ‖ · ‖q) when

p ≤ q (see [MN04, Remark 5.10]). This implies the following inequalities for the compression
exponents [NP11] of a compactly generated group G

∀0 < p < q <∞, pαp(G) ≤ qαq(G). (1.1)

As a consequence of Theorem 1, we obtain the same inequalities for the equivariant compression
exponents:

∀0 < p < q <∞, pα#
p (G) ≤ qα#

q (G). (1.2)

This inequality is often strict, see [NP11].
We also note that Theorem 1 can be applied to the whole isometry group of Lp and this

yields the following corollary.

Corollary 4. Take 0 < p ≤ q <∞. Then Isom(Lp) is isomorphic as a topological group to a
closed subgroup of Isom(Lq).

Note that if p > 2, the subgroup of translations Lp ⊂ Isom(Lp) is not unitarily representable
[Meg08, Theorem 3.1]. In particular, it cannot be embedded as a closed subgroup of Isom(L2),
which is unitarily representable (by using the affine Gaussian functor [AIM21, Proposition 4.8]
for example).

In view of Corollary 2, it is interesting to determine the parameters pG and p′G, at least for
some classes of groups. This motivates the study of their permanence properties, that we initiate
in the last section of his paper. In particular, we prove the following result, which shows that
they behave nicely with respect to Lp-measure equivalence (see Theorem 5 and the definitions
preceding it). This answers a question by David Fisher (private communication).

Theorem 5. If two compactly generated locally compact groups G1 and G2 are Lp measure
equivalent, then the critical constants defined in Corollary 2 satisfy

min(pG1 , p) = min(pG2 , p) and min(p′G1
, p) = min(p′G2

, p).

This paper is organized as follows. After some preliminaries in § 2, Theorem 1 and its
Corollary 4 are proved in § 3 for p = 2 and § 4 in the general case. Section 5 deals with har-
monic cocycles and the proof of Theorem 3. In § 6, stability properties of the constants pG and
p′G are investigated and in particular, Theorem 5 is proved.
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2. Preliminaries

2.1 Nonsingular actions
Let (X,μ) be a σ-finite standard measure space (we always assume that our measure spaces
are standard and we omit the σ-algebra). We denote by [μ] the measure class of μ. We denote
by Aut(X, [μ]) the group of all nonsingular (preserving the measure class [μ]) automorphisms
of (X,μ) up to equality almost everywhere. It is known that Aut(X, [μ]) is a Polish group
for the topology of pointwise convergence on probability measures: a sequence θn ∈ Aut(X, [μ])
converges to the identity if and only if limn ‖(θn)∗ν − ν‖1 = 0 for every probability measure
ν ∈ [μ]. We denote by Aut(X,μ) the group of all measure-preserving automorphisms of (X,μ)
up to equality almost everywhere. It is a closed subgroup of Aut(X, [μ]). A continuous nonsingular
action σ : G � (X,μ) of a topological group G is a continuous homomorphism σ : G � g �→ σg ∈
Aut(X, [μ]).

2.2 Cohomology
Let π : G � V be a continuous linear representation of a topological group G on a topological
vector space V . We denote by Z1(G, π, V ) the set of all continuous 1-cocycles, i.e. all continuous
maps c : G→ V such that c(gh) = c(g) + g · c(h) for all g, h ∈ G. We denote by B1(G, π, V ) ⊂
Z1(G, π, V ) the set of all coboundaries, i.e. cocycles c of the form c(g) = g · v − v for some v ∈ V .

Let σ : G � (X,μ) be a continuous nonsingular action of a topological group G. Let A be
an abelian topological group (here we use the additive notation for A but this might change
sometimes when A = T). We denote by Z1

σ(G,A) the set of all A-valued 1-cocycles of σ,
i.e. all continuous functions c : G �→ L0(X,μ,A) such that c(gh) = c(g) + σg(c(h)). Here for every
f ∈ L0(X,μ,A), we use the notation σg(f) = f ◦ σ−1

g . We denote by B1
σ(G,A) the set of all

1-coboundaries, i.e. cocycles of the form g �→ σg(f) − f for some f ∈ L0(X,μ,A). Finally, we
denote by H1

σ(G,A) = Z1
σ(G,A)/B1

σ(G,A) the cohomology group of σ.

2.3 Skew-product actions
Let σ : G � (X,μ) be a continuous nonsingular action of a topological group G. Suppose that
A is a locally compact abelian group and let m be the Haar measure of A. Then for every
c ∈ Z1

σ(G,A), we can define a new continuous nonsingular action σ � c of G on (X ×A,μ⊗m)
by the formula

(σ � c)g(x, a) = (gx, a+ c(g−1)(x)).

The action σ � c is called the skew-product action of σ by c. Define a function h : X ×A→ A
by h(x, a) = a for all (x, a) ∈ X ×A. Then, by construction, we have c(g) ⊗ 1 = (σ � c)g(h) − h.
Thus, the skew-product action σ � c turns the cocycle c into a coboundary.

2.4 The Maharam extension
Let σ : G � (X,μ) be a continuous nonsingular action of a topological group G. Then we can
define the Radon–Nikodym cocycle D ∈ Z1

σ(G,R∗
+) by the formula D(g) = d(σg)∗μ/dμ for all

g ∈ G. The skew-product action σ̃ = σ �D−1 : G � X × R∗
+ is called the Maharam extension

of σ. Note that σ̃ preserves the measure μ⊗ dλ where dλ is the restriction to R∗
+ of the Lebesgue

measure of R.

2.5 Isometric actions on Lp-spaces
Take p > 0 and let (X,μ) be a σ-finite measure space. For every θ : Aut(X, [μ]), we define a
linear isometry of Lp(X,μ) given by

f �→
(
θ∗μ
μ

)1/p

θ(f).
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The group L0(X, [μ],T) also acts by multiplication on Lp(X,μ). We thus obtain a continuous
linear isometric representation

πp,μ : Aut(X, [μ]) � L0(X, [μ],T) → O(Lp(X,μ)).

It follows from the Banach–Lamperti theorem that this map is surjective when p �= 2. Note that
if ν ∈ [μ], the canonical isometry Lp(X,μ) → Lp(X, ν) given by f �→ (μ/ν)1/pf is equivariant
with respect to the natural actions πp,μ and πp,ν of Aut(X, [μ]) � L0(X, [μ],T).

Let σ : G→ Aut(X, [μ]) be a continuous nonsingular action of a topological group G.
Then σp,μ = πp,μ ◦ σ is a continuous linear isometric representation of G on Lp(X,μ). Let
D ∈ Z1

σ(G,R∗
+) be the Radon–Nikodym cocycle. Then for every p > 0 and every g ∈ G, the

isometry σp,μ(g) is given by the formula

σp,μ(g) : Lp(X,μ) � f �→ D(g)1/pσg(f) ∈ Lp(X,μ).

Now take some cocycle ω ∈ Z1
σ(G,T). Then the map g �→ ω(g)σp

g is again a continuous linear iso-
metric representation of G on Lp(X,μ). Conversely, if p �= 2, it follows from the Banach–Lamperti
theorem that every continuous linear isometric representation of G on Lp(X,μ) is of the form
π : g �→ ω(g)σp,μ

g for some continuous nonsingular action σ of G and some cocycle ω ∈ Z1
σ(G,T).

Let α be an affine isometric action of G on some Lp-space. As the affine isometry group
Isom(Lp(X,μ)) decomposes as a semi-direct product

Isom(Lp(X,μ)) = O(Lp(X,μ)) � Lp(X,μ),

where Lp(X,μ) acts by translations, we see that α is of the form αg(f) = π(g)f + c(g) where π
is an isometric linear representation of G on Lp(X,μ) and c ∈ Z1(G, π, Lp(X,μ)) is a cocycle.
Observe that even when π = σp,μ for some nonsingular action σ : G � (X,μ), we do not have
Z1(G, σp,μ, Lp(X,μ)) ⊂ Z1

σ(G,C) unless σ preserves the measure μ.

3. The case p = 2

Let G be a topological group and let p > 0. We denote by Kp(G) the set of all continuous
functions ψ : G→ R+ of the form ψ(g) = ‖αg(0)‖p

Lp
for some continuous affine isometric action

α of G on some Lp-space. Note that K2(G) is the set of all continuous functions on G that are
conditionally of negative type.

By using the Gaussian functor, one has the following (classical) result.

Proposition 3.1. Let G be a topological group. Take ψ ∈ K2(G) and p > 0. Then there
exists a continuous probability measure-preserving action σ : G � (X,μ) and a cocycle c ∈
Z1

σ(G,R) such that ψ(g)p/2 = ‖c(g)‖p
Lp

for all g ∈ G. In particular, ψp/2 ∈ Kp(G) for all
p > 0.

Proof. By definition, there exists an orthogonal representation π : G→ O(H) on some Hilbert
space H and a cocycle c ∈ Z1(G, π,H) such that ψ(g) = ‖c(g)‖2 for all g ∈ G. Let σπ : G �

(X,μ) be the Gaussian action associated to σ; see, for example, the construction in [CCJ+01,
Proof of Theorem 2.2.2]. This means that there exists a linear map ξ �→ ξ̂ ∈ L0(X,μ,R)
such that ξ̂ is a centered Gaussian random variable of variance ‖ξ‖2 for all ξ ∈ H, and that
σπ(ξ̂) = π̂(g)ξ for all ξ ∈ H. Let ĉ(g) = ĉ(g) ∈ Lp(X,μ) for all g ∈ G. Then ĉ is a cocycle
for σπ and a computation shows that ‖ĉ(g)‖p

Lp
= Cp‖c(g)‖p for all g ∈ G and some constant

Cp > 0. �
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Corollary 3.2. For every topological group G, we have K2(G) ⊂ Kp(G) for all p ≥ 2.

Proof. The function x �→ xα is a Bernstein function for all 0 < α ≤ 1. It follows that for every
ψ ∈ K2(G), we have ψα ∈ K2(G), hence ψα(p/2) ∈ Kp(G). The conclusion follows by taking
α = 2/p. �

4. Proof of the main theorem

Proposition 4.1. Let G be a topological group. For every p > 0 and every ψ ∈ Kp(G), there
exists a continuous nonsingular action σ : G � (X,μ) and a cocycle c ∈ Z1(G, σp,μ, Lp(X,μ))
such that ψ(g) = ‖c(g)‖p

Lp
for all g ∈ G.

Proof. We may assume that p �= 2 thanks to Proposition 3.1. By definition, there exists an affine
isometric action α : G � Lp(X,μ) for some probability space (X,μ) such that ψ(g) = ‖αg(0)‖p

Lp

for all g ∈ G. Write αg(f) = πg(f) + c(g) where π is an isometric linear representation of
G on Lp(X,μ) and c ∈ Z1(G, π, Lp(X,μ)). As p �= 2, we can write π(g) = ω(g)σp,μ

g where
σ : G � (X,μ) is some nonsingular action and ω ∈ Z1

σ(G,T). Consider the skew-product nonsin-
gular action σ̃ = σ � ω : G � (X × T, μ⊗m) where m is the Haar measure of T. Observe that
σ̃g(u)u∗ = ω(g) ⊗ 1 where u is the function on X × T given by u(x, z) = z for all (x, z) ∈ X × T.
It follows that c̃ : g �→ uc(g) defines an element c̃ ∈ Z1(G, σ̃p, Lp(X × T, μ⊗m)) such that
‖c̃(g)‖p = ‖c(g)‖p for all g ∈ G, where m is the Haar measure of T. �
Lemma 4.2. Take 0 < p < q <∞. Let ϕ : C → R be a nonzero, radial, compactly supported,
Lipschitz function. Then there exists a constant C(q) > 0 such that for all w ∈ C, we have∫

C

∫ ∞

0
|ϕ(z + λ−1/pw) − ϕ(z)|q dλ dz = C(q)|w|p. (4.1)

Proof. Let S be the Lebesgue measure of the support of ϕ, M = ‖ϕ‖∞ and let K be the Lipschitz
constant of ϕ. Then we have |ϕ(z + λ−1/p) − ϕ(z)| ≤ min(2M,Kλ−1/p) for all z ∈ C and all
λ ∈ R∗

+. Therefore, we have∫
C
|ϕ(z + λ−1/p) − ϕ(z)|q dz ≤ 2Smin((2M)q,Kqλ−q/p).

As q > p, the function λ �→ min((2M)q,Kqλ−q/p) is integrable on R∗
+. Therefore, we can define

C(q) =
∫
C

∫ ∞

0
|ϕ(z + λ−1/p) − ϕ(z)|q dλ dz < +∞.

As ϕ is not constant, we have C(q) > 0. Finally, the statement for all w ∈ C follows from the
change of variable λ �→ |w|pλ and the fact that ϕ is radial. �
Theorem 4.3. Let G be a topological group. Take 0 < p < q <∞. Then for every ψ ∈ Kp(G),
there exists a continuous measure-preserving action σ : G � (Y, ν) and a function h ∈ L∞(Y, ν)
such that b(g) = σg(h) − h ∈ Lq(Y, ν) with ψ(g) = ‖b(g)‖q

Lq
for all g ∈ G. In particular, ψ ∈

Kq(G).

Proof. By Proposition 4.1, there exists a nonsingular action σ : G � (X,μ) and a cocycle
c ∈ Z1(G, σp,μ, Lp(X,μ)) such that ψ(g) = ‖c(g)‖p

Lp
for all g ∈ G. Let σ̃ : G � (X̃, μ̃) be the

Maharam extension of σ. This means that (X̃, μ̃) = (X × R∗
+, μ⊗ dλ) where dλ is the restriction

to R∗
+ of the Lebesgue measure of R and σ̃ : G � (X̃, μ̃) is the measure-preserving action given by

g(x, λ) = (gx, ((dg−1μ/dμ)(x))−1λ). Define c̃ ∈ Z1
σ̃(G,C) by the formula c̃(g, x, λ) = λ−1/pc(g, x)

(observe that c̃ indeed satisfies the cocycle relation thanks to the term λ−1/p). Let ρ : G � (Y, ν)
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be the skew-product action of σ̃ by c̃. This is the measure space (Y, ν) = (X̃ × C, μ̃⊗ dz) and
ρ is the measure-preserving action given by g(x̃, z) = (gx̃, z + c̃(g−1, x̃)). Let ϕ : C → R be a
nonzero, radial, compactly supported, Lipschitz function. Define a function h ∈ L∞(Y, ν) by
h(x̃, z) = ϕ(z), and let b(g) = ρg(h) − h for all g ∈ G. Then Lemma 4.2 shows that b is a cocycle
with values in Lq(Y, ν) that satisfies the conclusion of the theorem up to a constant C(q) > 0. �
Remark 4.4. The idea of the proof of Theorem 4.3 and of the cocycle c̃ becomes very natural
if one uses the notion of modular bundle and Haagerup’s canonical Lp-spaces as explained in
[AIM21, §§ A.2 and A.3]. Indeed, by viewing the canonical Lp-space Lp(X) as a subspace of
L0(Mod(X)), the isometric linear representation σp : G � Lp(X) associated to some nonsingular
action σ : G � X is identified with the restriction to Lp(X) of the Maharam extension Mod(σ) :
G � Mod(X). We can therefore identify every cocycle c ∈ Z1(G, σp, Lp(X)) with a cocycle c̃ ∈
Z1

Mod(σ)(G,C). This is crucial in order to be able to use the skew-product construction.

Proof of Corollary 4. Let G = Isom(Lp) with its canonical affine isometric action on Lp. By
applying Theorem 1, we obtain a continuous homomorphism Ψ : Isom(Lp) → Isom(Lq) such
that

‖g(0)‖p
Lp

= ‖Ψ(g)(0)‖q
Lq

for all g ∈ Isom(Lp).

We have to show that Ψ is a homeomorphism on its range. Take (gn)n∈N a sequence in Isom(Lp)
and suppose that Ψ(gn) → id. We have to show that gn → id. Take f ∈ Lp and let τf ∈ Isom(Lp)
be the translation by f . Then

‖gn(f) − f‖p
Lp

= ‖(τ−1
f ◦ gn ◦ τf )(0)‖p

Lp
= ‖Ψ(τ−1

f ◦ gn ◦ τf )(0)‖q
Lq
.

As Ψ(gn) → id, we also have Ψ(τ−1
f ◦ gn ◦ τf ) = Ψ(τf )−1 ◦ Ψ(gn) ◦ Ψ(τf ) → id. This yields

lim
n

‖gn(f) − f‖p
Lp

= lim
n

‖Ψ(τ−1
f ◦ gn ◦ τf )(0)‖q

Lq
= 0.

As this holds for all f ∈ Lp, we conclude that gn → id as we wanted. �
Question 4.5. Is Theorem 4.3 still true when q = p? Can we at least realize ψ with an affine
isometric action whose linear part comes from a measure-preserving action of G? One can show
that if a measurable function ϕ : R → R satisfies∫

R

∫ ∞

0
|ϕ(x+ λ−1/p) − ϕ(x)|p dλ dx < +∞

for some p ≥ 1, then ϕ is almost surely constant. Therefore, our method for the proof of
Theorem 4.3 cannot work when q = p.

Question 4.6. Take 0 < p, q <∞. Is it true that Isom(Lp) embeds as a closed subgroup of
Isom(Lq) if and only if p ≤ max(2, q)?

5. Harmonic cocycles and state-preserving actions

Let E be a uniformly convex Banach space and let π be a continuous representation of a locally
compact group G on E. Then we can decompose E as a π-invariant direct sum E = Eπ ⊕ Eπ

where Eπ is the subspace of π-invariant vectors and Eπ is its natural complement (defined as
the orthogonal of (E∗)π∗

where π∗ is the dual representation of π on E∗), see [BFGM07]. We say
that π has spectral gap if π|Eπ has no almost invariant vectors. By [DN19, Theorem 1.1], this
is equivalent to the existence of a symmetric compactly supported probability measure μ on G
such that ‖π(μ)|Eπ‖ < 1.
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Lemma 5.1. Let G be a locally compact group and let π be a representation of G on a uniformly
convex Banach space E that has spectral gap. Let μ be a symmetric compactly supported
probability measure μ onG such that ‖π(μ)|Eπ‖ < 1. Then every cohomology class inH1(G, π,E)
admits a unique μ-harmonic representant.

Proof. By decomposing E = Eπ ⊕ Eπ, we can reduce the problem to the case where π is either
trivial or has no invariant vectors.

Assume first that π is trivial. Then B1(G, π,E) = 0 and an element of Z1(G, π,E) is just a
group homomorphism from G to E. Thus, because μ is symmetric, every element of Z1(G, π,E)
is μ-harmonic.

Now, assume that π has no invariant vectors, i.e. E = Eπ. Take c ∈ Z1(G, π,E). Let α be
the affine isometric action of G on E associated to c. Then the affine map α(μ) =

∫
g∈G αg dμ(g)

is k-Lipschitz with k = ‖π(μ)‖ < 1. Therefore, α(μ) has a fixed point ξ ∈ E for some ξ ∈ E. Let
c′(g) = c(g) + π(g)ξ − ξ. Then we get

∫
G c

′(g) dμ(g) = α(μ)ξ − ξ = 0. We conclude that c′ is a
μ-harmonic representant of the cohomology class of c. For the uniqueness part, observe that if
we have a coboundary b(g) = π(g)ξ − ξ that is μ-harmonic, then π(μ)ξ = ξ, hence ξ = 0 because
‖π(μ)‖ < 1. �
Lemma 5.2. Let G be a compactly generated locally compact group and let π1, π2 be two rep-
resentations of G on two strictly convex Banach spaces E1 and E2. Suppose moreover that E1 is
uniformly convex and that π1 has spectral gap. Then every injective continuous G-equivariant
linear map ψ : E1 → E2 induces an injective map ψ∗ : H1(G, π1, E1) → H1(G, π2, E2).

Proof. As π1 has spectral gap and E1 is uniformly convex, we can find a symmetric compactly
supported probability measure μ on G such that ‖π1(μ)Eπ1

‖ < 1. As G is compactly generated,
we can assume that the support of μ generates G.

Take ω ∈ H1(G, π1, E1). By Lemma 5.1 ω admits a μ-harmonic representant c ∈
Z1(G, π1, E1). Then ψ∗ω ∈ H1(G, π1, E1) is represented by the cocycle c′ : g �→ ψ(c(g)). Note
that c′ is still μ-harmonic. Suppose that ψ∗ω = 0. This means that c′ is a coboundary, i.e. c′(g) =
π2(g)ξ − ξ for some ξ ∈ E2 and all g ∈ G. As c′ is μ-harmonic, we have

∫
G π2(g)ξ dμ(g) = ξ. As

E2 is strictly convex, this implies that π2(g)ξ = ξ for all g in the support of μ, hence for all
g ∈ G. We conclude that c′ = 0, hence c = 0 because ψ is injective. �
Remark 5.3. The previous lemma applies, for example, when σ : G � (X,μ) is a continuous
probability measure-preserving action of a compactly generated locally compact group, (πi, Ei) =
(σpi,μ, Lpi(X,μ)) for ∞ > p1 ≥ p2 > 1 and ψ is the inclusion map Lp1 → Lp2 . The lemma shows
that

∀1 < p1 < p2 <∞, H1(G, σp2,μ) = 0 =⇒ H1(G, σp1,μ) = 0.

Indeed, the assumption that H1(G, σp2,μ) = 0 implies that σp2,μ has spectral gap, which implies
that σp1,μ has spectral gap, see [BFGM07]. In particular, if G is a locally compact property (T)
group, H1(G, σp,μ) = 0 for every p ∈ [1,∞). This was already known when G is discrete [LO21],
or G admits a finite Kazhdan set [CK20].

More generally, the lemma applies to the actions on noncommutative Lp spaces associated
to state-preserving actions on von Neumann algebras, and also for actions on Schatten p-classes.
We start with the latter as it is more elementary.

For a Hilbert spaceH, we denote by Sp(H) the Schatten p-class, that is, the space of operators
on H such that ‖T‖p := (Tr(|T |p))1/p <∞. We say that a group has FSp if for every H and
every continuous isometric representation π : G � Sp(H)), H1(G, π, Sp(H)) = 0.
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Theorem 5.4. If G is a σ-compact locally compact group, then the set of 1 < p <∞ such that
G has FSp is empty if G does not have property (T), and is an interval containing (1, 2] otherwise.

Proof. Assume that G does not have property (T). By Guichardet’s theorem, there is a unitary
representation π on a Hilbert space H and an unbounded cocycle b ∈ Z1(G, π). If ξ ∈ H∗ is a
unit vector, then the formula g · T = π(g)T + b(g) ⊗ ξ defines an unbounded action by isometries
on Sp(H) for every 1 ≤ p ≤ ∞. Thus, G does not have FSp.

If G has property (T), then G is compactly generated, and has FS2 by Delorme’s theorem
(S2(H) is a Hilbert space). We have to prove that, if 1 < p < q <∞ are such thatG has FSq, then
G has FSp. We can assume that p �= 2. Let π : G→ O(Sp(H)) be an orthogonal representation.
By [Yea81], πg is of the form πg(T ) = WgJg(T ) for a unitary Wg and a Jordan automorphism
Jg of B(H). In particular, the same formula gives rise to an isometric representation on Sq(H)
and the inclusion Sp(H) ⊂ Sq(G) is equivariant. Moreover, both representations have spectral
gap [Yea81], and the Schatten spaces are uniformly convex when 1 < p <∞. We conclude by
Lemma 5.2 that H1(G,Sp(H)) → H1(G,Sq(H)) = 0 is injective and H1(G,Sp(H)) = 0. �

To state our result about state-preserving actions, we need to recall Haagerup’s general
definition of noncommutative Lp spaces [Haa79]. We follow the approach in [Mar19, § 2.1].
If M is a von Neumann algebra, the core of M is the unique (up to unique isomorphism)
tuple (c(M), τ, θ, ι) of a von Neumann algebra c(M), a normal faithful semifinite trace τ on
c(M), a continuous homomorphism θ : R → Aut(M), and a normal injective ∗-homomorphism
ι : M → c(M) satisfying τ ◦ θs = e−sτ and {x ∈ c(M) | ∀s ∈ R, θs(x) = x} = ι(M). In the fol-
lowing, we identify M with its image in c(M) and write x instead of ι(x). For example, if φ
is a normal faithful weight on M , the core can be realized as c(M) = M �σφ R, the crossed
product by the modular automorphism group of φ. In that case, θ is given by the dual action
and ι the natural inclusion. For details on the construction and the existence of a trace τ as
required, see [Tak03]. Then Lp(M) is defined as the space of τ -measurable operators affili-
ated to c(M) such that θs(h) = e−s/ph for all s ∈ R. By [Haa79, Theorems 1.2 and 1.3], for
every normal state ϕ on M , there is a unique element of L1(M), that we also denote ϕ,
satisfying

ϕ

( ∫
R
θt(x) dt

)
= τ(ϕx)

for every nonnegative x ∈ c(M). Moreover, this map extends by linearity to an isomorphism
M∗ → L1(M). This allows us to define, for 1 ≤ p <∞ and h ∈ Lp(M), ‖h‖p := ‖|h|p‖1/p

M∗ . This
turns Lp(M) into a Banach space that is uniformly convex if 1 < p <∞, and the ‖ · ‖p norms
satisfy Hölder’s inequality.

By the uniqueness of the core, any continuous action by automorphisms of G on M gives
rise to a continuous action by isometries on Lp(M), that we call the p-Koopman representation.

Theorem 5.5. Let G be a locally compact group with property (T). Let σ : G→ Aut(M) be
an action on a von Neumann algebra M that preserves some faithful normal state ϕ on M .
Take p ≥ 2 and let πp : G→ O(Lp(M)) be the p-Koopman representation associated to σ. Then
H1(G, πp, Lp(M)) = 0.

Proof. First, πp has spectral gap by [Oli12].
Define a continuous linear map ψ : Lp(M) → L2(M) by the formula

ψ(xϕ1/p) = xϕ1/2
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for all x ∈M . This map is well-defined because Mϕ1/p is dense in Lp(M) and for all x ∈M , we
have

‖xϕ1/2‖2 = ‖xϕ1/p · ϕ1/q‖2 ≤ ‖xϕ1/p‖p · ‖ϕ1/q‖q = ‖xϕ1/p‖p,

where 1/p+ 1/q = 1
2 . Observe that πp(g)(xϕ1/p) = σ(g)(x)ϕ1/p for all x ∈M , because σ pre-

serves ϕ, and we have the same formula for p = 2. This implies that ψ is G-equivariant
with respect to the Koopman representations of σ. Thus, it induces an injective map from
H1(G, πp, Lp(M)) into H1(G, π2, L2(M)) by Lemma 5.2. As G has property (T), we know that
H1(G, π2, L2(M)) = 0. We conclude that H1(G, πp, Lp(M)) = 0. �

6. Stability properties of the constants pG and p′
G

We start with some elementary stability properties.

Proposition 6.1. Let G be a locally compact group and let H < G be a closed subgroup. Then
p′H ≤ p′G. If H � G is a closed normal subgroup, then pG/H ≥ pG.

Proof. Any proper action of G on an Lp space restricts to a proper action of H, so p′H ≤ p′G. If
H is normal, any action of G/H with unbounded orbits on an Lp space can be seen as an action
of G, so pG/H ≥ pG. �
Proposition 6.2. Let G1, G2 be two locally compact groups. Then

pG1×G2 = min(pG1 , pG2) and p′G1×G2
= max(p′G1

, p′G2
).

Proof. The inequalities pG1×G2 ≤ min(pG1 , pG2) and p′G1×G2
≥ max(p′G1

, p′G2
) follow from

Proposition 6.1.
For the inequality pG1×G2 ≥ min(pG1 , pG2), observe that if G1 ×G2 � Lp has unbounded

orbits, then its restriction to either G1 or G2 also has unbounded orbits.
For the inequality p′G1×G2

≤ max(p′G1
, p′G2

), observe that given two isometric actions G1 �

Lp(Ω1) and G1 � Lp(Ω2), one can construct the action of G1 ×G2 on Lp(Ω1 ∪ Ω2), which is
proper whenever both actions were proper. �
Proposition 6.3. Let G be a locally compact group and let K � G be a normal compact
subgroup. Then

pG/K = pG and p′G/K = p′G.

Proof. The only thing to note is that the space of K-invariant vectors for an isometric repre-
sentation of G on an Lp-space is isometric to an Lp-space. This either follows from the general
form of isometries of Lp-space, or from the classical result [Tza69] that the range of a norm 1
projection in B(Lp) is isometric to an Lp-space. �

We now investigate the stability of the constants pG and p′G under measure equivalence. For
this we need to recall some definitions.

Let G be a locally compact group G with left Haar measure mG. A measure-preserving
action of G on (X,μ) is called principal if there is a measure-preserving conjugacy between
G � (X,μ) and an action of the form G � (G× Ω,mG ⊗ ν) where G acts by translation of the
left coordinate and (Ω, ν) is a measure space with finite measure. In that case, we can identify
Ω with X/G and, thus, equip X/G with the finite measure space structure coming from this
identification. The finite measure on X/G coming from this identification is denoted μ/G.

Let G1 and G2 be two locally compact groups. The groups G1, G2 are said to be measure
equivalent if there is a measure equivalence coupling, that is a measure space (X,μ) equipped
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with two commuting measure-preserving principal actions of G1 and G2. Observe that we then
obtain a measure-preserving action of G2 on (X/G1, μ/G1) and of G1 on (X/G2, μ/G2). We use
the notation μ1 = μ/G1 and μ2 = μ/G2.

Let p1 : X → G1 be a G1-equivariant map (it always exists because the action of G1 is
principal). Then for every g2 ∈ G, the map

X � ω �→ p1(g2ω)−1p1(ω) ∈ G1

is G1-invariant. Thus, one can define a cocycle c1 : G2 ×X/G1 → G1 by the formula

c1(g2, ω1) = p1(g2ω)−1p1(ω),

where ω ∈ X is any representant of ω1 ∈ X/G1. Observe that the cocycle c1 depends on the
section p1.

Now, suppose that G1 is compactly generated. Take p > 0. We say that the measure equiva-
lence coupling (X,μ) is Lp-integrable over G1 if there exists a G1-equivariant map p1 : X → G1

such that the associated cocycle c1 defined previously satisfies the following Lp-integrability
condition: ∫

X/G1

|c1(g2, ω1)|pG1
dμ1(ω1) <∞ ∀g2 ∈ G2,

where | · |G1 is the word length with respect to any compact generating set of G1 (the integrability
condition does not depend on the choice).

We say that two compactly generated groups G1 and G2 are Lp-measure equivalent if there
exists a measure equivalence coupling that is Lp-integrable over both G1 and G2. Thanks to the
construction in [Fur99, Theorem 3.3], we know that Lp-measure equivalence is more general than
Lp-orbit equivalence.

More details on measure equivalence of locally compact groups and Lp-measure equivalence
can be found in [BFS13, § 1.2] and the references therein.

Theorem 6.4. Let G1 and G2 be two locally compact groups. Let 1 ≤ p <∞. Suppose that G1

is compactly generated and that there exists a measure equivalence coupling between G1 and G2

that is Lp-integrable over G1.

(i) If G1 admits an affine isometric action without fixed points on some Lp-space, then so
does G2.

(ii) If G1 admits a proper affine isometric action on some Lp-space, then so does G2.

Proof. We use the standard tool of induction of Banach-space actions as in [BFGM07, § 8.b]. Let
(X,μ) be measure equivalence coupling that is Lp-integrable over G1. Let p1 and c1 be as in the
definition.

Let α : G1 � E be an action by affine isometries of G1 on a Banach space E. Let
L0(X,μ,E)G1 be the set of all G1-equivariant Bochner-measurable maps from X to E. Note
that L0(X,μ,E)G1 is only an affine subspace of L0(X,μ,E) (it does not contain 0). Observe
that we have a natural affine action β : G2 � L0(X,μ,E)G1 given by βg2(f)(x) = f(g−1

2 x) for
all x ∈ X. If f, h ∈ L0(X,μ,E)G1 , then the map ‖f − h‖E : X → R+ is G1-invariant and, thus,
we can define

‖f − h‖p,G1 =
( ∫

X/G1

‖f − h‖p
E dμ1

)1/p

.

We clearly have ‖βg2(f) − βg2(h)‖ = ‖f − h‖ for all g2 ∈ G2 (because the action of G2 on X/G1

preserves the measure).
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Take x ∈ E and define f0 ∈ L0(X,μ,E)G1 by the formula f0(ω) = p1(ω) · x. Now, define an
affine subspace

F = {f ∈ L0(X,μ,E)G1 | ‖f − f0‖p,G1 <∞}.
Note that the space F is isometric to Lp(X/G1, μ1, E). In particular, if E is an Lp-space, then
F is also an Lp-space.

Now, a key observation is that βg2(f0) ∈ F for all g2 ∈ G2. Indeed, we have

‖βg2(f0) − f0‖p,G1 =
(∫

X/G1

‖c1(g2, ω1) · x− x‖p
E dμ1(ω1)

)1/p

and this integral is finite because of the Lp-integrability of c1 and the fact that the function g1 �→
‖g1 · x− x‖E grows sublinearly: there exists a constant C > 0 such that ‖g1 · x− x‖E ≤ C|g1|G1

for all g1 ∈ G1.
As βg2(f0) ∈ F for all g2 ∈ G2, it follows that F is globally invariant under the action β.

We conclude that the action β : G2 � L0(X,μ,E)G1 restricts to an affine isometric action, still
denoted β, of G2 on F . We call the affine isometric action β : G2 � F the induced action of α
(note that it depends on the choice of p1).

To prove item (i), it is enough to check that if β has a fixed point then α also has a fixed point.
Let f ∈ F be a fixed point for β. This means that f : X → E is a G1-equivariant measurable
map that is also G2-invariant. Thus, we can view f as a G1-equivariant map from X/G2 to E.
As X/G2 admits a G1-invariant probability measure μ2, we can push it forward by f to obtain
a G1-invariant probability measure on E. We conclude by [BFGM07, Lemma 2.14] that α has a
fixed point.

To prove item (ii), it is enough to check that if α is proper, then β is also proper. We have

‖βg2(f0) − f0‖p,G1 =
( ∫

X/G1

‖c1(g2, ω1) · x− x‖p
E dμ1(ω1)

)1/p

.

Take R > 0. As α is proper, we can choose a compact subset K1 ⊂ G1 such that ‖g1x− x‖ ≥ R
for all g1 ∈ G1 \K1. Observe that

μ1{ω1 ∈ X/G1 | c(g2, ω1) ∈ K1}

=
1

mG1(K1)
μ{ω ∈ X | p1(ω) ∈ K1 and p1(g2ω)−1p1(ω) ∈ K1}

≤ 1
mG1(K1)

μ{ω ∈ X | p1(ω) ∈ K1 and p1(g2ω) ∈ K−1
1 K1}.

As μ(p−1
1 (K1 ∪K−1

1 K1)) < +∞, there exists a compact subset K2 ⊂ G2 such that μ(p−1
1 (K1 ∪

K−1
1 K1) \ p−1

2 (K2)) ≤ 1
4mG1(K1). Take g2 ∈ G2 \K2K

−1
2 . Then, we cannot have p2(ω) ∈ K2

p2(g2ω) ∈ K2 at the same time. Therefore, we obtain

μ{ω ∈ X | p1(ω) ∈ K1 and p1(g2ω) ∈ K−1
1 K1} ≤ 2μ(p−1

1 (K1 ∪K−1
1 K1) \ p−1

2 (K2)),

which yields
μ1{ω1 ∈ X/G1 | c(g2, ω1) ∈ K1} ≤ 1

2 .

By the choice of K1, this means that

μ1{ω1 ∈ X/G1 | ‖c(g2, ω1) · x− x‖E ≥ R} ≥ 1
2 ,

hence
‖βg2(f0) − f0‖p,G1 ≥ 2−1/pR.
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This holds for all g2 ∈ G2 outside of the compact subset K2K
−1
2 . We conclude that β is

proper. �

When G is a locally compact group and Γ < G is a lattice, then (G,mG) is measure equiv-
alence coupling between G and Γ. Therefore, Theorem 6.4 covers, in particular, the following
corollary which is already implicit in [BFGM07].

Corollary 6.5 [BFGM07]. Let G be a locally compact compactly generated group and let
Γ < G be a lattice. Then pΓ ≤ pG and p′Γ ≤ p′G. If Γ is Lp-integrable for some p ≥ pΓ (respectively,
p ≥ p′Γ), then pG = pΓ (respectively, p′G = p′Γ).
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DK18 C. Druţu and M. Kapovich, Geometric group theory, American Mathematical Society Collo-
quium Publications, vol. 63 (American Mathematical Society, Providence, RI, 2018), with an
appendix by Bogdan Nica.
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CNRS, vol. 274 (CNRS, Paris, 1979), 175–184.

LO21 O. Lavy and B. Olivier, Fixed-point spectrum for group actions by affine isometries on
Lp-spaces, Ann. Inst. Fourier (Grenoble) 71 (2021), 1–26.

LS21 T. de Laat and M. de la Salle, Banach space actions and L2-spectral gap, Anal. PDE 14
(2021), 45–76.

Mar19 A. Marrakchi, Spectral gap characterization of full type III factors, J. Reine Angew. Math.
753 (2019), 193–210.

Meg08 M. Megrelishvili, Reflexively representable but not Hilbert representable compact flows and
semitopological semigroups, Colloq. Math. 110 (2008), 383–407.

MN04 M. Mendel and A. Naor, Euclidean quotients of finite metric spaces, Adv. Math. 189 (2004),
451–494.

NP11 A. Naor and Y. Peres, Lp compression, traveling salesmen, and stable walks, Duke Math. J.
157 (2011), 53–108.

Nic13 B. Nica, Proper isometric actions of hyperbolic groups on Lp-spaces, Compos. Math.
149 (2013), 773–792.

Now06 P. W. Nowak, Group actions on Banach spaces and a geometric characterization of
a-T-menability, Topology Appl. 153 (2006), 3409–3412.

Now15 P. W. Nowak, Group actions on Banach spaces, in Handbook of group actions. Vol. II,
Advanced Lectures in Mathematics (ALM), vol. 32 (International Press, Somerville, MA,
2015), 121–149.

Oli12 B. Olivier, Kazhdan’s property (T ) with respect to non-commutative Lp-spaces, Proc. Amer.
Math. Soc. 140 (2012), 4259–4269.

Opp20 I. Oppenhein, Garland’s method with Banach coefficients, Preprint (2020), arXiv:2009.01234.
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