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Stick-slip squirmers: slip asymmetry can
qualitatively change self-swimming
characteristics of squirmers
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A slip asymmetry can break the fore–aft symmetry of the local hydrodynamic force
distribution on the surface of an otherwise no-slip or uniform-slip particle. Here, we use
the Lorentz reciprocal theorem to demonstrate that such asymmetry, even in a fractional
amount, can qualitatively alter the swimming characteristics of a self-propelled spherical
squirmer, markedly different from those of no-slip or uniform-slip squirmers. Unlike the
usual tangential squirming by the thrust-providing B1 mode and the type-determining
B2 mode, we discover two unique features for a stick-slip squirmer. First, the squirmer
can acquire a swimming velocity U without the B1 mode but simply by a symmetric
extensile/contractile squirming from the B2 mode, which is able to reverse the swimming
direction of the squirmer. Second, a stresslet S can also be induced by a unidirectional
squirming from the B1 mode, capable of inverting the squirmer’s stresslet from extensile
type to contractile type or vice versa to change the squirmer from puller to pusher or in a
reverse manner. We further show that the two squirming modes can reinforce or compete
with each other to enhance or diminish U and S due to interplays between the asymmetric
squirming forces on the stick and the slip faces. A phase diagram is also established to
categorize a variety of newly emerging swimming states, such as an enhanced/degraded
puller/pusher and a backward puller/pusher, depending on the relative strength of the
squirming modes β = B2/B1, the direction of the stick-slip polarity and the degree of the
slip disparity. As a result of such cooperative and competitive natures, a stick-slip squirmer
can swim more or less efficiently than no-slip and uniform-slip ones. These distinctive
features arising from stick-slip disparity can not only be made geometrically tuneable
for steering the motion of a squirmer, but also provide new means for making efficient
artificial microswimmers using amphiphilic Janus particles.
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1. Introduction

Self-propulsion of microswimmers has recently drawn tremendous attention in the field
of low Reynolds number microhydrodynamics because it not only occurs to many active
biological and physiochemical systems but also holds the key to understanding their
collective behaviours (Koch & Subramanian 2011; Bechinger et al. 2016). A common
example is a swimming microorganism such as a bacterium that is self-propelled by its
body movements (Lauga 2016). A self-motile swimmer can also be made with a catalytic
Janus particle comprised of two surfaces with distinct chemical activities (Howse et al.
2007). One widely used model for simulating the hydrodynamics of a microswimmer is
the squirmer model (Lighthill 1952; Blake 1971). In this model, the squirming is generated
either by small body deformations or by a prescribed tangential surface velocity along the
surface of a squirmer. The simplest squirmer is a spherical squirmer. The body surface
velocity for this case is often described in an axisymmetric manner with respect to the
swimming direction ei of the squirmer (Ishikawa & Pedley 2007):

us
i = (ejnjni − ei)

∑
m≥1

2
m(m + 1)

BmP′
m(eknk), (1.1)

where Pm is the Legendre polynomial of degree m with P′
m being its derivative and Bm

the corresponding coefficient. In (1.1), ni is the unit surface normal vector pointing into
the fluid. It is common that the first two modes are sufficient to capture essential features
of the squirmer (Pedley 2016), allowing (1.1) to take a simple form in terms of the polar
angle θ measured from the swimming direction ei:

us
θ (θ) = B1 sin θ + B2 sin θ cos θ. (1.2)

If the no-slip boundary condition is assumed at the squirmer’s surface, the momentum
imparted by the tangential squirming (1.2) will completely transmit into the fluid to ‘row’
the squirmer.

As indicated by (1.2), the B1 mode describes a unidirectional tangential squirming
velocity that diverges from one pole and then converges towards the other. The rowing,
due to this squirming action, generates a squirming force in the direction opposite to the
squirming action. This force, in turn, drives the squirmer to swim at the velocity (Lighthill
1952; Blake 1971)

Ui = (2/3)B1ei. (1.3)

The flow field generated by this mode is identified to be a source dipole, resulting from a
complete cancellation between the point-force flow field arising from the squirming action
and the opposite point-force flow field due to the induced translation (Blake 1971; Pak &
Lauga 2014).

The B2 mode describes a symmetric extensile/contractile squirming set up by an
antisymmetric body surface velocity distribution with respect to the equator at θ = π/2.
For a no-slip spherical squirmer, this mode does not generate a force to propel the squirmer,
rendering a stresslet (Ishikawa & Pedley 2007)

Sij = 4πμa2B2

(
eiej − δij

3

)
, (1.4)

representing a symmetric force dipole to steer the squirmer of radius a in a fluid of
viscosity μ. Notice that the stresslet takes the form (eiej − δij/3) that ensures that it
is trace-free. It is also worth mentioning that the stresslet brought by the B2 mode is
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Figure 1. Schematic pictures to illustrate how a unidirectional squirming through the B1 mode and an
extensile/contractile squirming through the B2 mode act together to determine the direction and type of a
homogeneous squirmer: (a) a puller and (b) a pusher. The surface velocity distribution, us(θ ), of each mode
is provided with the generated squirming forces portrayed qualitatively by the red arrows. The resulting
propulsion, represented by the big blue arrow, is biased towards the front to tow the squirmer ahead to act
as a puller or towards the rear to push the squirmer from behind to act as a pusher. The swimming direction ei
towards the right of this classical squirmer model is used to set the motion reference for the rest of this work.

responsible for the generic 1/r2 far-field behaviour in the swimming flow field around the
squirmer: u′

i = xixjxkSjk/8πμr5 (Batchelor 1970). Different types of swimmers described
by this squirmer model can be classified according to the sign of the ratio β = B2/B1
between these two modes (Pedley 2016): β > 0 denotes a puller towed by a force
self-generated ahead of its body, whereas β < 0 represents a pusher with a thrust generated
behind. The particular case with β = 0 signifies a neutral squirmer. Let B1 > 0. The sign
of B2 will determine the direction of the stresslet (either of extensile or contractile type)
and hence the type of swimmer. Figure 1 illustrates how the B1 mode and the B2 mode
in (1.2) jointly determine whether a squirmer is head-actuated or tail-actuated. It can
be seen that adding the force-free B2 mode to the thrust-providing B1 mode causes a
fore-and-aft asymmetry in the squirming force distribution, producing a biased propulsion
on the front or the rear of a squirmer. This is why the direction of the stresslet is crucial
in determining the type of swimmer. Furthermore, finding the stresslet of a squirmer is
also essential for determining the average rheological properties of a squirmer suspension
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and for characterizing hydrodynamic interactions between squirmers (Ishikawa & Pedley
2007).

The aforementioned features are given for the simplest scenario where a single
spherical squirmer is swimming through an unbounded fluid under the creeping flow
condition. Many extensions or variants have been made by further taking other factors into
consideration. These factors include shape (Keller & Wu 1977; Lauga & Michelin 2016;
Theers et al. 2016), inertia (Wang & Ardekani 2012a; Chisholm et al. 2016), unsteadiness
(Wang & Ardekani 2012b), nearby surface/confinement (Ishimoto & Gaffney 2013; Zhu,
Lauga & Brandt 2013; Li & Ardekani 2014; Yazdi, Ardekani & Borhan 2014; Zöttl & Stark
2014), inter-squirmer interactions (Ishikawa, Simmonds & Pedley 2006; Papavassiliou &
Alexander 2017) or their combinations (Theers et al. 2018; Ouyang & Lin 2021; Ouyang
et al. 2022). These previous investigations basically indicate that a symmetry breaking
caused by any of these factors can significantly alter the swimming characteristics of a
squirmer.

In this work, we explore the swimming of a stick-slip squirmer, looking specifically
at how a slip asymmetry – the symmetry-breaking mechanism that is not listed above –
modifies the hydrodynamic behaviour of a self-propelled squirmer. Studying such a
squirmer is motivated not only by the need for designing and controlling the motion of
an active heterogeneous particle, but also by possibly new physics due to slip asymmetry
in the context of the self-motile hydrodynamics.

Phenomenologically, a stick-slip squirmer can be used to model the phoretic motion of
an active amphiphilic Janus particle in which the hydrophilic part is no-slip, whereas the
hydrophobic part allows a small fluid slippage. An actual realization of such a particle
can be achieved by using, for example, a polystyrene microsphere coated with a catalytic
platinum cap (Howse et al. 2007). Understanding how such amphiphilic particle behaves
in its locomotion may provide useful guidance for how to better control and optimize its
swimming performance with a stick-slip pattern.

On the fundamental side, this work is motivated by the fact that a slip asymmetry
can break the symmetry of the local hydrodynamic force distribution on the surface of
an otherwise no-slip or uniform-slip spherical particle (Premlata & Wei 2021, 2022).
It has been shown that a stick-slip sphere can behave quite differently from a no-slip
or uniform-slip sphere (Premlata & Wei 2021, 2022). For example, the former can
migrate when it is placed at the centre of a purely straining flow field, whereas the latter
under this same situation does not migrate at all (Premlata & Wei 2021). This implies
that for an active stick-slip sphere, because of slip asymmetry, its swimming may not
necessarily be driven solely by the unidirectional squirming of the B1 mode; the symmetric
extensile/contractile squirming of the B2 mode can also produce an asymmetric squirming
force to set the squirmer in motion. Similarly, the stresslet on such a sphere may not have
to be sustained by the B2 mode alone since a symmetric force dipole, namely a stresslet,
can also form from a skewed squirming force distribution generated by the unskewed
unidirectional squirming of the B1 mode.

Another reason why we would like to study the swimming of a stick-slip squirmer is
that the presence of the slip face can cause two competing effects on the squirmer. On
the one hand, the squirming action will not be fully transmitted into the fluid, generating
a weaker squirming force to drive the squirmer. On the other hand, the drag force on the
squirmer is also diminished by the slip, which may promote the squirmer’s swimming.
Hence, when these two oppositely acting forces are present, it is not obvious whether the
squirmer swims faster or slower compared with the no-slip counterpart.

Motivated by the above, the main theme of this work is to determine the swimming
velocity Ui and the stresslet Sij for a stick-slip squirmer. We will not only examine how
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the two differ from the classical results of a no-slip squirmer, but also inspect how the
flow field around a squirmer and its swimming performance are modified by a stick-slip
disparity.

This work is organized as follows. In § 2, we will use the Lorentz reciprocal theorem to
derive the formulas for Ui and Sij of a stick-slip squirmer and compute these two quantities
for a given stick-slip partition. Section 3 provides pictorial mechanisms to better elucidate
how asymmetric squirming forces on a stick-slip squirmer are responsible for its swimming
characteristic changes. Section 4 presents our calculated Ui and Sij to demonstrate how
their features are modified by a stick-slip disparity, in line with § 3. In § 5, we reveal
the squirming flow structure around a stick-slip squirmer to gain more insights into how
the observed swimming characteristic changes arise from a flow field point of view. We
also compute the swimming power and efficiency of the squirmer to seek a possible
optimization in its swimming performance with a stick-slip pattern. Final conclusions and
perspectives will be made in § 6.

2. Reciprocal theorem formulation for a stick-slip spherical squirmer

We consider the motion of a two-faced spherical squirmer with a fore-and-aft partition of
the stick (no-slip) and slip faces. For brevity, we call such a Janus squirmer a stick-slip
squirmer. The squirmer with radius a is self-swimming at velocity Ui in an unbounded
fluid of viscosity μ under the creeping flow condition. The goal here is to derive
the formulas for computing the swimming velocity and the stresslet of the squirmer.
Either quantity is obtained using the Lorentz reciprocal theorem (Happel & Brenner
1983) with the aid of the flow solution of an appropriately chosen auxiliary problem.
This theorem states that two flow solutions (u′

i, σ
′
ij) and (û′

i, σ̂
′
ij) satisfying the Stokes

flow equations ∂u′
i/∂xi = ∂ û′

i/∂xi = 0 and ∂σ ′
ij/∂xj = ∂σ̂ ′

ij/∂xj = 0 in an unbounded fluid
around a particle (with the origin defined at the particle’s centre) can be interrelated
through the following surface integral over the particle surface (Sp) with an outward
surface normal ni pointing into the fluid:∫

Sp

û′
i σ ′

ijnj dS =
∫

Sp

u′
i σ̂ ′

ijnj dS. (2.1)

Here, (u′
i, σ

′
ij) are the unknown but desired disturbance velocity and stress fields for the

stick-slip problem we wish to solve; (û′
i, σ̂

′
ij) are the known disturbance velocity and

stress fields for the auxiliary problem. These disturbance velocity and stress fields due to
the presence of the particle typically decay as 1/r and 1/r2 (or faster), respectively.

To determine the swimming velocity Ui and the stresslet Sij for the stick-slip squirmer
using (2.1), we need different auxiliary problems as follows. For Ui, the auxiliary problem
can be selected as the flow field around a uniform-slip sphere translating at speed Ûi
(figure 2a). For Sij generated by the squirmer in a quiescent fluid, its calculation can be
more conveniently performed using the flow field around a uniform-slip sphere held fixed
at the centre of a purely straining field of strain rate ÊB

ij (figure 2b). Below we provide
separate formulations for these two problems.

2.1. Swimming velocity
We wish to establish the formula for the swimming velocity Ui of the stick-slip squirmer
in terms of a prescribed tangential squirming velocity us

i on the squirmer’s surface.
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us

ûB = ÊB · x
S

us

U Û

a

(a)

(b)

a

α

Figure 2. The auxiliary problems used in the reciprocal theorem to determine the swimming characteristics
of a stick-slip spherical squirmer (of radius a and slip partition angle α) in a quiescent fluid. (a) To determine
the swimming velocity U driven by tangential squirming (left), the auxiliary problem considers the flow field
around a uniform-slip sphere translating at speed Û (right). (b) To determine the stresslet S from the symmetric
force pair (pink) as part of the squirming force generated by extensile/contractile squirming (left), we use the
auxiliary flow field around a uniform-slip sphere held fixed at the centre of a purely straining field ûB = ÊB · x
(right). Slip faces are indicated by the shaded regions.

Since Ui is determined by the driving squirming force Fsquirm
i = −Fi in balance with the

drag force Fi on the squirmer, to determine Fsquirm
i , we keep the squirmer fixed with the

no-penetration condition and the slip boundary condition with a non-uniform slip length
aλ(x) on its surface as

u′
ini = 0, (2.2a)

u′
i − us

i = aλ(x)

μ
σ ′

jknk(δij − ninj). (2.2b)

In (2.2b), the effects of surface slip are assumed to be described by the Navier slip
condition (Navier 1823). This model states that the extent of fluid slippage can be reflected
by the ratio of the slip velocity to the tangential stress. Since there is an additional
tangential squirming here, the slip velocity u′

i − us
i has to be the fluid velocity relative

to the prescribed squirming velocity us
i . Therefore, slip effects will lead u′

i to mismatch us
i ,

making the latter’s momentum not fully transmitted into the fluid, in contrast to u′
i = us

i in
the usual no-slip situation.

For the auxiliary problem, we take a uniform-slip sphere of identical size having the
constant slip length a λ̂ translating at speed Ûi with the following boundary conditions on
its surface:

(û′
i − Ûi)ni = 0, (2.3a)

û′
i − Ûi = aλ̂

μ
σ̂ ′

jknk(δij − ninj). (2.3b)
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For both problems, the velocity fields vanish as |x| → ∞ far away from the spheres.
We first extract the driving squirming force Fsquirm

i = ∫
Sp

σ ′
ijnj dS by re-arranging the

left-hand side of (2.1) to∫
Sp

û′
iσ

′
ijnj dS = Ûi

∫
Sp

σ ′
ijnj dS +

∫
Sp

(û′
i − Ûi)σ

′
ijnj dS. (2.4)

Recognizing that the velocity jump (û′
i − Ûi) on the right only acts tangentially along the

sphere’s surface in view of (2.3a), this jump can be replaced by the slip term in (2.3b),
allowing us to recast the left-hand side of (2.1) to∫

Sp

û′
iσ

′
iknk dS = Ûi

∫
Sp

σ ′
iknk dS + (a/μ)

∫
Sp

λ̂σ̂ ′
jmnm(δij − ninj)σ

′
iknk dS. (2.5)

Similarly, for the right-hand side of (2.1), we extract the prescribed tangential squirming
velocity us

i and replace the velocity jump (u′
i − us

i ) with the slip term in (2.2b):∫
Sp

u′
iσ̂

′
ijnj dS =

∫
Sp

us
i σ̂

′
ijnj dS +

∫
Sp

(u′
i − us

i )σ̂
′
iknk dS

=
∫

Sp

us
i σ̂

′
ijnj dS + (a/μ)

∫
Sp

λ(x)σ ′
jmnm(δij − ninj)σ̂

′
iknk dS. (2.6)

Subtracting (2.5) from (2.6), we arrive at

ÛiF
squirm
i =

∫
Sp

us
i σ̂

′
ijnj dS + (a/μ)

∫
Sp

(λ(x) − λ̂)σ ′
jmnm(δij − ninj)σ̂

′
iknk dS. (2.7)

In the above, the integral involving the slip variation (λ(x) − λ̂) still contains the
unknown traction σ ′

jmnm on the squirmer’s surface. For this reason, we determine Fsquirm
i

approximately by assuming that the magnitude of the slip variation is small compared with
the average dimensionless slip length 〈λ(x)〉 by setting λ̂ = 〈λ(x)〉 in (2.7), i.e.

ε ≡ |λ(x) − 〈λ(x)〉| 	 1. (2.8)

In other words, we assume a small slip anisotropy for the squirmer to allow us to determine
Fsquirm

i accurate to O(ε) using (2.7) in which the slip length of the auxiliary uniform-slip
sphere is taken to be the average slip length of the squirmer.

With (2.8), the unknown surface traction σ ′
jmnm in the slip variation integral can be

approximated as the surface traction on a uniform-slip squirmer, σ
′(0)
jm nm, plus an O(ε)

correction as
σ ′

jmnm = σ
′(0)
jm nm + O(ε). (2.9)

Substituting (2.9) into (2.7) and further writing σ̂ ′
ijnj in terms of the translation resistance

tensor RT
ij obtained previously for a uniform-slip sphere (Premlata & Wei 2020), we obtain

σ̂ ′
iknk = −μRT

ij Ûj, (2.10a)

RT
ij = 1

a(1 + 3λ̂)

(
3
2
δij + 9λ̂ninj

)
. (2.10b)
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Equation (2.7) with λ̂ = 〈λ(x)〉 furnishes the squirming force for propelling a weakly
stick-slip squirmer:

Fsquirm
i = −μ

∫
Sp

us
kRT

ik dS − a
∫

Sp

	λ(x) σ
′(0)
jm nm(δjk − njnk)RT

ik dS, (2.11)

where 	λ(x) = λ(x) − 〈λ(x)〉 and λ̂ in RT
ij of (2.10) is taken to be the average

dimensionless slip length 〈λ(x)〉 of the stick-slip squirmer. We restate that the driving
squirming force described by (2.11) is accurate up to O(ε). It actually turns out that, by
comparing the results of directly solving the flow field around a stick-slip squirmer (see
Appendices A and B), (2.11) is only valid when 〈λ(x)〉 is small.

To facilitate the evaluation of the slip variation term in (2.11), we use the slip boundary
condition (2.3b) for the leading-order uniform-slip problem to replace the tangential stress
by the velocity jump on the squirmer’s surface:

σ
′(0)
jm nm(δjk − njnk) = μ

a〈λ〉 (u
′(0)
k − us

k). (2.12)

So (2.11) can be rewritten as

Fsquirm
i = −μ

∫
Sp

us
kRT

ik dS − μ

∫
Sp

	λ(x)

〈λ〉 (u′(0)
k − us

k)R
T
ik dS. (2.13)

The velocity jump (u′(0)
k − us

k) can be obtained below by solving the leading-order flow
field u′(0)

k in spherical polar coordinates (see Appendix A):

1
〈λ〉 (u

′(0)
k − us

k) = − sin θ

[
3B1

1 + 3〈λ〉P′
1(cos θ) + (5/3)B2

1 + 5〈λ〉P′
2(cos θ)

]
eθ . (2.14)

To determine the swimming velocity Ui for the squirmer, Fsquirm
i given by (2.13) has to

be counterbalanced by the drag force Fi on the squirmer as it swims. For the latter, it can
be obtained by either using the reciprocal theorem (Premlata & Wei 2021) or by solving
the translation flow field around the squirmer (see Appendix B). This force also includes
a correction due to the small slip anisotropy, taking the form (Premlata & Wei 2021)

Fi = −6πμa
(

1 + 2〈λ〉
1 + 3〈λ〉

)(
1 + Q

(1 + 2〈λ〉)(1 + 3〈λ〉)
)

Ui. (2.15)

Here, Q of O(ε) measures the strength of surface quadrupole according to the slip
pattern as

P2ij =
∫

Sp

(λ(x) − 〈λ(x)〉)(3ninj − δij) dS/(4πμa2) = Q(3didj − δij). (2.16)

In (2.16), di is the stick-slip director pointing from the stick (or the less slippery) face to
the slip (or the more slippery) face. This director can be either aligned to or opposite to
the swimming direction ei of the squirmer in the absence of slip anisotropy. Together with
the force-free condition Fsquirm

i + Fi = 0, we can obtain the formula for the swimming
velocity of a weakly stick-slip squirmer:

Ui = 1
6πμa

(
1 + 3〈λ〉
1 + 2〈λ〉

)(
1 + Q

(1 + 2〈λ〉)(1 + 3〈λ〉)
)−1

Fsquirm
i , (2.17)

where Fsquirm
i is provided by (2.13) in which us

i , RT
ij and (u′(0)

i − us
i ) are given by (1.2),

(2.10b) and (2.14), respectively. Note that Fsquirm
i also includes an O(ε) slip variation
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Stick-slip squirmers

correction due to the second term in (2.13). Using (2.17), we are able to compute Ui for
the squirmer with an arbitrary axisymmetric slip pattern. For simplicity, we consider a
two-faced slip pattern in terms of a partition angle α, such as that sketched in figure 2(a),
to specify

λ(x) =
{
λR 0 ≤ θ ≤ α

λL otherwise . (2.18)

The slip length jumps from aλR on the right face to aλL on the left face so that the average
dimensionless slip length and the strength of the surface quadrupole are

〈λ〉 = (1/2)(λR + λL − (λR − λL) cos α), (2.19a)

Q = (1/4)(λL − λR)(cos3α − cos α). (2.19b)

Carrying out the integrals in (2.13) (see Appendix C), we can use (2.18) to determine the
swimming velocity below after taking a small ε expansion and keeping the terms to O(ε)

Ui = 2
3

ei

1 + 2〈λ〉 [B1 + (λL − λR)( f1(α)B1 + f2(α)B2)]. (2.20)

Here, ei is set to be the swimming direction (towards the right in figure 2a) of the
squirmer without stick-slip disparity. The coefficient f 1(α) is contributed from the surface
quadrupole (2.19b), and f 2(α) comes from a combination of the surface octupole and
dipole (Premlata & Wei 2022). These coefficients vary with the stick-slip partition angle
α and the average dimensionless slip length (2.19a) according to

f1(α) = 1/2
1 + 2〈λ〉 (cos3α − cos α), (2.21a)

f2(α) = 1/2
1 + 5〈λ〉sin4α. (2.21b)

Note that α = 0 and α = π recover no-slip and uniform-slip squirmers, respectively. The
swimming velocity given by (2.20) also agrees with that obtained by solving the squirming
and the translation flow fields around the squirmer under the force-free condition (see
(B9)–(B11) in Appendix B).

If the squirmer is uniform slip with (λL–λR) = 0, (2.20) is reduced to

Ui = 2
3

B1

1 + 2〈λ〉ei. (2.22)

Here, 〈λ〉 = 0 recovers the no-slip result Ui = (2/3)B1ei, determined solely by the B1 mode
(Lighthill 1952; Blake 1971). It is evident that surface slip tends to lower Ui because the
less tangential stress can be transmitted from the squirming motion into the fluid. In the
full slip limit with 〈λ〉 → ∞, there will be no swimming at all because the surface is
stress-free, and no squirming force can be generated from such a surface.

If there exists a slip anisotropy on the squirmer’s surface, however, (2.20) indicates
that the swimming of the squirmer can be driven by an extensile/contractile squirming
of the B2 mode without involving the B1 mode that usually provides the thrust for the
swimming. Figure 3(a) illustrates physically why this can happen to a stick-slip squirmer.
Even though the extensile/contractile squirming imposed by the B2 mode is symmetric,
the generated squirming forces on the stick and the slip faces are asymmetric because of
stick-slip disparity. This, in turn, generates a net squirming force to set the squirmer in
motion.
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B2 > 0

B1 > 0(b)

(a)

Fstick Fstick – Fslip Fslip – Fstick
S

FstickFslipFslip

B2 < 0

Figure 3. Schematic illustrations of how a stick-slip squirmer establishes its propulsion (blue arrow) when the
squirming forces (pink arrows) by a single squirming mode are modified by a stick-slip disparity: (a) with only a
symmetric extensile/contractile squirming by the B2 mode, an asymmetric squirming force can be developed on
the stick and the slip (in shade) faces to give net propulsion; (b) for the propulsion by a unidirectional squirming
through the B1 mode, the resulting asymmetric squirming force can be decomposed into a symmetric force
dipole of strength (Fstick − Fslip) to form a stresslet plus an offset force. The direction of this disparity-induced
stresslet under the B1 mode is controlled by the stronger squirming force on the stick side.

2.2. Stresslet
We now derive the stresslet formula for a stick-slip squirmer according to (Batchelor 1970)

Sij =
∫

Sp

xjσ
′
iknk dS − 2μ

∫
Sp

u′
inj dS. (2.23)

For convenience, we consider the squirmer held fixed in a quiescent fluid with the
following boundary conditions at its surface:

u′
ini = 0, (2.24a)

u′
i − us

i = aλ(x)

μ
σ ′

jknk(δij − ninj). (2.24b)

For the auxiliary problem, we consider a uniform-slip sphere of identical size with its slip
length taken to be the average slip length a〈λ〉 of the stick-slip squirmer and hold it fixed at
the centre of a purely straining flow field ûB

i = ÊB
ij xj, with ÊB

ij being the strain rate tensor.
The boundary conditions at the sphere’s surface are

(û′
i + ûB

i )ni = 0, (2.25a)

û′
i + ûB

i = a〈λ〉
μ

(σ̂ ′
jknk + σ̂B

jknk)(δij − ninj), (2.25b)

where σ̂B
jknk = 2μÊB

jknk is the surface traction exerted by the auxiliary bulk straining field.

967 A29-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

44
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.444


Stick-slip squirmers

To construct the stresslet from (2.1), we first extract the stress moment part∫
Sp

xjσ
′
iknk dS in (2.23) from the left-hand side of (2.1), as shown by (2.26) below.

Specifically, we add and subtract the stress moment from a purely straining flow field
ûB

i = ÊB
ij xj. The subtracted part gives

∫
Sp

xjσ
′
iknk dS. In the added part, (û′

i + ûB
i ) can be

replaced by the slip term in (2.25b). The above manipulations lead to∫
Sp

û′
iσ

′
iknk dS = −

∫
Sp

ûB
i σ ′

iknk dS +
∫

Sp

(û′
i + ûB

i )σ ′
iknk dS

= −ÊB
ij

∫
Sp

xjσ
′
iknk dS + a

μ

∫
Sp

〈λ〉(σ̂ ′
jmnm + σ̂B

jmnm)(δij − ninj)σ
′
iknk dS. (2.26)

Similarly, for the velocity moment part −2μ
∫

Sp
u′

inj dS of the stresslet, we can extract
it from the subtracted term in the re-written form below of the right-hand side of (2.1) by
working with the stress field σ̂B

ij from ûB
i followed by replacing u′

i in the added term using
(2.24b)∫

Sp

u′
iσ̂

′
iknk dS = −

∫
Sp

u′
iσ̂

B
ij nj dS +

∫
Sp

u′
i(σ̂

′
iknk + σ̂B

iknk) dS

= −2μ ÊB
ij

∫
Sp

u′
inj dS +

∫
Sp

us
i (σ̂

′
iknk + σ̂B

iknk) dS

+ a
μ

∫
Sp

λ(x)σ ′
jmnm(δij − ninj)(σ̂ ′

iknk + σ̂B
iknk) dS. (2.27)

Combining (2.26) and (2.27) leads to

ÊB
ij Sij = −

∫
Sp

us
i (σ̂

′
iknk + σ̂B

iknk) dS

− a
μ

∫
Sp

(λ(x) − 〈λ〉) σ ′
jmnm(δij − ninj)(σ̂ ′

iknk + σ̂B
iknk) dS. (2.28)

Here, the total surface traction (σ̂ ′
iknk + σ̂B

iknk) can be expressed in terms of the third-rank
resistance tensor Σqij in a purely straining field (Luo & Pozrikidis 2008):

σ̂ ′
qknk + σ̂B

qknk = μΣqijÊB
ij , (2.29a)

Σqij = 5
1 + 5〈λ〉 (δiqnj + 8〈λ〉nqninj). (2.29b)

Eliminating the common ÊB
ij in (2.28) renders the exact formula for the stresslet

Sij = −μ

∫
Sp

us
qΣqij dS − a

∫
Sp

(λ(x) − 〈λ〉)σ ′
kmnm(δkq − nknq)Σqij dS. (2.30)

For the unknown traction σ ′
kmnm on the squirmer, we follow the earlier treatment and limit

an O(ε) slip variation under (2.8) to approximate this traction as the uniform-slip one
(2.12). The stresslet on the squirmer can then be determined accurately to O(ε) as

Sij = −μ

∫
Sp

us
qΣqij dS − μ

∫
Sp

	λ

〈λ〉 (u′(0)
q − us

q)Σqij dS. (2.31)

Equation (2.31) without the slip variation term is identical to the stresslet formula derived
by Lauga & Michelin (2016) for no-slip squirmers. In addition, (2.31) may be applicable

967 A29-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

44
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.444


F.-L. Yang, Y.-A. Chen, A.R. Premlata and H.-H. Wei

to an arbitrary squirmer geometry when the length scale a is taken as the characteristic
length scale for a given geometry.

For the stick-slip pattern (2.18) considered here, the stresslet calculated from (2.31) (with
the details given in Appendix D) is found to be

Sij = 4πμa2

1 + 5〈λ〉
(

eiej − δij

3

)
[B2 + (λL − λR)(h1(α)B1 + h2(α)B2)]. (2.32)

Here, the coefficient h1(α) comes from a combination of the surface octupole and dipole,
and h2(α) is constituted by the surface hexadecapole and quadrupole (Premlata & Wei
2022). These coefficients vary with the stick-slip partition angle α and the average
dimensionless slip length (2.19a) according to

h1(α) = 45/16
1 + 3〈λ〉sin4α, (2.33a)

h2(α) = 5/4
1 + 5〈λ〉 (3cos5α − 5cos3α + 2 cos α). (2.33b)

The limiting cases α = 0 and α = π in (2.33) recover the stresslets for no-slip and
uniform-slip squirmers, respectively. In the absence of slip variations with (λL–λR) = 0,
(2.32) is reduced to

Sij = 4πμa2

1 + 5〈λ〉
(

eiej − δij

3

)
B2. (2.34)

Also, 〈λ〉 = 0 recovers the no-slip result driven by the B2 mode alone, as in (1.4) (Ishikawa
& Pedley 2007; Lauga & Michelin 2016). Equation (2.34) reveals that the strength of the
stresslet is diminished by slip effects. This is expected because less squirming work can be
transmitted into the fluid when surface slip is present. In the full slip limit with 〈λ〉 → ∞,
the stresslet will completely vanish because no tangential stress can be generated from the
squirming motion.

In contrast, for a stick-slip squirmer, its stresslet depends not only on the B2 mode but
also on the B1 mode, as indicated by (2.32). This means that the stresslet in this case
can be sustained purely by a unidirectional tangential squirming through the B1 mode
without requiring the B2 mode, as in the no-slip case. Recall in figure 1(a) for a no-slip
squirmer that no force dipole can form with the B1 mode alone since the squirming force
here is unidirectional and symmetric about the squirmer’s equator at which the maximum
squirming force occurs. On the contrary, for a stick-slip squirmer illustrated in figure 3(b),
when it is subjected to unidirectional squirming on its surface through the B1 mode,
the tangential squirming force distribution will become skewed with a stronger (weaker)
squirming force on the stick (slip) side because of stick-slip disparity. This will not only
produce a net squirming force to propel the squirmer but also form a stresslet, as the
asymmetric squirming force distribution can be decomposed into a symmetric force dipole
plus an offset unidirectional force distribution like the B1 mode. Note that the strength of
this slip asymmetry induced stresslet is determined by the O(ε) squirming force difference
between the stick and the slip faces. Also, the direction of such a stresslet is controlled by
the stronger squirming force (which is on the stick side in this case). In the present case
with B1 > 0, this induced stresslet is of contractile type (with respect to the equator of the
squirmer). But the overall stresslet (2.32), by combining the stresslet generated by the B2
mode, can be of either extensile type or contractile type. This is determined by the sign of
(2.32) through the parenthesis or through the stresslet coefficient S (defined in (4.1b)) to
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Stick-slip squirmers

indicate the direction of the stresslet. Whether a squirmer is a puller or pusher can also be
classified according to the sign of S: S > 0 is a puller and S < 0 is a pusher, true for both
homogeneous and stick-slip squirmers.

3. Altering swimming characteristics by stick-slip disparity

Due to stick-slip disparity, either Ui in (2.20) or Sij in (2.32) is characterized by both
the B1 mode and the B2 mode, signifying that the swimming features will qualitatively
differ from those of a homogeneous squirmer. Before quantifying the impacts of stick-slip
disparity on Ui and Sij in § 4, we provide pictorial mechanisms together with simple scaling
arguments to elucidate how a stick-slip disparity modifies the squirming force distribution
on a squirmer and the consequences that follow.

Recall in figure 1 that the swimming direction and the swimmer type of a
no-slip squirmer are determined separately by the thrust-generating B1 mode and the
stresslet-providing B2 mode. When the squirmer swims due to the B1(>0) mode, a
force-free stresslet created by the B2 mode endows a skewed pulling force on the
squirmer’s front when the stresslet is of extensile type with β = B2/B1 > 0. This makes the
squirmer swim as a front-actuated puller. The squirmer can also behave as a rear-actuated
pusher if it engages a contractile stresslet with β = B2/B1 < 0. On the contrary, a stick-slip
disparity can break squirming force symmetry in either driving mode so that a stick-slip
squirmer can migrate with only the stresslet-providing B2 mode and the one with only
the thrust-generating B1 mode can swim as a puller or a pusher without invoking the
B2 mode. Other than these new features, while the squirming force on the stick side is
stronger than that on the slip side with a single driving mode, the relative force magnitude
on the two faces may also change when both modes are acting together. This is because
these forces may reinforce or counteract each other, depending on the sign of β and the
direction of the stick-slip polarity, di. Hereafter, we fix B1 > 0 and use the classical no-slip
squirmer swimming in the direction ei > 0 (towards the right in figure 1) as a reference to
discuss how a squirmer changes its features due to a stick-slip disparity. We also limit our
discussions in this section to the cases when the stick and the slip faces are of comparable
sizes to illuminate the impacts of an O(ε) slip disparity on a squirmer.

Let us first inspect how each mode influences the propulsion of a squirmer due to
stick-slip disparity. Figure 4 illustrates stick-slip squirmers driven solely by the B1 mode
that is always set to generate propulsion towards the right as the tangential squirming forces
on the two faces act in the same direction. When the stick-slip director (di) is aligned to
the swimming direction (di = ei) as in figure 4(a), the unidirectional squirming force is
weaker on the front-slip face but stronger on the rear-stick face. This makes the squirmer
look as if it were propelled from behind, and hence we can categorize it as a pusher.
Following figure 3(b), such an asymmetric force distribution can be decomposed into a
symmetric force dipole, namely stresslet, plus another unidirectional squirming force with
an offset magnitude. The strength of this disparity-induced stresslet is determined by the
force difference (Fstick − Fslip) with its direction controlled by the stronger squirming force
on the stick face. Specifically, it can be thought of as an induced stresslet of strength ∼εB1
in terms of the O(ε) slip difference (λL–λR) between the two faces, but is of a contractile
type (S < 0) that makes the squirmer swim like a pusher. Similarly, if the stick-slip director
is flipped to act against the swimming direction (dk = −ek) by placing the slip face on the
left (rear) (figure 4b), the squirmer will be led by the stick face on the right (front) and
swim like a puller with an extensile stresslet (S > 0).
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Pusher

Puller

Fstick – Fslip

Fstick – Fslip

S < 0

S > 0

Fstick

B1 alone(a)

(b)

Fslip

FstickFslip

eidi

di

Figure 4. Schematic mechanisms for how the B1(>0) mode can induce a stresslet due to a stick-slip disparity.
Panel (a) illustrates the case with positive stick-slip polarity (di = ei) where the stick-slip director di pointing
to the right-slip face is aligned with ei defined in figure 1. The squirmer is pushed more by the stronger
squirming force Fstick on the rear (left) stick face to act as a pusher. Following figure 3(b), the induced stresslet
of contractile type (S < 0, defined in (4.1)) with its direction set by Fstick. Panel (b) shows the case with the
negative stick-slip polarity (di =−ei) with the slip face on the left. The stronger Fstick on the front (right) tows
the squirmer ahead to render a puller with an induced stresslet of extensile type (S > 0).

To sum up the above, when a stick-slip squirmer is driven by the B1 mode alone, its
swimming velocity and induced stresslet scale as

Ui ∼ B1ei[1 + O(ε)], (3.1a)

	Sij ∼ −εB1(dkek)μa2(eiei − δij/3). (3.1b)

In (3.1a), the actual swimming velocity is slightly lower at O(ε) compared with the
no-slip case’s because the squirming force is reduced on the slip face. Equation (3.1b) is
essentially the B1 term in the slip variation part of (2.32). The minus sign here is to indicate
the direction of the stresslet induced by the B1 > 0 mode: it is of contractile type with S < 0
when dk = ek or of extensile type with S > 0 when dk = −ek. This induced stresslet is a new
feature due to stick-slip disparity and never occurs to a no-slip or uniform-slip squirmer.

An important consequence of (3.1b) is that an originally no-slip squirmer may switch
its swimmer type when adding a slip surface, depending on whether the induced stresslet
of ∼εB1μa2 in (3.1b) can outweigh the pre-existing stresslet of ∼B2μa2. If we add a slip
cap on its front (dk = ek) as illustrated in figure 4(a), an originally no-slip puller squirmer
with S > 0 set up by B2 > 0 (in figure 1a) can turn into a stick-slip pusher squirmer with
S < 0 when εB1 > B2 makes the total stresslet overturn its direction. However, for an
originally no-slip pusher squirmer with S < 0 set up by B2 < 0, the swimmer type will
remain unchanged by adding a slip face on its front as the induced stresslet (3.1b) is of the
same sign. However, the no-slip pusher may switch to a puller if the slip cap is placed on
its rear (dk = −ek), as in figure 4(b), when the induced stresslet (3.1b) dominates the total
stresslet with εB1 >−B2.
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Backward puller

B2 alone(a) (b)

(c) (d )

B2 > 0

di
di

didi

ei

B2 < 0

B2 > 0
B2 < 0

Backward pusher

Pusher

Puller

Figure 5. Schematic mechanisms for how a stick-slip squirmer can be driven by the B2 mode due to
fore-and-aft asymmetric squirming forces under a stick-slip disparity. With the slip face on the right (di = ei),
the stronger squirming forces on the left-stick face can drive the squirmer to act as either a backward puller
when B2 > 0 in (a), or a pusher when B2 < 0 in (b). Similarly, if the slip face is on the left (di =−ei), the
squirmer can act as a puller when B2 > 0 in (c), or a backward pusher when B2 < 0 in (d). In (a) and (d), the
backward motion is defined with respect to ei defined in figure 1.

When the B2 mode is acting alone, figure 5 illustrates how a stick-slip disparity
imparts force asymmetry in an extensile/contractile stresslet (B2 > 0/B2 < 0) to drive the
squirmer – a mechanism that never happens to a no-slip or uniform-slip squirmer. When
a positive B2 squirming drives on a right-slip and left-stick squirmer with dk = ek in
figure 5(a), the stronger squirming force on the left-stick face surmounts the oppositely
acting but weaker force on the slip face to tow the squirmer at a swimming velocity ∼εB2
towards the left. It is noted that the squirmer moves along −ek, against the motion of the
classical no-slip puller with B2 > 0 under B1 > 0, and hence is particularly categorized as
a backward puller. If this backward propulsion by the B2 mode is strong compared with
the co-existing B1 mode, it may diminish the swimming of a stick-slip squirmer. Similarly,
when the squirming is reversed with B2 < 0 in figure 5(b), the stronger force on the left
(rear) stick face propels the squirmer from behind to make it swim like a pusher, which
tends to promote the swimming of a squirmer.

If the stick-slip polarity is flipped by placing the slip face on the left with dk = −ek
for B2 > 0 in figure 5(c), the stronger force on the right-stick face acts in ek and tows
the squirmer like a puller. On the contrary, B2 < 0 makes this force act backward along
−ek to push the squirmer in figure 5(d), making it swim as a backward pusher. Compared
with the case with a right-slip cap (dk = ek) in figures 5(a) and 5(b), figures 5(c) and 5(d)
are simply the respective reversed actions without changing the swimmer type. This is
a consequence of the reversibility of Stokes flow. Since the propulsion action is reversed
when changing the sign of B2, the associated promoting and diminishing swimming effects
turn the opposite. That is, B2 > 0 generates a puller action towards the left (against ek)/right
(along ek) to diminish/promote the swimming of a squirmer when adding a slip face on the
right/left (figures 5a and 5c). However, B2 < 0 renders a forward/backward pusher action
towards the right(along ek)/left(against ek) to enhance/depress the swimming of a squirmer
when a slip face is placed on the right/left of the squirmer (figures 5b and 5d).
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Summarizing the features above for a stick-slip squirmer driven by the B2 mode alone,
we recapitulate the induced swimming velocity and the stresslet in the scaling form

	Ui ∼ −εB2(dkek)ei, (3.2a)

Sij ∼ B2μa2(eiei − δij/3)[1 + O(ε)]. (3.2b)

Equation (3.2a) actually accounts for the slip variation term in (2.20) when B1 = 0. The
minus sign and the polarity factor (dkek) indicate that the induced swimming velocity
acts in the direction opposite (parallel) to the stick-slip polarity when B2 > 0(<0). This
also implies that a stick-slip disparity can either enhance or diminish the swimming of a
squirmer compared with a no-slip squirmer, depending on whether the net squirming force
acts against or is aligned with the stick-slip polarity (which points in the direction from the
stick face to the slip face).

After explaining the individual propulsion mechanisms for the single B1 mode and the
single B2 mode in the presence of a stick-slip disparity, we shall discuss in what fashions
the two modes will act together to propel a stick-slip squirmer. In the following analysis,
we limit the discussion to the scenario where the stick and the slip faces are of comparable
proportions (i.e. when α is neither close to 0 nor π). Unlike the single-mode driving that
the squirming force on the stick face always exceeds the force on the slip face, owing to
the induced swimming velocity (3.2a) and stresslet (3.1b), the relative force magnitude
on the two faces may change when both modes are acting together. This is because
the squirming force on stick/slip face from one mode can reinforce or oppose the force
generated from the other mode when flipping the disparity polarity di. In figure 6, we fix
B1 > 0 and consider how an extensile/contractile squirming from the B2 mode works with
the stick-slip polarity di to determine the swimming direction and swimmer type. We shall
show that the swimmer type is determined solely by the direction of the total stresslet
through the sign of the stresslet coefficient S defined in (4.1b): S > 0 is puller and S < 0 is
pusher, applicable to both single- and mixed-mode squirming.

In figure 6(a), we first consider a squirmer having a positive stick-slip polarity (dk = ek)
with a left-stick and right-slip face under B2 > 0. The squirming force generated by the
B1 (>0) mode on the left-stick face is stronger to drive the squirmer like a pusher with an
induced contractile stresslet of S < 0, as illustrated in figure 4(a). The coexisting B2 > 0
mode, on the other hand, generates an extensile squirming of S > 0 to drive the squirmer
as a backward puller, as in figure 5(a). This shows one example for how the two driving
modes can cause a counteracting effect on the swimmer type.

In terms of magnitudes of squirming forces, the squirming force generated by the B1
(>0) mode on the stick face scales like μaB1 and is reduced to μa(1 − ε)B1 on the slip
face due to an O(ε) slip disparity. For the B2 mode, the squirming forces on the stick and
slip faces scale like −μaB2 and μa(1 − ε)B2, respectively. Combining the actions of these
two modes, the overall squirming forces (with drag coefficient ξ ∼μa) on the rear (left)
stick face and the front (right) slip face are

Fstick ∼ ξ(B1 − B2), (3.3a)

Fslip ∼ ξ(B1 + B2)(1 − ε). (3.3b)

For an originally no-slip squirmer with ε = 0 under B1 > 0 and B2 > 0, it is always a puller
with S > 0 moving towards the right along ei because the front force ∼ξ (B1 + B2) is always
greater than the rear force ∼ξ (B1–B2). When a slip face is added to the squirmer’s front, it
skews the force distribution to modify the forces on the front slip and the back stick faces.
Below we discuss how the sign and magnitude of the force on each face determine the
swimming direction and the swimmer type.
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Figure 6. Schematic illustrations for how the B1(>0) and the B2(>0, <0) modes combine to set the swimming
of a stick-slip squirmer whose slip face is on the right (with di = ei) or the left (with di =−ei). There are
four squirming and stick-slip scenarios: (a) β = B2/B1 > 0, di = ei, (b) for β = B2/B1 < 0, di = ei, (c) for
β = B2/B1 > 0, di =−ei and (d) for β = B2/B1 < 0, di = −ei. The squirming forces (pink arrows) and their
magnitudes on the stick/slip faces are marked together with the sign of the stresslet coefficient (S) and the
respective propulsion from the B1 and the B2 modes (hollow, solid blue arrows). When the two modes compete
on the stick face in (a) and (d), the net propulsion is marked to show the winning mode; when the two modes
reinforce in (b) and (c), both mode propulsion arrows are stacked. The various swimming states under these
squirming and stick-slip scenarios are categorized by how β compares with the degree of stick-slip disparity
ε. For a squirmer having a comparable stick-slip partition, reverse swimming can occur for |β| > 2/ε, stresslet
inversion can take place for |β| <ε/2 and degraded swimming from a no-slip squirmer is found for ε/2 < |β| < 1
and 1 < |β| < 2/ε.
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When 0 < Fstick < Fslip that leads to ε/2 < β ≤ 1 (more precisely, ε/(2 − ε) < β ≤ 1)
using (3.3), the squirmer is towed by the greater Fslip at the front and hence remains a
puller. For such a stick-slip puller, since the pulling force on the front-slip face is weaker
than that on the front face of a no-slip puller, this puller swims with a weaker pulling force
and hence can be deemed as a degraded puller. But when Fstick > Fslip > 0 or β < ε/2 (more
precisely, β <ε/(2 − ε)), the stronger Fstick makes the squirmer change to a pusher with
S < 0 due to the contractile (sign-flipped) stresslet from the B1 squirming in figure 4(a).

However, if Fstick in (3.3a) reverses its direction to Fstick < 0 when B2 > B1 due to a much
stronger extensile squirming by the B2 > 0 mode, we may preserve a puller if Fslip exceeds
Fstick to tow the squirmer at its front when 1 < β < 2/ε (more precisely, 1 < β < (2 − ε)/ε).
Again, since the pulling force on the front is reduced due to the slip face, the squirmer
swims like a degraded puller compared with the no-slip puller. Finally, when β > 2/ε, a
negative Fstick can win over Fslip to give a backward puller due to the dominating B2 mode,
similar to the pulling action illustrated in figure 5(a).

As such, the four scenarios discussed above can be categorized accordingly into

(i) β <ε/2, a type-changed pusher (S < 0) propelled on the rear-stick face;
(ii) ε/2 <β ≤ 1, a degraded puller (S > 0) towed primarily by the force on the front-slip

face with a magnitude weaker than the no-slip case;
(iii) 1 < β < 2/ε, a degraded puller (S > 0) with propulsion on the front-slip face weaker

than the no-slip value but sufficient to overcome the backward force on the rear-stick
face;

(iv) β > 2/ε, a backward puller (S > 0) towed on the rear-stick face.

In (ii) and (iii), the force on the front-slip side can exceed that on the rear-stick side to tow
the squirmer and hence is responsible for making the total stresslet extensile type. On the
contrary, in (i) and (iv), the stronger force on the rear-stick face controls the propulsion
and stresslet for the squirmer and (i) can make the stresslet be of contractile type.

In summary, adding a slip face to the front of a no-slip puller squirmer can make it
become a pusher because of a stresslet inversion in (i) due to a strong contractile stresslet
induced by the B1 mode (similar to the mechanism in figure 4a). The squirmer can be
slowed down from a no-slip puller in (ii) and (iii) to swim like a degraded puller because
of the relatively weak net propulsion force on the slip face. The squirmer can undergo a
reverse swimming without changing the swimmer type in (iv) due to the backward puller
action by the B2 > 0 mode (similar to the mechanism in figure 5a).

Figure 6(b) illustrates the situation for an originally no-slip pusher with β = B2/B1 < 0
after adding a slip face on the squirmer’s front (dk = ek). The total squirming forces on
the rear (left) stick face and the front (right) slip face of the squirmer are still described
by (3.3a) an (3.3b), respectively, except that the force directions for the B2 < 0 case turn
the opposite of those for the B2 > 0 case in figure 6(a). In this case, the squirming forces
on the rear-stick face for the two modes always reinforce each other towards the front,
whereas those on the slip face counteract each other. As a result, Fstick always exceeds Fslip,
ensuring the squirmer to be a pusher with S < 0 as a no-slip pusher with β = B2/B1 < 0
in figure 1(b). The swimming state for this case can still be classified according to the
direction of the squirming force Fslip on the slip side. When |β|< 1, Fslip follows the
B1-generated thrust towards ei. The total squirming force on this B1-dominating front-slip
pusher is Fslip + Fstick ∼ ξB1[2 − ε(1 + β)] from (3.3) and merely slightly weaker than
that of ∼2ξB1 on a no-slip pusher when −β < 1. So this pusher can be thought of as a
regular pusher. On the other hand, −β > 1 leads to Fslip < 0 acting along −ei. Compared
with a no-slip pusher with the total squirming force ∼−2ξB1β(>0), the total squirming
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force Fslip + Fstick ∼ ξB1[2 − ε(1 + β)] on this B2(<0) dominating front-slip pusher can
be considerably greater when β <−1. Such a force reinforcement on the rear face is
a consequence of the B2-induced pusher action at O(ε) (figure 5b) and this front-slip
squirmer is thus categorized as an enhanced pusher.

When the stick-slip polarity is flipped (dk = −ek) to act against the B1 > 0 squirming
in figures 6(c) and 6(d), similar force counteracting or reinforcing effects due to the
coexisting B2 mode also occur. Here, the B1 mode generates unidirectional squirming
forces on the rear (left) slip face of strength ξB1(1 − ε) and on the front (right) stick
face of strength ξB1. The squirmer driven by this mode alone acts like a puller (see
figure 4b). For the B2 mode, it imposes asymmetric extensile/contractile squirming forces
with the respective strength −ξB2(1 − ε) and ξB2 on the rear-slip face and the front-stick
face, making the squirmer act like a backward pusher (see figure 5d). Therefore, the total
squirming forces on the rear-slip face and the front-stick face are

Fslip ∼ ξ(B1 − B2)(1 − ε); (3.4a)

Fstick ∼ ξ(B1 + B2). (3.4b)

With β = B2/B1 > 0 in figure 6(c), the squirming forces by the two modes on the front-stick
face reinforce each other. So Fstick always exceeds Fslip to make the squirmer a puller with
S > 0, like a no-slip puller with β > 0. In this case, Fslip acts in the same direction as
Fstick(>0) towards ei when β < 1, or against Fstick towards −ei when β > 1. Similar to
figure 6(b), the swimming states between β < 1 and β > 1 for this rear-slip puller can be
different, depending on whether the total squirming force Fslip + Fstick ∼ ξB1[2 − ε(1 −
β)] on this puller exceeds that of ∼2ξB1 on a no-slip puller with the same value of β.
When β < 1, the former is slightly weaker than the latter, and hence this B1-dominating
rear-slip puller behaves like a regular puller. When β > 1, on the other hand, the total
squirming force on this rear-slip puller can be made stronger than that on the no-slip puller
due to the added slip face through the prevailing B2 mode, thereby driving the rear-slip
puller to swim faster like an enhanced puller.

With β = B2/B1 < 0 in figure 6(d), 0 < Fslip < Fstick or −β <ε/2 (more precisely,
−β <ε/(2 − ε)) turns the originally no-slip pusher with β < 0 into a puller with S > 0.
However, when Fslip > Fstick > 0 or ε/2 < −β ≤ 1 (more precisely, ε/(2 − ε) < −β ≤
1), it renders a degraded pusher with S < 0 since it is propelled on the rear-slip face
with a weaker squirming force compared with the no-slip counterpart. If a negative B2
exceeds B1 to reverse Fstick, we may preserve a degraded pusher if the total squirming
force Fslip + Fstick ∼ ξB1[(2 − ε) + εβ] > 0 when 1 <−β < 2/ε, but may end up with a
backward pusher if Fslip + Fstick < 0 when −β > 2/ε. Like figure 6(a), these four scenarios
can be summarized as

(i) |−β|< ε/2, a puller (S > 0) towed on the front-stick face;
(ii) ε/2 < |−β| ≤ 1, a degraded pusher (S < 0) with a weaker thrust on the rear-slip face;

(iii) 1 < |−β|< 2/ε, a degraded pusher (S < 0) propelled by a weaker force on the
rear-slip face;

(iv) |−β|> 2/ε, a backward pusher (S < 0) propelled from the front-stick face.

Hence, adding a slip face to the rear of an originally no-slip pusher squirmer can turn
it into a puller in (i) due to a stresslet inversion by the B1 mode. It swims slower in (ii)
and (iii) and even reverses its swimming direction without changing the swimmer type
in (iv) when the B2 < 0 mode competes or outperforms the B1(>0) mode to bring out its
backward pusher action illustrated in figure 5(d).
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In fact, all the classified swimming states in figure 6 can be summarized in a β–ε phase
diagram accordingly in figures 7(a) and 7(b) for right-slip squirmers (dk = ek) and left-slip
squirmers (dk = −ek), respectively. These distinct swimming states can be categorized as
either counteracting propulsion or reinforcing propulsion. Counteracting propulsion means
that the squirming forces on the stick face from the two modes act to oppose each other,
as illustrated in figures 6(a) and 6(d). Reinforcing propulsion, on the contrary, refers to the
situation when these forces act in the same direction, as seen in figures 6(b) and 6(c).

For counteracting propulsion, there are eight swimming states: four states occur for
an originally no-slip puller squirmer with β > 0 when a slip face is placed on the front
(see figure 6a). The other four states happen for an originally no-slip pusher squirmer with
β < 0 after a slip face is added on the rear (see figure 6d). Swimming characteristic changes
can occur to a puller/pusher squirmer with the slip cap on the front/rear in two extreme
regimes |β|<ε/2 and |β|> 2/ε where the O(ε) slip-asymmetry-induced effects of one
mode outperforms the original effects of the other mode. As illustrated in figures 6(a) and
6(d), in the small |β|< ε/2 regime, the squirmer switches the swimmer type along with
a stresslet inversion without changing the swimming direction due to the O(ε) stresslet
induced by the B1 mode. In the large |β|> 2/ε regime, the O(ε) propulsion induced
by the B2 mode on the squirmer gives rise to reverse swimming without changing the
swimmer type. In the intermediate region ε/2 < |β|< 1 and 1 < |β|< 2/ε, the swimming
is controlled by a greater total squirming force on the slip face. Reinforcing propulsion
occurs to a pusher with β < 0 when a slip face is placed on its front (dk = ek), or to a
puller with β > 0 when a slip face is added to its rear (dk = −ek). A stick-slip pusher and
puller of this sort can swim faster than the no-slip counterparts when β <−1 and β > 1,
respectively, due to the much amplified squirming force by the stresslet actions from the
more dominant B2 mode, as illustrated in figures 6(b) and 6(c).

As counteracting propulsion and reinforcing propulsion for a given stick-slip geometry
always occur at different signs of β, figures 7(a) and 7(b) also serve as the respective
swimming phase diagrams for the front-slip and the rear-slip cases as varying the value of
β. For a squirmer with the front-slip face, it can be clearly seen from figure 7(a) that, as
β is decreased from a very positive value to a very negative value, the squirmer can act
as a backward puller, a degraded puller, a pusher and an enhanced pusher, experiencing
motion reversal at the transition point β = 2/ε, type change at the transition point β = ε/2,
stresslet enhancement for β >−1 and swimming enhancement for β <−1. However, if
the stick-slip polarity is flipped towards the left by placing a slip face on the rear of a
squirmer, the above sequence of the swimming states will be reversed but with the puller
type replaced by the pusher type for each state, as shown in figure 7(b).

4. Quantifying swimming characteristic changes due to stick-slip disparity

After qualitative categorization of the rich propulsion scenarios for a stick-slip squirmer,
we compute the swimming velocity Ui from (2.20) and the stresslet Sij from (2.32) to
quantify the differences from those of the classical no-slip squirmer illustrated in figure 1.
With the reference set to be the no-slip case, we define the swimming coefficient and the
stresslet coefficient below to characterize the impacts of stick-slip disparity on Ui and Sij

V ≡ Ui/Ui(〈λ〉 = 0) = (1 + 2〈λ〉)−1[1 + (λL − λR)( f1(α) + f2(α)β)], (4.1a)

S ≡ Sij/|Sij(〈λ〉 = 0)| = sign (β)(1 + 5 〈λ〉)−1[1 + (λL − λR)(h1(α)β−1 + h2(α))].
(4.1b)
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Figure 7. Swimming phase diagrams in view of β = B2/B1 and the degree of stick-slip disparity ε(	1),
summarizing all different swimming states in figure 6. For a stick-slip squirmer with the slip face on the
right in (a), the squirmer can change the swimming characteristics by decreasing its β from a large positive
value: from a backward puller, a degraded puller, a pusher, to an enhanced pusher. The squirmer experiences
motion reversal at the transition condition β = 2/ε, type change at β = ε/2, stresslet enhancement for β >−1
and swimming enhancement for β <−1. Reversing the stick-slip polarity by placing a slip face on the left of a
squirmer in (b), the above sequence of the swimming states will be reversed but with the puller type replaced
with the pusher type. The colour shades correspond to those in figures 8 and 9. 967 A29-21
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Equation (4.1a) measures the degree of swimming enhancement or diminishment with
respect to the no-slip’s swimming velocity Ui(〈λ〉 = 0) from (1.3) (>0 towards the right,
along ei) and can change sign to signify a reverse swimming (<0 towards the left, along
−ei).(4.1b) reflects how the total stresslet Sij changes its strength from the no-slip case
|Sij(〈λ〉 = 0)| given in (1.4). In addition, the sign of this coefficient S > 0 or S < 0 is
to indicate a puller of extensile stresslet or a pusher of contractile stresslet, especially a
possible sign change due to stresslet inversion.

Other than the average dimensionless slip strength 〈λ〉 and the slip partition α, (4.1)
also indicates that swimming characteristic changes will depend crucially on the sign
of (λR–λL) that sets the direction of the stick-slip polarity di with respect to the driving
squirming force direction of the B1 mode or the swimming direction ei (towards the right)
of an originally no-slip squirmer. We present results according to the direction of the
stick-slip polarity and examine both β = B2/B1 > 0 and <0 driving scenarios to quantify
how the swimming behaviour of an originally no-slip squirmer is modified by an added
slip face.

4.1. Positive stick-slip polarity (λR−λL) > 0 case

4.1.1. The case β = B2/B1 > 0
Starting with an originally no-slip puller squirmer with β = B2/B1 > 0, we look at how V

and S are modified by adding a slip face on its front (right) with (λR−λL) > 0. Figure 8(a)
plots how V varies with the partition α/π of the slip face for various values of β and the
corresponding plot for S is shown in figure 8(b).

As revealed in figure 8(a), for a small value of β such as β = 0.1 under which the
B1 mode is more dominating than the B2 mode, V remains positive and decreases
monotonically with α from the no-slip value with α = 0 to the uniform-slip value with
α =π. Hence, the stick-slip squirmer does not change the swimming direction. This
squirmer swims slightly more slowly than the no-slip squirmer due to the swimming
diminishment by the dominating B1 mode through the f 1 term and by the drag
reduction factor (1 + 2〈λ〉)−1 in (4.1a) due to an increase of 〈λ〉 with α according
to (2.19a).

However, it is also this dominating B1 mode that enhances the O(ε) pusher-like
stresslet (of S < 0) (see figure 4a) to compete with the co-existing puller stresslet (of
S > 0) sustained by the B2(>0) mode. When β is small, the former can even outweigh
the latter into a total stresslet inversion since the slip disparity effect on S through
(λL−λR) < 0 in (4.1b) is greatly amplified by the β−1h1 > 0 term from the B1 mode.
This explains why the S-α profile at β = 0.1 resembles the profile of (λL–λR)β−1h1 ∼
−β−1sin4α to display a negative minimum at around α/π = 0.5 in figure 8(b). Increasing
β decreases the magnitude of this stresslet minimum until S changes its sign to
indicate a stresslet/swimmer-type inversion from a pusher of S < 0 to a puller of S > 0,
corresponding to the type change when entering the β >ε/2 regime on the phase diagram
in figure 7(a). While such a stresslet/swimmer type inversion effect due to the B1
mode becomes sluggish by raising β for diminishing the β−1h1 term in (4.1b), V is
further slowed down in figure 8(a). This velocity diminishment is due to the amplified
(λL−λR)f 2β < 0 term in (4.1a) through the O(ε) backward puller propulsion by the B2
mode (see figure 5a). When reaching β ∼1 where the B2 mode becomes comparable to
the B1 mode, V starts to display a minimum at around α/π = 0.5 due to (λL–λR)f2β ∼
−βsin4α in (4.1a). The corresponding S no longer changes its sign and remains positive
because the co-existing B2-driven puller stresslet of S > 0 outshines the O(ε) B1-induced
pusher stresslet of S < 0.
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Figure 8. Plots of how the swimming coefficient V in (4.1a) and the stresslet coefficient S in (4.1b) vary
with the partition α/π of the slip face and β = B2/B1 for a right-slip squirmer with (λL, λR) = (0, 0.2). Panels
(a) and (b) show the results with β > 0. For a small β = 0.1, V decreases monotonically from the no-slip value
(α/π= 0) to the uniform-slip value (α/π= 1) in (a) but the squirmer can change to a pusher with S < 0 due to
stresslet inversion by the much stronger B1 mode (like in figure 4a) in (b). Increasing β not only lowers V but
also makes the squirmer return to the degraded puller state due to the backward puller action by the B2 mode
(as in figure 5a). For a large β = 10, the backward pulling can dominate to reverse its swimming direction with
V < 0 in (a) like a backward puller with S > 0 in (b). Panels (c) and (d) plot V and S with β < 0 under which
the squirmer always acts as a pusher. Apparent swimming enhancement from V < 1 to V > 1 by increasing
|−β| is observed in (c) while V > 1 comes with a diminishment of |S| (S < 0) in (d). The swimming states are
marked according to figure 7(a).

For a large enough β > 1, the f 2β term from the B2 mode dominates and amplifies the
backward puller propulsion effect on the swimming velocity (4.1a) to even change its sign
to reverse the swimming direction, as shown in figure 8(a). Meanwhile, the diminishment
of S by the B1-induced pusher effect is reduced by increasing β so that S remains positive
to preserve the swimmer type, as shown in figure 8(b). The dominant B2 mode effect
due to large β also explains why the V–α profile at β = 10 in figure 8(a) resembles the
profile of (λL–λR)f2β ∼ −βsin4α to display a negative minimum at around α/π = 0.5.
This corresponds to the swimming state with β > 2/ε in figure 6(a) due to counteracting
propulsion, and is classified as a backward puller on the phase diagram in figure 7(a). In the
regime between small and large values of β, such as 1 <β < 8, the squirmer simply swims
slower than both the no-slip and uniform-slip squirmers without changing its swimming
direction and swimmer type, as shown in figures 8(a) and 8(b) for V and S. The squirmer
in this intermediate regime behaves as a degraded puller with ε/2 < β < 2/ε on the phase
diagram in figure 7(a).

As such, for a squirmer having a comparable stick-slip partition to α = π/2, we observe
that V changes from positive to negative when β is increased while the corresponding S
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goes from negative to positive. The opposite trends of V and S with β are the reflections
of the different propulsion scenarios illustrated in figure 6(a) or on the β > 0 plane of the
phase diagram in figure 7(a), which are summarized below:

(i) small 0 < β < ε/2 gives a forward pusher with V > 0 and S < 0, where the stresslet
inversion results from the dominating B1-induced stresslet;

(ii) intermediate ε/2 <β < 2/ε gives a degraded forward puller with V > 0 and S > 0,
which is just a slower squirmer of the same type as the no-slip case;

(iii) large β > 2/ε gives a backward puller with V < 0 and S > 0, where the reverse
motion is a result of the winning B2-induced counteracting propulsion.

4.1.2. The case β = B2/B1 < 0
Next, we consider the case of an originally no-slip pusher squirmer with β = B2/B1 < 0.
Figures 8(c) and 8(d) present the calculated V and S after adding a slip face on the
squirmer’s front (right).

Because the B2-driven stresslet is now of contractile type with S < 0, the resulting
stronger squirming force on the rear-stick face acts in the same direction as that of the
B1 mode. This reinforces the rear propulsion on the stick face as in figure 6(b), and makes
the squirmer swim in the same direction and type as a no-slip pusher squirmer on the
β < 0 plane in figure 7(a). This propulsion reinforcement on the stick face may enhance
the pusher swimming when |−β| is large enough to make the B2 mode’s effects stronger
than the B1 mode’s. It can be seen from (4.1a) that the βf 2 < 0 term from the B2 < 0 mode
may outweigh the f 1 > 0 term from the B1 mode and work with the stick-slip disparity
(λL−λR) < 0 to render a velocity enhancement towards the right. This also explains why
V > 1 for a specific range of α when |−β|> 1, as shown by the curves of β = −5 and
−10 in figure 8(c). The velocity enhancement peaks again at around α/π= 0.5 due to the
dominant contribution from (λL–λR)βf2 ∼ −βsin4α > 0 in (4.1a). Increasing |β| in this
regime boosts V to make the squirmer swim much faster than a no-slip squirmer due to
the further force reinforcement by the dominating B2 mode, corresponding to the enhanced
pusher state with |−β| > 1 in figure 6(b) or in the β < −1 regime of the phase diagram in
figure 7(a). In contrast, when |−β|< 1, the velocity enhancement by the B2 mode is no
longer effective so that the swimming becomes slowed down due to both the f 1 term and
the drag reduction factor (1 + 2〈λ〉)−1 in (4.1a), giving V < 1 seen in figure 8(c).

The slowdown in V at small |−β| comes with a great enhancement of S < 0 as shown
in figure 8(d) with β = −0.1. Since the O(ε) stresslet induced by the B1 mode acts in
the direction as the stresslet of the B2 < 0 mode to maintain S < 0 in figure 6(b), a
small −β boosts the h1β

−1 < 0 term with sign(β)(λL−λR) > 0 in (4.1b) to give S < −1.
The behaviour of S resembles the profile of sign(β)(λL–λR)h1β

−1 ∼ β−1sin4α < 0 and
thus displays a deep negative minimum at around α/π = 0.5, as shown in figure 8(d).
In contrast, if |−β| is large, the stresslet strength will become weaker than the no-slip
pusher’s and decrease towards the uniform-slip pusher’s as the slip portion is increased
with α, as shown in figure 8(d). This is because, when |−β| is large, the stresslet
enhancement by the B1 mode is suppressed by the stresslet diminishment by the B2 < 0
mode at the O(ε) level, and the latter dominates the stresslet correction, making −1 <

S ∼ sign(β)(λL–λR)h2 < 0 according to (4.1b).
Summarizing the above, the swimming of a pusher squirmer with a front-slip cap can

be enhanced by the B2 mode with a sufficiently large |−β| at the cost of a slight decrease
in its stresslet due to the O(ε) stresslet diminishment by the B1 mode, giving V > 1 with
−1 < S < 0 at the swimming enhancement state in figure 7(a). The squirmer can also swim
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Figure 9. Plots of how the swimming coefficient V in (4.1a) and the stresslet coefficient S in (4.1b) vary with
the partition (1−α/π) of the slip face and β = B2/B1 for a left-slip squirmer with (λL,λR) = (0.2,0). Panels
(a) and (b) plot the results with β > 0. Panel (a) shows an apparent swimming enhancement by increasing β

due to the puller action by the B2 mode (like in figure 5c). By increasing β, the squirmer acts as a puller when
V < 1 or an enhanced puller when V > 1 in (a), along with a diminishment of S > 0 in (b). Panels (c) and (d)
plot the results with β < 0. When|−β| is small, V decreases monotonically with (1−α/π) when the squirmer
switches from a no-slip pusher to a puller with S > 0 in (d) due to stresslet inversion by the much stronger B1
mode (like in figure 4b). Increasing |−β| lowers V due to the backward pusher action by the B2 mode (like in
figure 5d). Raising |−β| also diminishes the puller stresslet induced by the B1 mode so that the squirmer can
return to the pusher state with S < 0 in (d) when |−β| is increased to a certain value. Further lowering V at
large|−β| turns the squirmer into a backward pusher with V < 0 as displayed in (c). The swimming states are
marked according to figure 7(b).

slower than the no-slip case at a sufficiently small |−β|, but possesses a greatly amplified
stresslet by the B1 mode, leading to S < −1 with V < 1 at the stresslet enhancement state
in figure 7(a).

4.2. Negative stick-slip polarity (λR−λL) < 0 case
We now move to the negative stick-slip polarity dk =−ek case when a slip face is placed on
the rear (left) of an originally no-slip squirmer with (λR−λL) < 0. In contrast to the dk = ek
case in § 4.1, the squirming forces of the B1 mode and the B2 mode on the front-stick face
are stronger than those on the rear-slip face. But they may reinforce or counteract each
other according to the sign of β as illustrated in figures 6(c) and 6(d) to give rich variations
in the swimmer velocity and type as summarized on the phase diagram in figure 7(b).
Quantitative features of V(α′/π) and S(α′/π) are shown in figure 9 in terms of the flipped
partition angle α′ = (π − α) measured from the pole of the slip side.
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4.2.1. The case β = B2/B1 > 0
Figure 9(a) plots V(α′/π) when a slip face is introduced to the rear of an originally no-slip
puller with β > 0. In this case, the squirming forces on the front-stick face in the two modes
are reinforced by each other, whereas those on the slip face can compete, as illustrated in
figure 6(c). When the reinforcement effect by the B2 mode is much amplified with β > 1,
the swimming velocity can be promoted by the (λL–λR)βf 2(>0) term in (4.1a) to exceed
the no-slip value as V > 1. At a sufficiently large β such as β = 5 and 10, the B2 mode
dominates the swimming so that V(α′/π) mimics that of (λL–λR)βf2 ∼ βsin4α′ to display
a peak at around α′/π = 0.5 in figure 9(a), corresponding to the enhanced puller state
in the upper part of the β > 0 plane of the phase diagram in figure 7(b).This swimming
reinforcement effect is lessened by decreasing β until β < 1, below which the B1 mode
dominates the swimming. The latter makes V in figure 9(a) decrease monotonically with
α′ from the no-slip value to the smaller uniform-slip value because of the f 1 term along
with the drag reduction through (1 + 2〈λ〉)−1 in (4.1a) due to a gradually increasing slip
effect in 〈λ〉 according to (2.19a). This mechanism resembles that given for a pusher having
the slip face on the front in figure 8(c).

The corresponding stresslet remains puller type with S > 0, as shown in figure 9(b).
At a small β such as β = 0.1, S displays a peak at around α′/π = 0.5 as a result of the
dominant contribution from sign(β)(λL–λR)β−1h1 ∼ β−1sin4α′ in (4.1b). Increasing β

decreases the peak. When β is increased to β > 1, S decreases monotonically with α′ from
the no-slip value to the uniform-slip value. This stresslet attenuation can be interrupted
as a consequence of stress reduction due to the slip face. It can be seen in (4.1b) that
the stresslet strength is a factor (1 + 5〈λ〉)−1 weaker than the no-slip value and becomes
even weaker as the average dimensionless slip length 〈λ〉 increases with the slip portion
according to (2.19a).

4.2.2. The case β = B2/B1 < 0
Finally, for an originally no-slip pusher squirmer with β < 0, figures 9(c) and 9(d) show
the resulting V(α′/π) and S(α′/π) after adding a slip face on the squirmer’s rear side.

As revealed by figure 9(c), V is basically slowed down by raising |−β| because of
an increasing swimming diminishment effect through the (λL–λR)βf 2 < 0 term from the
B2 mode in (4.1a). When |−β|< 1 such as β =−0.1, V is lower than the no-slip case
and decreases monotonically towards the uniform-slip case as the slip portion α′/π is
increased. Increasing |−β| > 1 makes V lower than in the uniform-slip case to display
a minimum at around α′/π = 0.5 due to the growing impact from the (λL–λR)βf2 ∼
βsin4α′ < 0 term in (4.1a). When |−β| is large such as β = −10, this swimming velocity
minimum can become so deep that it eventually changes its sign, indicating that the
squirmer has reversed its swimming direction. This is similar to the swimming mechanism
illustrated for |−β| > 2/ε in figure 6(d) or the motion reversal state marked for the lower
part of the β < 0 plane in figure 7(b). These features actually result from the swimming
diminishment by the backward pusher action on the stick face from the B2 mode (see
figure 5d).

Figure 9(d) shows the corresponding stresslet behaviour. For |−β|< 1 such as
β = −0.1, while the swimming velocity shown in figure 9(c) is diminished from the
no-slip value without changing the swimming direction, the associated stresslet not only
reverses its direction to become puller type of S > 0 but also displays a maximum
at around α′/π = 0.5 due to the dominating contribution from sign(β)(λL–λR)β−1h1 ∼
−β−1sin4α′ > 0 induced by the B1 mode in (4.1b). This is the swimming mechanism
illustrated for |β|<ε/2 in figure 6(d), corresponding to the type-change swimming state
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marked on the β–ε phase diagram in figure 7(b). Increasing |−β| lowers the degree of
this B1-induced stresslet inversion until the backward pusher action from the B2 mode
(figure 5d) becomes strong enough to make the stresslet return to pusher type with S < 0
like the no-slip one. At the same time, the swimming velocity is reduced, as shown in
figure 9(c), making the squirmer act like a degraded pusher. This pusher state is the one
where ε/2 < |β| ≤ 1 in figure 6(d) or on the β–ε phase diagram in figure 7(b). When |−β|
is large such as β = −10, such puller-like stresslet effect by the B1 mode is significantly
weakened, thereby making S in figure 9(d) slightly smaller than the no-slip pusher case of
S = 1. But a large |−β| also promotes a strong backward pusher action from the B2 mode
to slow down the squirmer’s swimming, as seen in figure 9(c). If the effect is not too strong
to reverse the swimming direction, as in the situation with 1 < |β|< 2/ε in figure 6(d), the
squirmer will remain a pusher of degraded type, as classified on the phase diagram in
figure 7(b).

As in § 4.1, the rich behaviours shown above for a squirmer having a comparable
stick-slip partition but negative β and stick-slip polarity are manifestations of the opposite
effects of β on V and S. They are the reflections of the different propulsion mechanisms
illustrated in figure 6(d) or on the β < 0 plane of the phase diagram in figure 7(b), which
are summarized below:

(i) small 0 < |β|< ε/2 gives a type-changed forward puller with V > 0 and S > 0, where
the stresslet inversion results from the dominating B1-induced stresslet;

(ii) intermediate ε/2 < |β|< 2/ε gives a degraded forward pusher with V > 0 and S < 0,
which is just a slower squirmer of the same type as the no-slip case;

(iii) large |β|> 2/ε gives a motion-reversed backward pusher with V < 0 and S < 0,
where the winning B2-induced counteracting propulsion is responsible for the
swimming reversal.

4.3. Symmetry relationships in V and S

With the foregoing discussions on how the two modes work together under different
stick-slip polarities and partitions, we detect similarity in reinforcing or counteracting
propulsion. The profiles of V in figures 8(a) and 8(c) for dk = ek having the slip face on the
front are identical to those displayed in figures 9(c) and 9(a) for dk = −ek having the slip
face on the rear. The behaviour of S seen in figure 9(b) is an inversion of that displayed in
figure 8(d) with sign change. Flipping S in figure 8(b) with respect to S = −1 leads to the
profile of S seen in figure 9(d) with respect to S = 1. If all the particular features – sign
change and enhancement of V and S – are marked accordingly on the β–ε phase plane in
figure 7, symmetry with respect to the signs of β and the stick-slip polarities is observed.
In fact, such symmetry on the β–ε phase plane can be directly derived from (4.1a) and
(4.1b) in terms of the stick-slip polarity factor Λ= |λR–λL|dkek, the partition angle α, and
β according to

V(Λ, α, β) = V(−Λ, π − α, −β), (4.2a)

S(Λ, α, β) = −S(−Λ, π − α, −β), (4.2b)

[S(1 + 5〈λ〉) − sign(β)](Λ, α, β) = −[S(1 + 5〈λ〉) − sign(−β)](−Λ, π − α, −β).

(4.2c)

Equation (4.2b) can also be derived from (4.2c). These symmetry relationships hold
when the stick-slip polarity and the imposed squirming actions are reversed. They are
consequences of the reversibility of Stokes flow.
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5. Swimming flow structures and swimming performances for stick-slip squirmers

5.1. Squirming flow structures
In the preceding sections, we demonstrate how the combined impacts of the B1 mode
and the B2 mode give rise to new features for a squirmer due to stick-slip disparity. To
gain more insights into these features from a flow structure point of view, we visualize
how these squirming modes individually generate and jointly modify the corresponding
flow structures. To do so, we derive the squirming flow field to the O(ε) accuracy in
Appendix A. The flow solution, u = u(0) + u(1), is derived as a leading-order flow field
u(0) generated by a uniform-slip squirmer with the average slip length a〈λ〉 plus an O(ε)
correction flow u(1) arising from stick-slip disparity. Here, we consider a squirmer with
an equal stick-slip partition (α =π/2) and a fixed stick-slip strength (λL, λR) = (0, 0.2) so
that 〈λ〉 = 0.1. The flow field is plotted with respect to the squirmer’s centre by keeping
the squirmer fixed, and the front (right) always refers to as the swimming direction ei of a
no-slip squirmer with B1 > 0.

We first look at the flow structures driven solely by the B1 mode with (B1, B2) = (1,
0). Figure 10(a) plots the leading-order flow field around the uniform-slip squirmer,
showing a typical point-force flow field u(0) ∼ εB1(a/r) from the right to the left. The
O(ε) correction flow field caused by stick-slip disparity shown in figure 10(b) exhibits a
stresslet-like flow u(1) ∼ −εB1(a/r)2, drawing the fluid towards the equator and ejecting
it away from the front and rear poles. The corresponding stresslet is thus of contractile type
with S < 0, whose sign is in accordance with (2.32) when B1 > 0 and B2 = 0, and that read
in figure 8(b) with β = 0.1. Figure 10(c) is the total flow field u = u(0) + u(1), resembling
the leading-order flow in figure 10(a). This is because this O(ε) correction stresslet field is
not only weak but also decays like 1/r2, giving way to the dominating 1/r point-force flow
field imposed by the B1 mode.

If the flow field is generated purely by an extensile squirming due to the B2 mode
with (B1, B2) = (0, 5), the leading-order uniform-slip result displays a typical symmetric
straining flow structure in figure 11(a) due to the imposed stresslet, drawing the fluid from
the poles and ejecting it at the squirmer’s equator. When there is a stick-slip disparity with
a slip face on the right, the asymmetric squirming force distribution along the squirmer
generates a net propulsion force towards the left on the squirmer to make it a backward
puller, as illustrated in figure 5(a). Hence, an O(ε) point-force correction flow is generated
towards the right in figure 11(b). After superposition in figure 11(c), the total flow field
reveals a clockwise swirl on the front-slip side (right), as marked by the left box in
figure 11(c). A closer look is provided in figure 11(d), revealing that such a swirl is a
result of the competition between the locally counterflowing stresslet field towards the
left and the point-force field towards the right. While the leading-order stresslet field
u(0) ∼ B2(a/r)2 is strong near the squirmer, it decays rapidly as (a/r)2 away from the
squirmer. On the other hand, the correction point-force field u(1) ∼ εB2(a/r) is weak at
small r but decays more slowly as a/r so that it dominates in the far field. It follows,
therefore, that u(0) will begin to be suppressed by u(1) at around r/a ∼1/ε beyond which
the latter ultimately governs the far-field region, as shown in figure 11(e).

When both modes are present with (B1, B2) = (1, 5), the leading-order flow with uniform
slip displays a skewed straining flow with a counterclockwise swirl on the rear (left)
face in figure 12(a) due to a similar competition between the mode-driven flows. Here,
the right-flowing skewed stresslet field from the prevailing B2 mode (as in figure 11a)
dominates near the squirmer but decays with r, and eventually losses to the left-flowing
point-force field from the B1 mode (as in figure 10a) to generate the swirling motion.
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Figure 10. Squirming flow structures around a half-faced stick-slip squirmer when subjected to unidirectional
tangential squirming with (B1, B2) = (1,0). The squirmer has a slip face on the right with (λL, λR) = (0,0.2)
and 〈λ〉 = 0.1. Panel (a) shows the leading-order flow with the uniform slip length a〈λ〉, displaying a typical
point-force field towards the left generated by the B1 mode. Panel (b) displays the O(ε) correction flow field
due to a stick-slip disparity truncated at the 100th spherical harmonic in (A5), displaying a symmetric stresslet
flow field induced by the B1 mode. Panel (c) is the overall flow field by combining (a) and (b), revealing that
the flow is still dominated by the point-force field in (a) because the induced stresslet field in (b) is much
weaker and decays much faster. The ‘+’ and ‘−’ signs labelling the slip and the stick faces in (b) indicate the
corresponding positive and negative slip variations with respect to the average value 〈λ〉.

As for the O(ε) correction field shown in figure 12(b), the dominating B2 mode induces
a point-force field towards the right (like in figure 11b), whereas the stresslet field
induced by the much weaker B1 mode (like in figure 10b) is almost undetectable. Such
a point-force-like correction flow from the B2 mode interacts with the leading-order flow,
assisting the lower part of the swirl on the rear (left) of the squirmer but opposing the
upper part of the swirl on the front (right). The assisting action thus strengthens the swirl
and it is advected further towards the equator of the squirmer in figure 12(c). This implies
a weaker point force to drive the squirmer due to a stronger backward pulling action on the
rear against the leading-order forward pulling on the front. This, in turn, results in a slower
swimming, in accordance with the swimming diminishment with V < 1 at β = 5 shown
in figure 8(a). Such slower swimming resulting from the backward pulling action on the
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Figure 11. Squirming flow structures around a half-faced stick-slip squirmer when subjected to a purely
extensile/contractile squirming with (B1, B2) = (0,5). The squirmer has a slip face on the right with (λL,
λR) = (0, 0.2) and 〈λ〉 = 0.1. Panel (a) shows the leading-order flow with the uniform slip length a〈λ〉, displaying
a typical symmetric stresslet flow structure. Panel (b) shows the O(ε) correction flow field arising from a
stick-slip disparity truncated at the 100th spherical harmonic in (A5), showing a point-force flow field towards
the right due to the B2 mode. Panel (c) is the overall flow field combining (a) and (b), revealing a swirl on the
right-slip face when the stresslet field is counteracted by the induced point-force field in (b), as closely examined
in panel (d). The strong stresslet field decays rapidly as (a/r)2 and cannot compete with the slowly decaying
(a/r) point-force correction field at around r /a∼1/ε and beyond, as shown in panel (e). Here, r is the distance
to the centre of the squirmer and the velocity magnitude has been enlarged by 5 times for visualization. The
‘+’ and ‘−’ signs labelling the slip and the stick faces in (b) indicate the corresponding positive and negative
slip variations with respect to the average value 〈λ〉.
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Figure 12. Squirming flow structures around a half-faced stick-slip puller squirmer with (B1, B2) = (1,5). The
squirmer has a slip face on the right with (λL, λR) = (0,0.2) and 〈λ〉 = 0.1. Panel (a) shows the leading-order
flow with the uniform slip length a〈λ〉, exhibiting a swirl on the left of the squirmer. Panel (b) is the O(ε)
correction flow field truncated at the 100th spherical harmonic in (A5), showing a prevailing point-force field
towards the right due to the stick-slip disparity through the stronger B2 mode. The two counter-flowing fields
add up to advect the swirl towards the equator in (c) for the overall flow field. The ‘+’ and ‘−’ signs labelling
the slip and the stick faces in (b) indicate the corresponding positive and negative slip variations with respect
to the average value 〈λ〉.

rear of the squirmer is also consistent with counteracting propulsion under 1 < β < 2/ε in
figure 6(a), making the squirmer swim like a degraded puller as classified in figure 7(a).
In fact, the shift of the rear swirl towards the equator of the squirmer due to the weakening
of the skewed straining field of u(0) by the opposite forcing from u(1) is characteristic of a
degraded puller.

However, if the squirmer changes to possess a contractile stresslet with (B1, B2) = (1,
−5), the overall flow structure shown in figure 13(c) is intrinsically different from
figure 12(c) with (B1, B2) = (1, 5). In this case, u(0) with uniform slip still displays a
counterclockwise swirl in figure 13(a) but on the front (right) side. The corresponding
O(ε) correction field u(1) shown in figure 13(b) also exhibits a prevailing point-force-like
flow towards the left due to the stronger negative B2 mode. Compared with the flow in
figure 12, this unidirectional u(1) now interacts with the swirl of u(0) in an opposite manner
– opposing the lower part of the swirl on the front but assisting the upper part of the swirl
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Figure 13. Squirming flow structures around a half-faced stick-slip pusher squirmer with (B1, B2) = (1, −5).
The squirmer has a slip face on the right with (λL, λR) = (0,0.2) and 〈λ〉 = 0.1. Panel (a) shows the leading-order
flow with the uniform slip length a〈λ〉, displaying a swirl on the right of the squirmer. Panel (b) displays the
O(ε) correction flow field truncated at the 100th spherical harmonic in (A5), revealing a strong point-force field
towards the left due to the stick-slip disparity through the dominating B2 mode. Panel (c) is the overall flow
field, revealing a suppression of the swirl by the induced point-force field in (b) when the two modes reinforce
each other on the left-stick face. The ‘+’ and ‘−’ signs labelling the slip and the stick faces in (b) indicate the
corresponding positive and negative slip variations with respect to the average value 〈λ〉.

and the rest – so that the swirl becomes suppressed. Such swirl suppression by a reinforced
point-force field towards the left implies a stronger point force to propel the squirmer from
behind, thereby leading to a swimming enhancement with V > 1 at β =−5 in figure 8(c)
as a result of reinforcing propulsion under β <−1 in figure 6(b). In contrast to figure 12(c)
for a degraded puller showing a shift of the rear swirl towards the equator, the suppression
of the front swirl in u(0) due to the flow promotion by u(1) is a trademark of an enhanced
pusher as classified in figure 7(a).

5.2. Swimming power and swimming efficiency
As a stick-slip squirmer can swim faster or slower than the no-slip one, we study whether
the squirmer spends more or less power in its swimming under a specific swimming
scenario. This requires the knowledge of the overall flow field when the squirmer is
in motion at Ui. In addition to the squirming flow field u′

i derived in Appendix A
for a squirmer held fixed, we need to further include the flow field due to a constant
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squirmer motion. This translation-induced flow, uT
i , is solved in Appendix B as if there

were a uniform flow passing a fixed squirmer at −Ui. The two are superposed to give the
desired total flow vi = u′

i + uT
i around the squirmer, where uT

i is obtained by selecting Ui
to eliminate the 1/r point force Stokeslet contribution to ensure force free on the squirmer.

The swimming power is defined as the rate of viscous work dissipated by the squirmer.
For a purely tangential squirming motion where the radial velocity vr = 0 on the
squirmer’s surface at r = a, the swimming power can be calculated according to (Blake
1971; Pak & Lauga 2014)

P = −
∫

Sp

niσijvj dS = −2πa2
∫ π

0
(σrθvθ )r=a sin θ dθ. (5.1)

In the above, only the tangential stress σrθ = μr∂r(vθ/r) contributes and not the normal
stress because there is no radial fluid motion on the squirmer’s surface. Using Lamb’s
general solution for the overall field vi with vr (r = a) = 0, we show in Appendix E that
(5.1) takes the following form:

P = πaμ

[
48

B̂2
01

a6 + 24
B̂2

02
a8 + 16

∞∑
n=3

(
n + 1

n

)
B̂2

0n

a2(n+2)

]
. (5.2)

These coefficients B̂0n = B̂(0)
0n + B̂(1)

0n + O(ε2) are the contributions from the uniform-slip
part B̂(0)

0n plus those from the O(ε) slip variation part B̂(1)
0n . Noticing that B̂(0)

0n (n ≥ 3) =
O(ε) contribute to O(ε2) in (5.2), we may truncate (5.2) to n = 2 to approximate P as the
uniform-slip contribution, P(0), plus the O(ε) correction from slip disparity, P(1), as

P = P(0) + P(1) + O(ε2), (5.3a)

P(0) = 24πμa
[

2

(
B̂(0)

01
a3

)2

+
(

B̂(0)
02

a4

)2]
, (5.3b)

P(1) = 48πμa

[
2

(
B̂(0)

01
a3

)(
B̂(1)

01
a3

)
+
(

B̂(0)
02

a4

)(
B̂(1)

02
a4

)]
, (5.3c)

where

B̂(0)
01

a3 = − B1

3(1 + 2〈λ〉) , (5.4a)

B̂(0)
02

a4 = − B2

3(1 + 5〈λ〉) , (5.4b)

B̂(1)
01

a3 = − B1

5(1 + 2〈λ〉)g2 + B2

2(1 + 5〈λ〉)
[

g1 − 3
7

g3

]
, (5.4c)

B̂(1)
02

a4 = − (2/3)B1

(1 + 2〈λ〉)
[

g1 − 3
7

g3

]
+ (5/21)B2

(1 + 5〈λ〉)
[

g2 − 4
3

g4

]
, (5.4d)

gn(n ≥ 1) = 1
2 (λL − λR)[Pn+1(cos α) − Pn−1(cos α)]. (5.4e)

The gn values are the coefficients given by (A7b) in the Legendre expansion of the slip
variation (A7a) and hence only appear in B̂(1)

0n .
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Figure 14. Plot of the leading-order swimming power P (0) described by (5.5) against the partition α/π of the
slip face for a stick-slip squirmer with (λL, λR) = (0,0.2) and the average value 〈λ〉 varying with α according to
(2.19a). For a given value of β = B2/B1, P(0) typically decreases monotonically with α from the no-slip value
at α = 0 to the uniform-slip value at α =π. Increasing β increases the power.

For the uniform-slip part at leading order, the swimming power (5.3b) is

P(0) = 16π

3
μaB2

1

(1 + 2〈λ〉)2

[
1 + β2

2

(
1 + 2〈λ〉
1 + 5〈λ〉

)2]
. (5.5)

When 〈λ〉 = 0, (5.5) is reduced to the no-slip result obtained by Blake (1971) but a non-zero
〈λ〉 always decreases P(0) from the no-slip value. Since 〈λ〉 increases with the portion of
the slip face according to (2.19a), P(0) decreases with the slip partition α/π as shown
in figure 14 for a right-slip squirmer. Other than the slip portion effect, figure 14 also
depicts that P(0) increases with β2 due to the B2 mode in addition to the swimming power
(16π/3)(1 + 2〈λ〉)−2μaB2

1 for a neutral uniform-slip squirmer without the B2 mode.
This might explain why a squirmer-like microorganism such as Volvox carteri typically
swims with β < 1 (Lauga 2020) to reduce the swimming power. Also, because of this
β2 dependence, P(0) is invariant when β changes sign so that both puller and pusher
squirmers having the same uniform slip length consume an identical amount of swimming
power under the same value of |β|.

Differences in the swimming powers between puller (β > 0) and pusher (β < 0)
squirmers are reflected by the swimming power correction P(1) arising from stick-slip
disparity. Judging from (5.3c), P(1) < 0 is possible due to the counteracting B1 and B2
modes in (5.4c) and (5.4d). For this reason, a squirmer may exploit a stick-slip disparity
to save energy with a properly selected slip partition in some ranges of α bounded by
particular values of α determined by P(1)(α) = 0.

Figure 15 plots how the overall swimming power P described by (5.3a) varies with
the partition α/π of the slip face for both puller and pusher squirmers when including
the contribution (5.3c) from P(1). We first consider a squirmer whose slip face is on the
right. In comparison with an originally no-slip puller with α = 0 and β > 0 in figure 15(a),
adding a slip face on the front can raise the power consumption with a small α to a
local maximum at α/π ≈ 0.2, after which a further increase of α can reduce P to a
local minimum at α/π ≈ 0.5. Increasing β raises the power consumption as the squirmer
changes from a pusher for a small β to a degraded puller with a moderate value of β, and
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Figure 15. Dependence of the total swimming power P described by (5.3) on the partition of the slip face for
a right-slip squirmer with (λL, λR) = (0,0.2) in (a) and (b), and for a left-slip squirmer with (λL, λR) = (0.2,0)
in (c) and (d). For the original puller with β = B2/B1 > 0 shown in (a), P can exhibit a minimum at around
α/π= 0.5, lower than the no-slip and uniform-slip values. This minimum power increases with rising β as the
squirmer changes from a pusher to a degraded puller, and then converts to a backward puller. For the original
pusher case with β < 0 in (b), while increasing |−β| increases P by changing the squirmer from a pusher to
an enhanced pusher, the squirmer can spend less power than the no-slip and uniform-slip squirmers to exhibit
a minimum swimming power at around α/π= 0.8. Panels (c) and (d) plot the left-slip case, displaying the
features identical to those in (b) and (a), respectively. In (c) for β > 0, P of a puller or an enhanced puller
is typically the lowest at around (1−α/π) = 0.8. In (d) for β < 0 under which the squirmer can be a puller, a
degraded puller, or a backward pusher, P can be the lowest at around (1−α/π) = 0.5.

eventually becomes a backward puller when β is large. These results imply that adding a
front-slip face of α/π ≈ 0.2 to 0.5 to a no-slip puller may save the power most to boost
its swimming efficiency, as will also be shown later. On the other hand, if one wishes to
keep the swimming power as low as possible, β will need to be taken as small as possible.
The smallness of β limits the power undulation with α and does not show much difference
from the no-slip case.

Figure 15(b) shows the swimming power curves for an originally no-slip pusher with
β < 0 after adding a slip face on the right. We also observe an undulation of P(α/π) but
in a somewhat opposite increase/decrease trend to the β > 0 case seen in figure 15(a);
P still increases with |−β| as the squirmer gradually changes from a regular pusher
to an enhanced pusher. Similar to the result with β > 0, the undulation of P with α is
minute when the squirmer swims like a pusher when |−β| is small. Increasing |−β| to a
moderate value such as β =−1, P is found to decrease with α from the no-slip value to
a minimum at around α/π = 0.25 and peaks at around α/π = 0.5 to a value slightly below
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the no-slip value. Further increasing |−β| to a value such as β = −3 or beyond changes the
stick-slip squirmer to an enhanced pusher whose swimming power is always lower than the
maximum power expended by the no-slip pusher with α = 0. However, the partition that
creates the minimum power is around α/π = 0.75 for small |−β| and slightly above for
large |−β|.

Figures 15(c) and 15(d) plot the case when the stick-slip director is flipped with the slip
face on the rear (left) of a squirmer. Here, we plot the swimming power against the partition
of the slip face, (1 − α/π). The curves in figure 15(c) for β > 0 match those in figure 15(b).
The differences in the swimming power between the stick-slip squirmer and the no-slip
squirmer start to become apparent at β = 1 or larger when the stick-slip squirmer acts like
a regular puller or towards an enhanced puller. In this case, the swimming power is always
lower than the maximum swimming power occurring to the no-slip puller. Similarly, the
partition for the lowest swimming power is again found to be around (1 −α/π) = 0.75 and
slightly above, as shown in figure 15(c).

Figure 15(d) displays the power consumptions for the originally no-slip pusher (β < 0)
case, showing that the maximum and minimum swimming powers come about at around
(1 −α/π) = 0.2 and (1 −α/π) = 0.5, respectively, identical to the trends in figure 15(a).
When the squirmer acts as a degraded pusher or a pusher when |−β| is greater than a
certain value like β = −1, it can save the power most with the slip partition of around
(1−α/π) = 0.5. However, if |−β| is below that value, the squirmer will become a puller
due to stresslet inversion (see figure 9d) and its swimming power will not have much
difference than that of the no-slip pusher.

Having obtained the swimming power and understood its behaviours above, we put forth
to derive the swimming efficiency and analyse how it behaves. This efficiency is defined
as the ratio of the rate of work required to drag the squirmer to the swimming power that
produces the same swimming velocity (Lighthill 1952):

ζ = −FiUi/P . (5.6)

Here, the drag force Fi and the swimming velocity Ui are given by (2.15) and (2.20),
respectively, and both contain O(ε) slip variation corrections. Using (2.15) together with
(2.20) and writing Ui = U(0)

i + U(1)
i + O(ε2), the rate of work in (5.6) is

− FiUi = 6πμa|U(0)
i | 2

(
1 + 2〈λ〉
1 + 3〈λ〉

) [
1 + Q

(1 + 2〈λ〉)(1 + 3〈λ〉) + 2
U(1)

i

U(0)
i

]
+ O(ε2),

(5.7)
where U(0)

i is given by (2.22),U(1)
i is the O(ε) slip variation correction in (2.20) and Q is

the O(ε) slip correction to the drag force due to the surface quadrupole given by (2.19b).
Combining (5.3) and collecting the terms to O(ε), (5.6) is reduced to

ζ = ζ0

{
1 +

[ Q
(1 + 2〈λ〉)(1 + 3〈λ〉) + 2

U(1)
i

U(0)
i

− P (1)

P (0)

]}
+ O(ε2), (5.8)

where ζ 0 is the swimming efficiency for the uniform-slip case and given by

ζ0 = 1
2

(
1 + 2〈λ〉
1 + 3〈λ〉

)[
1 + 1

2
β2
(

1 + 2〈λ〉
1 + 5〈λ〉

)2]−1

. (5.9)

Not surprisingly, the presence of slip can cause non-trivial impacts on the swimming
efficiency without and with stick-slip disparity. We first plot ζ 0 against 〈λ〉 for different
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Figure 16. Plot of the leading-order swimming efficiency ζ 0 against the average dimensionless slip length 〈λ〉
according to (5.9). ζ 0 can decrease with 〈λ〉 for β < 0.7, display a maximum in the range of 〈λ〉 for β = 0.7–1.2
shown in (b), or increase with 〈λ〉 for β > 1.2. For each of these cases, ζ 0 approaches a constant as 〈λ〉→∞.

values of β in figure 16(a), showing that ζ 0 at a given 〈λ〉 in general declines
with increasing β as prescribed by (5.9). However, how ζ 0 varies with the average
dimensionless slip length 〈λ〉 is not monotonic. This is because the rate of the dissipation
work −FiUi∝(1 + 2〈λ〉)/ (1 + 3〈λ〉) decreases with 〈λ〉 at a rate different than that of the
swimming power P ∝ 1 + (β2/2)[(1 + 2〈λ〉)/(1 + 5〈λ〉)]2. This makes ζ 0 increase or
decrease with 〈λ〉, depending on the range of 〈λ〉 and the value of β.

With a closer look at figure 16(b), ζ 0 decreases with 〈λ〉 and saturates to a constant
plateau whose value decreases with rising β when β < 0.7. For β = 0.7−1.2, however, ζ 0
can exhibit a maximum at a specific 〈λ〉 that shifts to a larger value of 〈λ〉 (≤0.25) as β

is increased, as shown in figure 16(b). For β > 1.5, ζ 0 grows monotonically with 〈λ〉 for
small 〈λ〉 and levels off when 〈λ〉 is large, as displayed in both panels in figure 16.

Unlike a uniform-slip squirmer, how the swimming efficiency ζ described by (5.8)
behaves for a stick-slip squirmer further depends on the type of squirmer, the stick-slip
polarity and the slip partition, as shown in figure 17. Figure 17(a) plots how ζ varies
with the partition α/π of the slip face on the right of a squirmer with β > 0. When β

is small, such as β = 0.1, the originally no-slip puller can change to a right-slip pusher
due to stresslet inversion (figure 8b) and its swimming efficiency decreases monotonically
with α/π. Increasing β to a moderate value like β = 0.5–2 at the degraded puller state,
ζ first decreases with α/π and then is boosted to a local maximum at some value of α/π
between 0.25 and 0.5. Such local efficiency maximum seems to be reminiscent of the
minimum swimming power observed in figure 15(a). A closer examination of P and P(0)

with β = 1 around α/π = 0.5 in figures 15(a) and 14 reveals that this minimum total P
is smaller than the leading-order P(0) and hence we must encounter an energy-saving
P(1) < 0 by the stick-slip disparity. This in turn boots the swimming efficiency to give
a greater power-saving ratio −P(1)/P(0)(>0) in (5.8). However, such an energy-saving
swimming strategy quickly loses its advantage when β is further increased to make ζ even
lower. At a sufficiently large β, such as β = 4, the swimming efficiency can become the
lowest at around α/π = 0.5. This is likely due to the much stronger efficiency depression
by the swimming diminishment U(1)

i /U(0)
i < 0 in (5.8) in view of figure 8(a).
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Figure 17. Plot of the swimming efficiency ζ described by (5.8) against the partition of the slip face for a
right-slip squirmer with (λL, λR) = (0,0.2) in (a) and (b), and for a left-slip squirmer with (λL, λR) = (0.2, 0)
in (c) and (d). For the original puller with β = B2/B1 > 0 in (a), adding a right-slip face makes ζ lower than
the no-slip value. While ζ can display a local maximum in a range of α/π for β = 0.5–2, a sufficiently large β

such as β = 4 can reduce ζ to the lowest at around α/π= 0.5. For the original puller case with β < 0 in (b), the
maximum efficiency occurs at around α/π= 0.25 for a puller with |−β| < 1. Interestingly, near α/π= 0.25, the
swimming efficiency at β =−0.5 is higher than that at β =−0.1. Increasing |−β| towards a large value at the
enhanced pusher state shifts the maximum efficiency towards α/π= 0.5. Panels (c) and (d) present the left-slip
case, displaying the features the same as those of (b) and (a), respectively. In (c) for β > 0, a stick-slip puller
generally swims most efficiently with the corresponding slip partition (1−α/π) shifting from 0.25 to 0.5 as β

is increased towards a large value at the enhanced puller state. In (d) for β < 0, while ζ with |−β| = 0.5–2 can
display a local maximum in a range of (1−α/π), it becomes the lowest at around (1−α/π) = 0.5 when |−β|
becomes sufficiently large like β =−4.

Figure 17(b) shows the calculated swimming efficiency behaviour for the right-slip
squirmer with β < 0. A maximum efficiency is found to occur at around α/π = 0.25 for a
pusher with |−β|< 1 (according to figure 8d) except for β =−0.1 for which ζ decreases
monotonically with α/π. Interestingly, near α/π= 0.25, the swimming efficiency at
β = −0.5 is higher than that at β = −0.1, against the general trend that ζ is typically
lowered by increasing |β| due to an increase of the swimming power P . Increasing |−β|
towards a large value at the enhanced pusher state makes the occurrence of the maximum
efficiency shift towards α/π = 0.5. It is interesting to note that an enhanced pusher with a
large |−β| like β = −1 displays a local power maximum at around α/π = 0.5, as shown
in figure 15(b). Judging from figures 14 and 15(b), the fact that P is much larger than
P(0) should suggest a large power wasting ratio −P(1)/P(0) < 0 in (5.8) to depreciate
the efficiency. The reason why the corresponding swimming efficiency is the highest
in the range of α/π probably results from the much stronger efficiency elevation by the
swimming enhancement U(1)

i /U(0)
i > 0 in (5.8) in view of figure 8(c).
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Figures 17(c) and 17(d) are plotted for the negative stick-slip polarity case with the
slip face on the left of a squirmer for both β > 0 and β < 0. Here we use (1−α/π) to
present the effects of the slip partition on the swimming efficiency. Figure 17(c) plots the
β > 0 case for the squirmer being either a regular puller or an enhanced puller (according
to figure 9a). The results look exactly identical to those plotted in figure 17(b) for the
right-slip pusher squirmer with β < 0. That is, the most efficient swimming occurs at
around (1−α/π) = 0.25 for a puller with β < 2 (except for a very small β such as β = 0.1),
and the maximum efficiency at β = 0.5 can be made higher than that at β = 0.1. For an
enhanced puller when β is large, such as β = 10, it swims most efficiently with the slip
partition around (1−α/π) = 0.5. This maximum swimming efficiency likely results from
the strong swimming enhancement U(1)

i /U(0)
i > 0 in (5.8), as suggested by figure 9(a).

As for the β < 0 case shown in figure 17(d), we find that a left-slip pusher squirmer
is generally less efficient than a no-slip pusher whose swimming is the most efficient.
While the swimming efficiency can exhibit a local maximum in a range of (1−α/π)
for |−β| = 0.5–2, it can drop to the lowest at around (1−α/π) = 0.5 when driven at
a sufficiently large |−β|, such as β = −4. These features are the reflections of the
competition between the efficiency elevation by the power saving −P(1)/P(0) > 0 (from
figure 15d) and the efficiency depression by the swimming diminishment U(1)

i /U(0)
i < 0

(from figure 9c) in (5.8), similar to the mechanisms discussed before figure 17(a) for the
right-slip squirmer with β > 0.

Once again, it is not coincident to observe identical swimming efficiency trends found
between figures 17(a) and 17(d) as well as those between figures 17(b) and 17(c) when
reversing the stick-slip polarity and the sign of β. Such similar pairing can also be found
in the corresponding swimming power variations between figures 16(a) and 16(d) and
between figure 16(b) and 16(c). These similarities in swimming performance are closely
connected to the swimmer type and the stick-slip polarity: a right-slip puller and a left-slip
pusher swim in a similar power spending fashion, so do a right-slip pusher and a left-slip
puller. In fact, such similarities can be tracked back to the resemblances in the associated
swimming velocity and stresslet behaviours in figures 8 and 9, owing to the symmetries
between the swimming states in figure 7(a) and those in figure 7(b) by conforming to the
kinematic reversibility of Stokes flow.

6. Concluding remarks and perspectives

We have demonstrated theoretically that a fore-and-aft slip asymmetry on a heterogeneous
squirmer, even of a fractional amount, can completely change the swimming
characteristics of the squirmer, making its behaviour markedly different than a
homogenous squirmer.

For a homogeneous squirmer, its swimming is commonly driven by two tangential
squirming surface motions: the B1 mode and the B2 mode. The former is a unidirectional
diverging and converging squirming that provides the thrust to drive the squirmer to swim
at velocity U . The latter is an extensile/contractile squirming that generates a stresslet S
for the squirmer. These two modes can reinforce and counteract to make the squirmer
swim like a puller (β > 0) or pusher (β < 0), depending on the sign of the ratio β = B2/B1
of these two modes.

For a stick-slip squirmer, the fore-and-aft mobility difference between the stick and the
slip faces introduces a symmetry-breaking mechanism so that a thrust and a stresslet can
be generated by a single mode. Specifically, U can be acquired with just a symmetric
extensile/contractile squirming through the B2 mode without invoking the unidirectional
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thrust-generating B1 mode. Also, S can be sustained solely by a unidirectional squirming
through the B1 mode without the stresslet-providing B2 mode. When these two modes are
present, because the squirming forces on the stick and the slip faces can either reinforce or
counteract each other, either U or S can be promoted or diminished due to combined
actions of these two modes. Distinctively rich swimming characteristics are found to
depend on the sign of β, the value of β with respect to the degree of stick-slip disparity ε

and the direction of the stick-slip polarity. The impacts lead to various distinct swimming
states such as an enhanced/degraded puller/pusher and a backward puller/pusher. When
the mode-diminishing effects occur, in particular, the swimming direction of a stick-slip
squirmer can even be reversed due to the B2 mode. An inversion of the stresslet from
extensile to contractile type or vice versa can also occur when the B1-induced stresslet
outperforms the original stresslet by the B2 mode. Such reversals in U and S depend on
whether the stick-slip polarity orients with respect to the squirming directions of the two
modes to establish adverse effects and on the relative magnitude between the two modes
due to the cooperative and competitive nature of such mixed stick-slip squirming.

Along the above line, we are also able to establish a phase diagram to categorize
all the swimming characteristic changes in terms of swimming direction, velocity and
the swimmer types. Actual swimming characteristic changes depend on β, the stick-slip
polarity and the slip partition angle. They can be more precisely quantified in terms of
the swimming and the stresslet coefficients, V and S, with respect to a no-slip squirmer
to indicate swimming or stresslet enhancement |V| > 1 or |S| > 1, motion reversal V < 0
and a swimmer type change from S > 0 to S < 0 or vice versa. In fact, because of the
required hydrodynamic symmetry in Stokes flow, a right-slip puller (pusher) and a left-slip
pusher (puller) will behave exactly the same in their swimming actions as long as they
possess the same slip partition. This is perfectly illustrated by the symmetry of V and S

when the stick-slip polarity and the driving squirming direction are both flipped in view of
the kinematic reversibility of Stokes flow. Finally, we compute the swimming power and
efficiency and discover that a stick-slip squirmer may swim more efficiently than a no-slip
squirmer if the strengths of the driving squirming modes, the slip portion and the degree
of the stick-slip disparity are all properly chosen.

Our study strongly suggests that the swimming characteristics of a squirmer can be made
tuneable with a stick-slip pattern and a proper squirming strategy. From an application
perspective, the distinctive features summarized above can not only be employed to steer
the motion of a squirmer, but also provide new means for making efficient artificial
microswimmers using active amphiphilic Janus particles.
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Appendix A. Squirming flow field around a weakly stick-slip squirmer

This appendix is to provide the squirming flow field generated by a stick-slip spherical
squirmer that is held fixed. Because slip variations are assumed small under (2.8), the flow
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Stick-slip squirmers

field can be solved in a perturbative manner. Since the stick-slip pattern here is assumed
axisymmetric, the induced flow field around the squirmer is also axisymmetric, varying
only in the radial (r) and polar (θ ) directions. So the flow field (ur, uθ ) can be expressed as
the uniform-slip contribution (u(0)

r , u(0)
θ ) at the leading order plus a correction (u(1)

r , u(1)
θ )

of O(ε) due to small slip variations

(ur, uθ ) = (u(0)
r , u(0)

θ ) + (u(1)
r , u(1)

θ ) + O(ε2). (A1)

Hereafter, the Legendre polynomial Pn(η) of degree n and its derivative P′
n(η) with respect

to η = cosθ will be used in the derivations for these flow fields in spherical coordinates.

A.1. Uniform-slip part (u(0)
r , u(0)

θ )

Because of (1.2), the leading-order flow field can be constructed as the first two modes of
Lamb’s solution to the Stokes flow equations

u(0)
r =

[
A(0)

01
r

− 2B(0)
01

r3

]
P1(η) +

[
A(0)

02
2r2 − 3B(0)

02
r4

]
P2(η), (A2a)

u(0)
θ =

[
−A(0)

01
2r

− B(0)
01
r3

]
sin θ P1

′(η) − B(0)
02
r4 sin θ P2

′(η), (A2b)

with the coefficients A(0)
0n and B(0)

0n (n = 1,2) determined by the leading-order slip boundary
condition and the no-penetration condition at the squirmer’s surface r = a:

u(0)
θ − us

θ = a〈λ〉
[

r
∂

∂r

(
u(0)
θ

r

)
+ 1

r
∂u(0)

r

∂θ

]
, (A3a)

u(0)
r = 0. (A3b)

In (A3a), the slip length is taken to be the average slip length a〈λ(θ )〉 of the squirmer.
Using (A3), the coefficients in (A2) can be determined as

A(0)
01
a

= − B1

1 + 3〈λ〉 ,
A(0)

02
a2 = − 2B2

1 + 5〈λ〉 , (A4a,b)

B(0)
01

a3 = − B1

2(1 + 3〈λ〉) ,
B(0)

02
a4 = − B2

3(1 + 5〈λ〉) . (A4c,d)

With (A4) in (A2), we can calculate the velocity jump (A3a) as (2.14).

A.2. Slip variation correction (u(1)
r , u(1)

θ )

At O(ε), where slip variation effects enter, the solution to the flow field has to include all
the modes of Lamb’s general solution to the Stokes flow equations. In the axisymmetric
form considered here, it reads (Pak & Lauga 2014)

u(1)
r =

∞∑
n=1

(n + 1)

[
1

2(2n − 1)

A(1)
0n
rn − B(1)

0n

rn+2

]
Pn(η), (A5a)
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u(1)
θ =

∞∑
n=1

[
n − 2

2n(2n − 1)

A(1)
0n
rn − B(1)

0n

rn+2

]
sin θP′

n(η). (A5b)

The coefficients A(1)
0n and B(1)

0n will be determined by the boundary conditions at r = a:

u(1)
θ = a(λ(θ) − 〈λ(θ)〉)

[
r

∂

∂r

(
u(0)
θ

r

)
+ 1

r
∂u(0)

r

∂θ

]
, (A6a)

u(1)
r = 0. (A6b)

In (A6a), we neglect the contribution from a〈λ〉σ (1)
rθ /μ ∼ 〈λ〉εu∗ compared with a(λ−

〈λ〉)σ (0)
rθ /μ ∼ εu∗ in the slip term on the right by assuming that 〈λ〉 is sufficiently small,

where u* is the characteristic velocity scale and σ
(n)
rθ = μ[r∂(u(n)

θ /r)/∂r + r−1
∂u(n)

θ /∂r]
is the tangential stress at O(εn). Also, it is more convenient to expand the slip variation
(λ(θ )−〈λ(θ )〉) as a Legendre series

λ(θ) − 〈λ(θ)〉 =
∞∑

m=1

gmPm(cos θ), (A7a)

where the coefficients gm can be found for the given two-faced stick-slip pattern (2.18):

gm = 1
2 (λL − λR)[Pm+1(cos α) − Pm−1(cos α)], (A7b)

after the use of the orthogonality∫ 1

−1
Pn(η)Pm(η) dη = 2δmn/(2m + 1). (A7c)

In deriving (A7b), we have used Pm(1) = 0 and Pm(−1) = (−1)m. We also list the first
few gk values given by (A7b) in terms of ηα = cosα for later use

g1 = 3
4 (λL − λR)(η2

α − 1), (A8a)

g2 = 5
4(λL − λR)(η3

α − ηα), (A8b)

g3 = 7
16 (λL − λR)(5η4

α − 6η2
α + 1). (A8c)

To determine the unknown coefficients A(1)
0n and B(1)

0n in (A5), we apply (A6) together with
the orthogonality of Legendre functions∫ 1

−1
(1 − η2)P′

n(η)P′
m(η) dη = 2m(m + 1)

2m + 1
δmn, (A9)

we can determine the unknown coefficients A(1)
0n and B(1)

0n in (A5) for the given stick-slip
pattern (2.18):

A(1)
0n

an = 2(2n − 1)
B(1)

0n

an+2 , (A10a)

B(1)
0n

an+2 = 2n + 1
4(n + 1)

[
3B1

1 + 3〈λ〉 In + (5/3)B2

1 + 5〈λ〉Jn

]
, (A10b)
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where

In =
∞∑

k=1

gk

∫ 1

−1
Pk(η)P′

1(η)P′
n(η)(1 − η2) dη = 2n(n + 1)

2n + 1

[
gn−1

2n − 1
− gn+1

2n + 3

]
,

(A11a)

Jn =
∞∑

k=1

gk

∫ 1

−1
Pk(η)P′

2(η)P′
n(η)(1 − η2) dη

= 6n(n + 1)

2n + 1

[
(n − 1)gn−2

(2n − 3)(2n − 1)
+ ngn

(2n − 1)(2n + 1)

− (n + 1)gn

(2n + 1)(2n + 3)
− (n + 2)gn+2

(2n + 3)(2n + 5)

]
. (A11b)

In deriving the above, we have used the following recurrence relations:

P′
n(1 − η2) = n(n + 1)

2n + 1
[Pn−1 − Pn+1], ηPn = 1

2n + 1
[(n + 1)Pn+1 + nPn−1].

(A12a,b)
It should also be noted that in (A11) gn = 0 when n < 1 because (A7a) starts from n = 1.
Using (A10), the relevant coefficients of the first two modes that measure the strengths
of the point force (via A(1)

01 ), source dipole (via B(1)
01 ) and Stokes dipole (via B(1)

02 ) can be
readily obtained as

A(1)
01
a

= 3
4

[
(−4/5)B1

1 + 3〈λ〉 g2 + (4/3)B2

1 + 5〈λ〉
(

g1 − 3
7

g3

)]
, (A13a)

B(1)
01

a3 = 3
8

[
(−4/5)B1

1 + 3〈λ〉 g2 + (4/3)B2

1 + 5〈λ〉
(

g1 − 3
7

g3

)]
, (A13b)

B(1)
02

a4 = 5
12

[
(12/5)B1

1 + 3〈λ〉
(

g1 − 3
7

g3

)
+ (4/7)B2

1 + 5〈λ〉
(

g2 − 4
3

g4

)]
. (A13c)

Concerning the solution obtained above for the correction flow field, it is worth
mentioning the following issue. Since the squirmer’s surface is divided by the stick and
slip faces, this introduces a vorticity jump at the intersection line between these two faces
due to the discontinuity in the dimensionless slip length distribution (2.18). The actual
slip length near the intersection line typically has a rapid change within a small transition
zone of size δ, giving the magnitude of the vorticity jump to be ω′ ∼ us/δ where us is
the magnitude of the imposed tangential squirming velocity. While the associated stress
also has a huge jump σ ′ ∼μus/δ in magnitude, it is merely confined within the small slip
transition zone of δ in width. So this stress is integrable when coming to calculate the
force or the stresslet on the squirmer. Such a calculation is essentially implemented in a
Legendre expansion sense in which the dimensionless slip length is expanded in terms of
Legendre functions as (A7a), similarly to how we expand the velocity field (A5), which
guarantees a uniform convergence as long as the integrand is piecewise continuous despite
the jump (i.e. satisfying the Dirichlet condition). In other words, the calculation has already
included the influence of the stress jump without question.
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Appendix B. Translation flow field around a weakly stick-slip squirmer

In this appendix we provide the derivation for the induced translation flow field uT
i around

a weakly stick-slip squirmer. Suppose that the squirmer is swimming at velocity U. It is
more convenient to solve the flow field in the frame moving with the squirmer. That is, we
keep the squirmer fixed, subject to a uniform flow −U as r → ∞. Like the way to solve the
squirming flow field in Appendix A, we solve this translation flow field perturbatively by
letting it made of the leading-order uniform-slip contribution (uT(0)

r , uT(0)
θ ) plus the O(ε)

correction(uT(1)
r , uT(1)

θ ) due to slip variation:

(uT
r , uT

θ ) = (uT(0)
r , uT(0)

θ ) + (uT(1)
r , uT(1)

θ ) + O(ε2). (B1)

B.1. Uniform-slip part (uT(0)
r , uT(0)

θ )

At leading order, the flow field is uniform flow plus the disturbance flow due to the
presence of the squirmer

uT(0)
r = −U cos θ +

[
AT(0)

01
r

− 2BT(0)
01
r3

]
P1(η), (B2a)

uT(0)
θ = U sin θ +

[
−AT(0)

01
2r

− BT(0)
01
r3

]
sin θP1

′(η), (B2b)

subject to the slip boundary condition and the no-penetration condition at the squirmer’s
surface r = a

uT(0)
θ = a〈λ〉

[
r

∂

∂r

(
uT(0)
θ

r

)
+ 1

r
∂uT(0)

r

∂θ

]
, (B3a)

uT(0)
r = 0. (B3b)

In (B3a), the slip length is taken to be the average slip length a〈λ(θ )〉 of the squirmer.
Using (B3), the coefficients AT(0)

01 and BT(0)
01 in (B2) can be determined as

AT(0)
01
a

= −3
2

(
1 + 2〈λ〉
1 + 3〈λ〉

)
U,

BT(0)
01
a3 = U

4(1 + 3〈λ〉) . (B4a,b)

B.2. Slip variation correction (uT(1)
r , uT(1)

θ )

Like (A5), the correction translation flow field also takes the same form

uT(1)
r =

∞∑
n=1

(n + 1)

[
1

2(2n − 1)

AT(1)
0n
rn − BT(1)

0n

rn+2

]
Pn(η), (B5a)

uT(1)
θ =

∞∑
n=1

[
n − 2

2n(2n − 1)

AT(1)
0n
rn − BT(1)

0n

rn+2

]
sin θP′

n(η), (B5b)
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Stick-slip squirmers

with the boundary conditions

uT(1)
θ = a(λ(θ) − 〈λ(θ)〉)

[
r

∂

∂r

(
uT(0)
θ

r

)
+ 1

r
∂uT(0)

r

∂θ

]
, (B6a)

uT(1)
r = 0. (B6b)

Using (A7a) for (λ(θ )−〈λ(θ )〉) and applying (B6) together with the orthogonality (A9),
we can determine the coefficients in (B5) as

AT(1)
0n
an = 2(2n − 1)

BT(1)
0n

an+2 , (B7a)

BT(1)
0n

an+2 = − 2n + 1
4(n + 1)

(3/2)U
1 + 3〈λ〉 In, (B7b)

where In is given by (A11a). Using (B7), we can determine the coefficients reflecting the
strengths of the point force (via AT(1)

01 ), source dipole (via BT(1)
01 ) and Stokes dipole (via

BT(1)
02 ):

AT(1)
01
a

= 3
10

U
1 + 3〈λ〉g2, (B8a)

BT(1)
01
a3 = 3

20
U

1 + 3〈λ〉g2, (B8b)

BT(1)
02
a4 = −1

2
U

1 + 3〈λ〉
(

g1 − 3
7

g3

)
. (B8c)

Because AT
01 = AT(0)

01 + AT(1)
01 is responsible for the 1/r flow field generated by a point

force and also because the squirmer is force free, the swimming velocity U in the above can
be determined by setting the overall point-force contribution to vanish, i.e. A01 + AT

01 = 0,
where A01 = A(0)

01 + A(1)
01 is the driving point-force contribution from the squirming flow

field obtained in Appendix A.
We first calculate the driving point-force coefficient A01 due to the squirming flow

field. This coefficient essentially provides the squirming force to propel the squirmer.
Combining (A4a) and (A13a) yields

A01

a
= A(0)

01
a

+ A(1)
01
a

= − B1

1 + 3〈λ〉 − 3
4
(λL − λR)

[
B1

1 + 3〈λ〉 (η
3
α − ηα) + (5/4)B2

1 + 5〈λ〉 (1 − η2
α)

2
]

. (B9)

In deriving the above, g1, g2 and g3 in (A13a) for A(1)
01 are written as (A8) in terms of

ηα = cosα. Similarly, the point-force coefficient AT(1)
01 due to the translation flow field,

which provides the drag force on the squirmer, can be determined by combining (B4a)
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and (B8a):

AT
01
a

= AT(0)
01
a

+ AT(1)
01
a

= U
[

3
2

(
1 + 2〈λ〉
1 + 3〈λ〉

)
+ 3

8
(λL − λR)

1
1 + 3〈λ〉 (η

3
α − ηα)

]
, (B10)

in which g2 in (B8a) for AT
01 is written as (A8b) in terms of ηα = cosα. Adding (B9)

and (B10) together under the force-free condition A01 + AT
01 = 0, we can determine U by

keeping the terms up to O(ε)

U = 2
3

(
1 + 3〈λ〉
1 + 2〈λ〉

){
B1

1 + 3〈λ〉 + (λL − λR)

[
(1/2)B1

1 + 3〈λ〉 (η
3
α − ηα)

+(5/16)B2

1 + 5〈λ〉 (1 − η2
α)

2
]}

, (B11)

which is exactly (2.20) obtained using the reciprocal theorem.

Appendix C. Derivation of the swimming velocity (2.20)

This appendix is to derive the swimming velocity (2.20) from (2.17). As indicated by
(2.17), it requires us to compute the squirming force Fsquirm

i given by (2.13). We split
Fsquirm

i into the uniform-slip contribution Fsquirm (0)
i plus the slip anisotropy correction

Fsquirm(1)
i below and evaluate each contribution separately

Fsquirm
i = Fsquirm(0)

i + Fsquirm(1)
i , (C1a)

Fsquirm(0)
i = −μ

∫
Sp

us
kRT

ik dS, (C1b)

Fsquirm(1)
i = −μ

∫
Sp

	λ(x)
〈λ〉 (u′(0)

k − us
k)R

T
ik dS. (C1c)

Here the resistance tensor RT
ij is given by (2.10b)

RT
ij = Aδij + Bninj, (C2)

where A = (3/2a)/(1 + 3〈λ〉) and B = (9〈λ〉/a)/(1 + 3〈λ〉).

C.1. Uniform-slip part Fsquirm(0)
i

With (C2), (C1b) becomes

Fsquirm(0)
i = −μ

∫
Sp

us
kRT

ik dS = −μA

∫
Sp

us
i dS − μB

∫
Sp

us
knkni dS. (C3)

The second term in (C3) vanishes because us
knk = 0 on the squirmer’s surface. The surface

velocity us
i is given by (1.2) along the polar direction in spherical polar coordinates as

us = (B1 sin θ + B2 sin θ cos θ)eθ , (C4)

wherein the polar direction eθ = − sin θez + cos θeρ can be written in terms of the
swimming direction ez and the direction eρ = cos ϕex + sin ϕey perpendicular to ez.
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With (C4) in (C3), we can determine the leading-order squirming force in the direction
ei(=e3δi3 with 3 denoting the z direction):

Fsquirm(0)
i = 2πμa2

Aei

∫ 1

−1
(B1 + ηB2)(1 − η2) dη = 4πμa

1 + 3〈λ〉B1ei. (C5)

C.2. Slip anisotropy correction Fsquirm(1)
i

Similarly, (C1c) can be written as follows after substitution of (C2):

Fsquirm(1)
i = −μ

∫
Sp

	λ(x)
〈λ〉 (u′(0)

k − us
k)R

T
ik dS = −μA

∫
Sp

	λ(x)
〈λ〉 (u′(0)

k − us
k) dS. (C6)

With the known velocity jump (2.14), we can turn (C6) into the following integral:

Fsquirm(1)
i = −2πμa2

Aei

∫
Sp

	λ(x)
[

3B1

1 + 3〈λ〉P′
1(η) + (5/3)B2

1 + 5〈λ〉P′
2(η)

]
(1 − η2) dS.

(C7)

With P′
1(η) = 1, P′

2(η) = 3η, and (2.18), (C7) becomes

Fsquirm(1)
i = −2πμa2

Aei

{∫ cos α

−1
(λL − 〈λ〉)

[
3B1

1 + 3〈λ〉 + 5B2

1 + 5〈λ〉η
]

(1 − η2) dη

+
∫ 1

cos α

(λR − 〈λ〉)
[

3B1

1 + 3〈λ〉 + 5B2

1 + 5〈λ〉η
]

(1 − η2) dη

}

= 3πμa
1 + 3〈λ〉ei(λL − λR)

[
B1

1 + 3〈λ〉(cos3α − cos α) + (5/4)B2

1 + 5〈λ〉sin4α

]
. (C8)

Combining (C5) and (C8), we can determine the driving squirming force as

Fsquirm
i = 4πμa

1 + 3〈λ〉ei

{
B1 + 3

4
(λL − λR)

[
B1

1 + 3〈λ〉(cos3α − cos α) + (5/4)B2

1 + 5〈λ〉sin4α

]}
.

(C9)

With (C9), (2.17) yields the swimming velocity (2.20) after taking a small ε expansion and
keeping the terms to O(ε).

Appendix D. Derivation of the stresslet (2.32)

This appendix is to derive the stresslet (2.32) using (2.31). To make the derivation more
concise, we write the resistance tensor (2.29b) as

Σqij = Cδiqnj + Dnqninj, (D1)

with the coefficients C = 5/(1 + 5〈λ〉) and D = 40〈λ〉/(1 + 5〈λ〉).
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As indicated by (2.31), the stresslet comprises the uniform-slip contribution S(0)
ij and the

slip anisotropy correction S(1)
ij according to

Sij = S(0)
ij + S(1)

ij , (D2a)

S(0)
ij = −μ

∫
Sp

us
qΣqij dS, (D2b)

S(1)
ij = −μ

∫
Sp

	λ(x)
〈λ〉 (u′(0)

q − us
q)Σqij dS. (D2c)

Below we evaluate these contributions separately.

D.1. Uniform-slip stresslet S(0)
ij

Substitution of (D1) into (D2b) yields

S(0)
ij = −μ

∫
Sp

us
qΣqij dS = −μC

∫
Sp

us
i nj dS − μD

∫
Sp

us
qnqninj dS. (D3)

Again, the second term in (D3) vanishes because us
qnq = 0 on the squirmer’s surface.

With the surface velocity us
i given by (C4) and n = cos θez + sin θeρ , the first term in

(D3) allows us to compute the stresslet as

S(0)
ij = 3πμa2

C

(
eie − δij

3

)∫ 1

−1
(B1 + ηB2)η(1 − η2) dη = 4πμa2

1 + 5〈λ〉
(

eiej − δij

3

)
B2.

(D4)

D.2. Slip anisotropy correction S(1)
ij

To compute S(1)
ij , we start with the formula by substituting (D1) into (D2c):

S(1)
ij = −μ

∫
Sp

	λ(x)
〈λ〉 (u′(0)

q − us
q)Σqij dS = −μC

∫
Sp

	λ(x)
〈λ〉 (u′(0)

q − us
q)nj dS. (D5)

With (2.14) and n = cos θez + sin θeρ , (D5) can be rewritten as

S(1)
ij = −3Cπμa2

(
eiej − δij

3

)∫ 1

−1
	λ(x)

[
3B1

1 + 3〈λ〉P′
1(η)

+ (5/3)B2

1 + 5〈λ〉P′
2(η)

]
η(1 − η2) dη. (D6)

Substituting (2.19) into (D6) and following a similar procedure to derive (C8), (D6) can be
evaluated as

S(1)
ij = 15πμa2

1 + 5〈λ〉
(

eiej − δij

3

)
(λL − λR)

[
(3/4)B1

1 + 3〈λ〉sin4α

+ (1/3)B2

1 + 5〈λ〉(3cos5α − 5cos3α + 2 cos α)

]
. (D7)

Combining (D4) and (D7) yields (2.32).
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Appendix E. Derivation of the swimming power (5.2) for a spherical squirmer

In this appendix, we show how to obtain the general expression of the swimming power
(5.2) from (5.1) using the overall flow field around a spherical squirmer. The overall flow
vi = ui + uT

i , which is the sum of the squirming flow field ui (see Appendix A) and the
translation flow field uT

i (see Appendix B), can be taken as Lamb’s general solution using
spherical polar coordinates (Pak & Lauga 2014). In the axisymmetric form studied here, it
reads

vr = −U cos θ +
∞∑

n=1

(n + 1)

[
1

2(2n − 1)

Â0n

rn − B̂0n

rn+2

]
Pn(η), (E1a)

vθ = U sin θ +
∞∑

n=1

[
n − 2

2n(2n − 1)

Â0n

rn − B̂0n

rn+2

]
sin θP′

n(η), (E1b)

where the coefficients (Â0n, B̂0n) = (A0n, B0n) + (AT
0n, BT

0n) also combine the squirming
problem’s (A0n, B0n) and the translation problem’s (AT

0n, BT
0n). Subject to the force-free

condition, the point-force 1/r terms must vanish, which demands

Â01 = 0. (E2)

Also because vr(r = a) = 0 at the squirmer’s surface, this leads to

U = −2
B̂01

a3 , (E3a)

Â0n

an = 2(2n − 1)
B̂0n

an+2 for n ≥ 2. (E3b)

With (E3b), we can determine the tangential stress in (5.1) as

σrθ

μ

∣∣∣∣
r=a

= r
∂

∂r

(vθ

r

)
r=a

= −U
a

sin θ +
∞∑

n=1

[
(2 − n)(n + 1)

2n(2n − 1)

Â0n

an+1 + (n + 3)
B̂0n

an+3

]
sin θP′

n(η). (E4)

The integral in (5.1) can be evaluated as

Φ =
∫ π

0

[
r

∂

∂r

(vθ

r

)
vθ

]
r=a

sin θ dθ =
∫ 1

−1

[
r

∂

∂r

(vθ

r

)
vθ

]
r=a

dη

=
[

Â01

a2 + 4B̂01

a4 − U
a

] [
− Â01

a
− B̂01

a3 + U

] ∫ 1

−1
(1 − η2)[P′

1(η)] 2 dη

+
∞∑

n=2

[
(2 − n)(n + 1)

2n(2n − 1)

Â0n

an+1 + (n + 3)
B̂0n

an+3

][
n − 2

2n(2n − 1)

Â0n

an − B̂0n

an+2

]

×
∫ 1

−1
(1 − η2)[P′

n(η)]2 dη + cross-terms. (E5)

Here, the cross-terms mean the products between different modes in (E4) and (E1b). Such
terms will not contribute to the swimming power because of the orthogonality (A9).
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In other words, the swimming power stems only from whenever the mode in σ rθ meets
the same mode in vθ . Setting Â01 = 0 due to (E2), writing U and Â0n in terms of B̂0n
according to (E3) and evaluating the integrals using (A9), (E5) can be reduced to

Φ = −24
a

[
B̂2

01
a6

]
− 8

a

∞∑
n=2

n + 1
n

[
B̂0n

a(n+2)

]2

. (E6)

The swimming power can then be obtained as

P = −2πa2μΦ, (E7)

which is (5.2).
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