Adders for the patterned starter in some non-abelian groups

Philip A. Leonard

Abstract

Starters with adders in abelian groups of odd order have been used extensively in the construction and study of Room squares. It is possible to define these concepts in non-abelian groups, with similar applicability to Room squares. Examples are given of adders for the "patterned starter" in the non-abelian groups of order $p q, p$ and q primes larger than $3, p \equiv q \equiv 3$ $(\bmod 4), \quad q \equiv 1(\bmod p)$.

One fruitful approach to the construction and study of Room squares has been that based on starters and adders in groups of odd order (see [2]).

If G is a multiplicative group of order $2 n+1$, and $H=G \backslash\{1\}$, a starter in G is a set $X=\left\{\left(x_{i}, y_{i}\right) \mid l \leq i \leq n\right\}$ of ordered pairs such that

$$
H=\left\{x_{i}, y_{i} \mid 1 \leq i \leq n\right\}=\left\{x_{i} y_{i}^{-1}, y_{i} x_{i}^{-1} \mid 1 \leq i \leq n\right\}
$$

If X is a starter in G, an adder for X is an ordered set $A=\left(a_{1}, \ldots, a_{n}\right)$ of distinct elements of H such that

$$
H=\left\{x_{i} a_{i}, y_{i} a_{i} \mid 1 \leq i \leq n\right\}
$$

Given a starter X with adder A_{X}, a Room square of side $2 n+1$ may be constructed as follows: let R be a square array, with rows and

Received 4 December 1973.
and columns indexed by the elements of G. The cell in position (g, h) is empty unless $h=a_{i} g$ for some i, and in this case it contains the $\operatorname{pair}\left\{x_{i} a_{i} g, y_{i} a_{i} g\right\}$.

This note contains examples of starters with adders in certain nonabelian groups (see [2], Problem 9).

Let p and q be odd primes, larger than 3 , with $p \equiv q \equiv 3$ $(\bmod 4)$ and $q \equiv 1(\bmod p)$, and let G be the non-abelian group of order $p q$ defined by $a^{p}=1, b^{q}=1, a^{-1} b a=b^{r}$, where r is an integer of order p (modulo q) (see [1]). Products in G are given by

$$
a^{x} b^{y} \cdot a^{u} b^{v}=a^{x+u} b^{y r^{u}+v}, \quad 0 \leq x, u \leq p-1,0 \leq y, v \leq q-1
$$

Let R_{p} (respectively N_{p}) denote the set of quadratic residues (respectively non-residues) modulo p, with R_{q} and N_{q} defined similarly. Let

$$
S=\left\{g=a^{x} b^{y} \mid x \in R_{p}, \text { or, } x=0 \text { and } y \in R_{q}\right\}
$$

Since $p \equiv q \equiv 3(\bmod 4)$, we have the following
LEMMA. $X=\left\{\left(g, g^{-1}\right) \mid g \in S\right\}$ is a starter in G.
The starter X of the lemma is called the patterned starter in G. Examples of adders for X are given in the following result. The proof, which is a routine matter of verification, is omitted.

THEOREM. For $m \in N_{p} \backslash\{-1\}$ and $n \in N_{q} \backslash\{-1\}$, define k by $k \equiv \frac{m+1}{m-1}$ $(\bmod p)$, and τ by $\tau \equiv \frac{n+1}{n-1}(\bmod q)$. Then $A_{X}=\left(h_{g}\right), g \in S$, with $h_{g}=a^{k x_{b} l y}$ for $g=a^{x} b^{y}$, is an adder for the patterned starter X, provided $\imath^{P} \neq \pm 1(\bmod q)$.

For example, with $p=7$ and $q=67$, we may take $m=n=3$, giving $k=2=2$, which is suitable as $2^{7} \equiv 61(\bmod 67)$. For the smallest eligible values of p and q, namely $p=7$ and $q=43$, $Z=2$ is not admissible, but $Z=3$ (corresponding to $n=2$) is, as
$3^{7} \equiv 36(\bmod 43)$.

References

[1] Marshall Hall, Jr, The theory of groups (The Macmillan Company, New York, 1959).
[2] W.D. Wallis, "Room squares", Combinatorics: Room squares, sum-free sets, Hadomard matrices, 33-121 (Lecture Notes in Mathematics, 292. Springer-Verlag, Berlin, Heidelberg, New York, 1972).

Department of Mathematics,
Arizona State University,
Tempe,
Arizona,
USA.

