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Production optimization for a

monopolist who does not set prices

L.J. Armour, D.J. Gates, and J.A. Rickard

Consider a monopolistic firm selling each business period's

production at the end of that period at a price determined by the

buyers, and wishing to determine the production for which

business period profit is maximal. In this paper we announce

the results of our investigations into what happens when the firm

employs a certain algorithm (based on linear approximations to

its average contribution profit function) in an attempt to

determine this optimal production. Our results are as follows:

firstly, for many apparently feasible average contribution profit

functions the algorithm generates production sequences globally

convergent to the optimal production, the convergence being

linear with convergence ratio dependent on the average

contribution profit function; secondly, in certain cases a

lower bound for the initial rate of convergence of the algorithm

can be obtained. Proofs are for the most part given only in

outline, and will be published in full later.

1 . Introducti on

In references [2] and [3], an algorithm is developed which a firm in

competition with a number of other similar firms might use in an attempt to

determine how much it should produce in a business period in order to

maximize its business period revenue. In the development of this algorithm

it is assumed that all of the firm's production for a business period is

sold at the end of that period at a price determined by the buyers, and
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that the firm does not know the functional relationship between production

and revenue. The algorithm uses the production and revenue figures for the

current business period and the one preceding it to generate a production

figure for the next period, and appears to be novel in that it is based on

the use of linear estimates of the firm's average revenue function rather

than on estimates of the revenue function itself.

Gates and Rickard [2] showed that if the algorithm is employed

simultaneously by all of the competing firms, and if it converges to a

limiting production for each of them, then this set of limiting productions

will "be Pareto optimal for suitable revenue functions; the existence of a

special class of revenue functions for which convergence actually does

occur was also demonstrated. Now the condition for a set of productions to

be Pareto optimal in the case of n competing firms reduces simply to the

condition for revenue to be maximal when there is just one firm supplying

the market, and this has led us to investigate the consequences of the

algorithm being employed by a monopolistic firm producing only one type of

goods, and selling each business period's production at the end of that

period for whatever it will fetch. As a preliminary to this investigation,

we have made some modifications to the model that would have resulted had

we considered the firm to be operating under the conditions described in

[2] and [3]; these have been aimed at producing a more realistic model,

and are embodied in the following three assumptions:-

A(l) The firm aims to maximize contribution profit (that is revenue

less variable costs) rather than just revenue; thus the functions J(o)

and m(o) of [I], where O represents production, will be taken in the

sequel as being the firm's contribution profit and average contribution

profit functions respectively.

A(ll) A combination of endogenous and exogenous constraints limits

the firm's production for a business period to a maximum of a . Taking
rnsx

a to be a continuous variable, we thus have that O can be set at any

value lying in [b, a J .

Market research carried out prior to the firm deciding to go

into business indicated that its contribution profit was most likely to be

maximal when the production was 0_., , and that its operations would be
nM
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profitable only when the production lay in the interval {onr,^ , anr,_] ,
nP 1 Kb d

that is, a_D~ and 0D D, are the market research estimates of the firm's

upper and lower break even points respectively.

With regard to the first of these assumptions, it should be pointed

out that in practice a firm would be more likely to aim at maximizing a

discounted sum of the profits over all business periods since it commenced

its operations rather than at determining the production for which

contribution profit (and hence total profit) for a business period is

maximal. However, the problem of maximizing a discounted sum of values of

an unknown function does not appear to be at all tractable, and we have, to

this stage, confined ourselves to the consideration of the simpler (but

slightly less realistic) problem.

Gates and Rickard [2] implicitly assumed that if the firm produces the

same amount in each of two business periods then the profit realized in

each of those periods will be the same; this amounts to assuming that

economic conditions are stable. We now make this assumption explicitly,

but in so doing point out that the algorithm could also be used under

inflationary conditions if suitably discounted values of costs and revenue

were used.

We have now set the scene so far as the economic environment, the form

of the market, and the nature and major managerial goal of the firm are

concerned. (Before proceeding-further, we should perhaps make the fairly

obvious point that the form of the market indicates that we are probably

not considering a manufacturing firm.) We now make a final assumption,

which is concerned with the firm's belief as to the general form of m(a) :

A(IV) The preliminary market research indicated that m(a) belongs

to the class of functions (which ve will refer to as the class C ) that

are continuous and monotonic decreasing in (0, a ] , and positive in

some neighbourhood of the origin.

Assumption A(lV) is crucial, since the whole rationale for the

algorithm's development is based on the supposition that m(a) is

monotonic decreasing in (0, o ] , so that if the firm believed that

m{a) € C this would provide the motivation for it to use the algorithm.

Without going into details (these may be found in [/]) it appears to us
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that under our assumed marketing and economic conditions, average

contribution profit functions belonging to the class C would be likely to

occur fairly frequently, so that in making assumption A(IV) we are, so far

as we can see, modelling real world situations.

In the remainder of this paper we report the results of our

investigations; in brief, we have shown that:

R(l) For many classes of likely average contribution profit

functions, employment of the algorithm leads to the determination of a* ,

the production for which business period contribution profit is maximal.

R(ll) When a production sequence generated by the algorithm

converges, its asymptotic behaviour is to converge linearly with

convergence ratio dependent on m(a) .

R(III) In certain cases, a lower bound for the initial rate of

convergence of the algorithm can be obtained; this initial rate is of

course likely to be of more interest to the firm than the asymptotic rate.

The proof of the result R(l) is relatively straightforward, but

tedious, and we will simply indicate the method used. The second result is

proved in a fairly standard manner, so again the full proof will not be

given; however, the proof of the result R(lll) is quite short, and will be

given in full. Before we proceed, it would perhaps be advisable to give a

brief resume of the development of the algorithm, and describe some

auxiliary procedures that would be employed in certain singular situations.

2. The algorithm

Suppose ait) and ait-X) are the two most recent productions, with

j(t) and j(t-l) the corresponding contribution profits, and m(t) and

m(t-l) the respective average contribution profits (obtained by dividing

the contribution profits by the corresponding productions). The firm

approximates to the unknown function mia) by the linear function mia\t)

whose graph passes through the points [ait), mit)) and [ait-l) , w(t-l)) ,

and intersects the o-axis at aTit) . The firm now constructs the

approximate contribution profit function Jia\t) = am{a\t) . If

mia) € C , as the firm believes, then mia\t) has negative gradient, and

elementary calculus gives that Jia\t) is maximal at a = %ar(t) . This

https://doi.org/10.1017/S0004972700010637 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700010637


P r o d u c t i o n o p t i m i z a t i o n 355

value of a is now taken as o(t+l) , so that we have

(1) a(t+l) =%ax(t) ,

that is

(2) a(t+i) = Ho(t)-m(t)[a(t)-o(t-i)]/[m(t)-m(t-l)]} .

(We note here that (2) was obtained by Gates and Rickard [2 ] , but by

direct differentiation of J(o\t) with respect to a rather than via ( l ) ;

(l) and (2) are obviously equivalent, but one or the other will be more

convenient to use, depending on the situation under discussion.)

In order to use this production generating procedure, the firm has to

set values for the in i t i a l productions o(l) and a(2) . I t will be shown

in the following section that the choice made for these values is

immaterial so far as the ultimate attainment of the firm's goal is

concerned; however, for the sake of definiteness we will suppose that

a(l) = afl, and a(2) = h(o__ +afl ) unless J(l) is negative, in which

case c(2) is taken equal to OD n (for a discussion of the rationale for
rib \-

these choices see [7]).

When using the production generating equations above, three singular

cases can arise; these cases, and the auxiliary procedures the firm uses

to deal with them, are as follows:

(i) Due to production values being calculated only to a certain level

of accuracy, it may happen that the calculated value of a(i+l) is equal

to ait) , so that a(t+2) is indeterminate. The firm proceeds by

choosing as oit+l) a value infinitesimally smaller than ait) , that is,

it chooses ait+l) = ait) - £ , e > 0 . If subsequently two other

successive productions are calculated as having the value ait) , it

chooses instead of the second of these the value ait) - e/2 , and so on.

(ii) mit-l) and mit) are negative, and a At) is non-positive.

If t = 2 , the firm proceeds by choosing as a(3) an infinitesimally

small positive value. If t = T > 2 , a(x+l) is chosen as 0 , where

a^p is the production for which j(o) has to that stage been maximal,

(iii) oit+l) as calculated exceeds a . The firm proceeds by
fllcLX
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choosing a,.__ as cr(£+l) . If the subsequently calculated value of
no cl

o(t+2) exceeds 0 then a is chosen as a(t+2) , and if a(t+3)
IH3.X Q16LX

as calculated also exceeds a , o(t+3) is chosen as infinitesimally
ni3,x

smaller than 0 ; t ha t i s , a(t+3) = O - £ , e > 0 . I f
max max

subsequently a s imilar s i tuat ion a r i s e s , then 0 , 0 - e/2 , and so

on, are used instead of 0n7,~, 0 , and so on.
hn c. max

Again the reader will find the rationale for these auxiliary

procedures in [I]. Of course, other procedures could be devised to deal

with the singular situations; however, it turns out that in the long run

it is of no consequence what procedures are adopted.

From now on we will refer to (l) together with the auxiliary

procedures as Algorithm A (or simply as "the algorithm").

3. Convergence of Algor i thm A to the optimal product ion

We will denote by C, the class of functions belonging to C and

possessing the properties

(A) m(a) is strictly convex in [o, a 1 ,

Also, we will denote by CD the class of functions belonging to C
u n.

and possessing the properties

(C) m{o) i s differentiable in (0, a 1 ,

(D) 0OT(0) has only one stationary value in (0, a.) , where a

i s the 0-intercept of the graph of m{a) .

We now outline the proofs of the two basic resu l t s used to arrive a t

the resu l t R(l) of Section 1. These are:

(Cl) If m{a) € C. , then any sequence of productions generated by

the algorithm converges to a limit lying in [0, a.) .

(C2) If m(o) € Cg , then ihe limit referred to in (Cl) is 0* .
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As a preliminary, we observe that in view of the auxiliary procedures

adopted, ait) € (o, 0 /2] for all t , and that in particular

o(t+l) € (0, 0/2] if a(i-l) and ait) both lie in (o, a.] .

Proof of (Cl) . The proof is by exhaustion; using {ait)} to denote

the sequence of productions a(3), a{h), ... generated by the algorithm,

we consider the evolution of {ait)} for every admissible ordering of

a(l) , o(2), a(3) , and a . It turns out that the basic results are those

concerning the situations where 0(1) and 0(2) both lie in [O, 0.] ,

since in each of the other cases it can be shown that eventually two

consecutive members of {a(t)} will lie in (0, 0 ] . As an example of

the type of reasoning used, consider the case where 0(2) < 0(1) 5 0 , and
ri

o(3) < 0(2) . (This is case A.I of [/].)

By property (A), 0^3/ < O/(2) , so that by (l), a(h) < o( 3) . By

(A) again, a^h) < 0̂ .(3) , so that 0(5) < o(h) , and so on; that is,

{ait)) is monotonic decreasing, and since it is bounded below (by zero) we

thus have that the sequence of productions converges to a limit lying in

[0, a,) -

Whilst the proofs in a number of the other cases are slightly less

straightforward, we feel that this example is sufficiently typical to

render the inclusion of proofs of the less straightforward cases

unnecessary.

Proof of (C2) . Suppose mia) € Cg . By (Cl) , {ait)} will converge

to a limit, 0 say, where 0 € [0, 0.) . In view of (C), (2) then becomes

o = l:\a-mio~) [m'Mr1}

as t -*• °° , which reduces to

(3) am'(a) + m(a) = 0 .

(Here, and in the sequel, m'ia) = dmio)/ a , and so on.) Now in view of

(D), 0* , the optimal production, will be the one solution for 0 of

ik) am'ia) + mia) = 0
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which lies in [0, o ) . Comparing (3) and (h), we conclude that a is a

stationary value of j(a) ; since a* is the only stationary value of

j(o) in (0, a ) , and a f (0, a ) , we thus have that a = a* .

From the results (Cl) and (C2) it is relatively easy to show that

employment of the algorithm leads to the determination of a* in each of

the following situations:

1- m(a) £ C and possesses properties (A) and (C), and in addition

possesses the properties:

(E) omio) is unimodal at a maximum in [0, a 1 .
*• m a x J

(F) The tangent to the graph of m(o) a t a = a has a- intercept
max

lying in fa , 2a 1 .L max maxJ

2. m(a) i s r e s t r i c t ed to a domain fo, a 1 of a function
*• m a x J

belonging to C , and possesses the property:
B

(G) amio) has no stationary value in (0, a 1 .
v maxJ

3. m(a) is linear in (0, a ] .

By means of a procedure based essentially on che mean value theorem,

we have also been able to show that convergence to a* occurs when

m(o) € C , and possesses property (E) together with the properties:

(H) The tangent to the graph of m(a) at any point in (0, a ]

intersects the a-axis in [0, 2a 1 .

1 maxJ

(I) m(a) i s twice differentiable in (0, o ) , and in th is

in te rva l

where |m"(a)| and [m'ia)) . are respectively the maximum value of1 'max l ' m m|'max

\m"(a) | and the minimum value of fm'(o)) in (o, o ) , and

7(0) = sup{m(a) : a € (o, a ]} . (Since m{a) € C , K 2; 0 ii
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Now in practice there is likely to be a production, a . , such that

the firm must either produce an amount greater than or equal to a . , or

produce nothing at all. For this situation it is easy to show from the

preceding results that production sequences generated by the algorithm

converge to a* whether m{a) belongs to C or not, providing that

m(a . ) > 0 and possesses properties analogous to (A), (C), (E), (H), and

(I) in [0 . , a "I .L m m maxJ

Since in every one of the above cases convergence to a* occurs

regardless of the values of a(l) and o(2), it follows that the choice of

initial productions and of auxiliary procedures to deal with the singular

situations is immaterial.

It should be noted that if m(o) is strictly concave in (0, a ] ',

then production sequences generated by Algorithm A may diverge by

oscillation.

4. Rate of convergence of Algorithm A

In this section we indicate the method of proof for result R(ll) of

Section 1 , and give the proof of result R(III) in full.

Suppose that m(a) is twice differentiable at a = a* , and belongs

to one of those classes of functions for which production sequences

generated by the algorithm converge to a* . Then by expanding m(t) in a

Taylor series about a = a* , using the fact that -m(o*)/m'(0*) = 0* , and

neglecting second and higher order terms in the series, we obtain, for

sufficiently large t , the approximate equation

(5) ke(t+l) =

where e(t) = a{t) -a* and M = m{o*)m"(o*)/[m'(a*)]2 .

It is easily shown that 0 < M < 2 , and that -% < * 2 5 0 5 X < 1 ,

where X and X? are the roots of the auxiliary equation of (5).- Since

X dominates X for t large, we thus have
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lim |e(t+l)/e(t)| = A ,

so that production sequences generated by Algorithm A converge linearly

with convergence ratio A, . (Our definitions of linear convergence and

convergence ratio are those of Luenberger [4].) We note that the

convergence ratio in this case is not an intrinsic property of the

algorithm, being determined by properties of m(a) at 0 = 0 * .

Whilst the asymptotic convergence behaviour of an algorithm is

important in many situations, a firm trying to determine its optimal

production would probably be more interested in the initial rate of

convergence. In this regard, we have been able to show that if {a(t)}

exhibits either of two certain types of behaviour then an upper bound can

be obtained for \o(t+l)-a*\/\o{t)-o*\ for t = 2, 3, h, ... .

TYPE I. {a(t)} is monotonic decreasing and {ojit)-oit)} is mono-

tonic increasing. Since at a* the tangent to the graph of m(a) has

a-intercept 2a* , {ojit)-o(t)} -*• a* , and since {ajit)-ait)} is

monotonic increasing we have

Oj-U) - ait) < o* for t > 2 ,

that is,

ar(i-KL) - 2o* < ait) - a* ,

so that

[o(t+l)-0*]/[o(i)-0*] < h for t > 2

(since ait) > a* for t > 2 ) .

TYPE II. {ait)} is monotonic increasing and {ajit)-cit)} is mono-

tonic decreasing. Again, (Oj(t)-a(t)} -> a* , and since {ajit)-cit)\ is

monotonic decreasing we have

a jit) - ait) > o* for t > 2 ,

that is

2o* - 2o(t+l) < a* - ait) ,

so that
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[o*-a(t+l)]/[a*-a{t)] < % for t * 2

(since a* > a(t) for t > 2 ) .

Thus whenever [c(t)} exhibits either Type I or Type II behaviour we

have

|aU+l)-a*|/|a(t)-a*| < %

for t i 2 . Since |a(2)-a*| must be less than a , this gives

|a(t)-a*| < 22~ta for £ 2 3 .1 ' max
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