A NOTE ON MULTIPLIERS OF $L^{p}(G, A)$

SERAP ÖZTOP

(Received 18 December 2000; revised 25 October 2001)

Communicated by A. H. Dooley

Abstract

Let G be a locally compact abelian group, $1 , and A be a commutative Banach algebra. In this paper, we study the space of multipliers on <math>L^p(G, A)$ and characterize it as the space of multipliers of certain Banach algebra. We also study the multipliers space on $L^1(G, A) \cap L^p(G, A)$.

2000 Mathematics subject classification: primary 43A22.

1. Introduction and preliminaries

Let G be a locally compact abelian group with Haar measure, A be a commutative Banach algebra with identity of norm 1. Denote by $L^1(G, A)$ the space of all Bochner integrable A-valued functions defined on G. It is a commutative Banach algebra under convolution and has an approximate identity in $C_c(G, A)$ of norm 1, $L^p(G, A)$ is the set of all strong measurable functions $f : G \to A$ such that $||f(x)||_A^p$ is integrable for $1 \le p < \infty$, that is, $||f(x)||_A^p \in L^1(G)$. The norm of a function f in $L^p(G, A)$ is defined as

$$\|f\|_{L^{p}(G,A)} = \left(\int_{G} \|f(x)\|_{A}^{p} dx\right)^{1/p} \quad 1 \leq p < \infty.$$

It follows that $L^{p}(G, A)$ is a Banach space for $1 \leq p < \infty$ and $L^{p}(G, A)$ is an essential $L^{1}(G, A)$ -module under convolution such that for $f \in L^{1}(G, A)$ and $g \in L^{p}(G, A)$, we have

$$\|f * g\|_{L^{p}(G,A)} \leq \|f\|_{L^{1}(G,A)} \|g\|_{L^{p}(G,A)}.$$

This work was supported by the Research Fund of Istanbul University. Project No. B-966/10052001. © 2003 Australian Mathematical Society 1446-7887/03 \$A2.00 + 0.00

Denote by $C_c(G, A)$ the space of all A-valued continuous functions with compact support. $C_c(G, A)$ is dense in $L^p(G, A)$ (for more details see [2, 6, 7]).

For each $f \in L^1(G, A)$, define the mapping T_f by $T_f(g) = f * g$ whenever $g \in L^p(G, A)$. T_f is an element of $\ell(L^p(G, A))$, Banach algebra of all continuous linear operators from $L^p(G, A)$ to $L^p(G, A)$, and $||T_f|| \leq ||f||_{L^1(G,A)}$. Identifying f with T_f , we get an embedding of $L^1(G, A)$ in $\ell(L^p(G, A))$. Let $H_{L^1(G,A)}(L^p(G, A))$ denote the space of all module homomorphisms of $L^1(G, A)$ -module $L^p(G, A)$, that is, an operator $T \in \ell(L^p(G, A))$ satisfies T(f * g) = f * T(g) for each $f \in L^1(G, A)$, $g \in L^p(G, A)$.

The module homomorphisms space, called the multipliers space

$$H_{L^1(G,A)}(L^p(G,A)),$$

is an essential $L^1(G, A)$ -module by $(f \circ T)(g) = f * T(g) = T(f * g)$ for all $g \in L^p(G, A)$.

Let A be a Banach algebra without order, for all $x \in A$, $xA = Ax = \{0\}$ implies x = 0. Obviously if A has an identity or an approximate identity then it is without order. A multiplier of A is a mapping $T : A \to A$ such that

$$T(f g) = f T(g) = (Tf)g, \quad (f, g \in A).$$

By M(A) we denote the collection of all multipliers of A. Every multiplier turns out to be a bounded linear operator on A. If A is a commutative Banach algebra without order, M(A) is a commutative operator algebra and M(A) is called the multiplier algebra of A [15].

In this paper we are interested in the relationship between the multipliers $L^1(G, A)$ module and the multipliers on a certain normed (or Banach) algebra. The multipliers of type (p, p) and multipliers of the group L^p -algebras were studied and developed by many authors. Let us mention McKennon [10, 11] Griffin [5], Feichtinger [3] and Fisher [4]. In these studies, a multiplier is defined to be an invariant operator (a bounded linear operator T commutes with translation). In the case of a scalar function space on G, the multipliers are identified with the translation invariant operators. However, in the Banach-valued function spaces, an invariant operator does not need to be a multiplier [8, 14]. Dutry [1] gave a new proof of the identification theorem concerning multipliers of $L^1(G)$ -module and of Banach algebra. His ideas are used in this paper for the generalization of the results of McKennon concerning multipliers of type (p, p) to the Banach-valued function spaces.

We briefly describe the content of this paper. In Section 2 we construct the *p*-temperate functions space for the Banach-valued function spaces whenever $1 and study their basic properties. In Section 3 we characterize the multipliers space of <math>L^p(G, A)$ as a certain Banach algebra and extend the results of McKennon

to Banach-valued space. In Section 4 we study the multipliers space of $L^1(G, A) \cap L^p(G, A)$.

2. The $L_{p}^{t}(G, A)$ space and its basic properties

Let G be a locally compact abelian group with Haar measure, A a commutative Banach algebra with identity of norm 1.

DEFINITION 2.1. An element $f \in L^p(G, A)$ is called *p*-temperate function if

$$||f||_{L^{p}(G,A)}^{t} = \sup\{||g * f||_{L^{p}(G,A)} | g \in L^{p}(G,A), ||g||_{L^{p}(G,A)} \le 1\} < \infty$$

or

$$\|f\|_{L^{p}(G,A)}^{t} = \sup\{\|g * f\|_{L^{p}(G,A)} \mid g \in C_{c}(G,A), \|g\|_{L^{p}(G,A)} \le 1\} < \infty.$$

The space of all such f is denoted by $L'_p(G, A)$. It is easy to see that

$$\left(L_p^t(G,A), \|\cdot\|_{L^p(G,A)}^t\right)$$

is a normed space. For each $f \in L_p^t(G, A)$, there is precisely one bounded linear operator on $L^p(G, A)$, denoted by W_f , such that

(2.1)
$$W_f(g) = g * f$$
 and $||W_f|| = ||f||_{L^p(G,A)}^t$.

It is easy to check that $W_f \in H_{L^1(G,A)}(L^p(G,A))$.

PROPOSITION 2.2. $L_p^t(G, A)$ is a dense subspace of $L^p(G, A)$.

PROOF. Since each $f \in C_c(G, A)$ belongs to $L_p^t(G, A)$ and $C_c(G, A)$ is dense in $L^p(G, A)$, the proof is completed.

LEMMA 2.3. The space $L'_{p}(G, A)$ is a normed algebra under the convolution.

PROOF. By (2.1) we get

$$\|f * g\|_{L^{p}(G,A)}^{t} = \sup_{\|h\|_{L^{p}(G,A)} \le 1} \|h * (f * g)\|_{L^{p}(G,A)} = \sup_{\|h\|_{L^{p}(G,A)} \le 1} \|W_{g}(h * f)\|_{L^{p}(G,A)}$$
$$\leq \|W_{g}\|\sup_{\|h\| \le 1} \|h * f\|_{L^{p}(G,A)} = \|g\|_{L^{p}(G,A)}^{t} \|f\|_{L^{p}(G,A)}^{t}$$

for all f and g in $L_p^t(G, A)$. Hence $(L_p^t(G, A), \|\cdot\|_{L^p(G,A)}^t)$ is a normed algebra. Let us notice that

$$W_{f*g} = W_f \circ W_g = W_g \circ W_f$$

for all f and g in $L_p^t(G, A)$. Moreover, the closed linear subspace of $\ell(L^p(G, A))$ spanned by $\{W_{f*g} \mid f \in L_p^t(G, A), g \in C_c(G, A)\}$ is denoted by $\Lambda_{L^p(G, A)}$.

THEOREM 2.4. The space $\Lambda_{L^{p}(G,A)}$ is a complete subalgebra of $H_{L^{1}(G,A)}(L^{p}(G,A))$ and it has a minimal approximate identity, that is, a net (T_{α}) such that $\overline{\lim}_{\alpha} ||T_{\alpha}|| \leq 1$ and $\lim_{\alpha} ||T_{\alpha} \circ T - T|| = 0$ for all $T \in \Lambda_{L^{p}(G,A)}$.

PROOF. Let $f \in L_p^t(G, A)$, then $W_f \in \ell(L^p(G, A))$. Since $L^p(G, A)$ is a $L^1(G, A)$ -module we have

$$W_f(g * h) = g * h * f = g * W_f(h)$$

for all $g \in L^1(G, A)$ and $h \in L^p(G, A)$.

28

Thus W_f belongs to $H_{L^1(G,A)}(L^p(G,A))$. Since $H_{L^1(G,A)}(L^p(G,A))$ is a Banach algebra under the usual operator norm, $\Lambda_{L^p(G,A)}$ is a complete subalgebra of $H_{L^1(G,A)}(L^p(G,A))$.

Now we only need to prove the existence of minimal approximate identity of $\Lambda_{L^p(G,A)}$. Let (Φ_{U_α}) be a minimal approximate identity for $L^1(G, A)$ [2]. If (Φ_α) denotes the product net of (Φ_{U_α}) with itself, then (Φ_α) is again minimal approximate identity for $L^1(G, A)$. It is easy to see that the net W_{Φ_α} is in $\Lambda_{L^p(G,A)}$ and $\overline{\lim}_{\alpha} || W_{\Phi_\alpha} || \leq 1$.

Let $f \in L'_p(G, A)$ and $g \in C_c(G, A)$. Since (2.2) and (Φ_α) is a minimal approximate identity for $L^1(G, A)$, we get

$$\overline{\lim_{\alpha}} \| W_{\bullet_{\alpha}} \circ W_{f \ast g} - W_{f \ast g} \| = \overline{\lim_{\alpha}} \| (W_{\bullet_{\alpha}} \circ W_g - W_g) \circ W_f \| \leq \overline{\lim_{\alpha}} \| W_{g \ast \bullet_{\alpha} - g} \| \| W_f \| \\
\leq \overline{\lim_{\alpha}} \| g \ast \Phi_{\alpha} - g \|_{L^1(G,A)} \| W_f \| = 0.$$

Consequently, we have $\overline{\lim}_{\alpha} || W_{\phi_{\alpha}} \circ T - T || = 0$ for all $T \in \Lambda_{L^{p}(G,A)}$.

PROPOSITION 2.5. The space $\Lambda_{L^p(G,A)}$ is an essential $L^1(G,A)$ -module.

PROOF. Let $g \in L^1(G, A)$, $W_f \in \Lambda_{L^p(G,A)}$. Define $g \circ W_f : L^p(G, A) \to L^p(G, A)$ by letting $(g \circ W_f)(h) = W_f(h * g) = W_f(g * h)$ for each $h \in L^p(G, A)$.

$$\|g \circ W_f\| = \sup_{\|h\|_{L^p(G,A)} \le 1} \|W_f(g * h)\|_{L^p(G,A)} \le \|f\|'_{L^p(G,A)} \|g\|_{L^1(G,A)}.$$

Consequently, $\Lambda_{L^{p}(G,A)}$ is a $L^{1}(G, A)$ -module. On the other hand, since $L^{1}(G, A)$ has a minimal approximate identity (Φ_{α}) , $(\Phi_{\alpha} \ge 0)$ with a compact support such that it is also an approximate identity in $L^{p}(G, A)$, [2].

For any $W_f \in \Lambda_{L^p(G,A)}$, we have

$$\|\Phi_{\alpha} \circ W_{f} - W_{f}\| = \sup_{\|h\|_{L^{p}(G,A)} \le 1} \|(\Phi_{\alpha} \circ W_{f} - W_{f})(h)\|_{L^{p}(G,A)}$$

=
$$\sup_{\|g\|_{L^{p}(G,A)} \le 1} \|W_{f}(\Phi_{\alpha} * h - h)\|_{L^{p}(G,A)}$$

\$\le\$ \$\|f\|_{L^{p}(G,A)}^{t} \$\|\Phi_{\alpha} * h - h\|_{L^{p}(G,A)} = 0\$

for all $h \in L^p(G, A)$. Using [13, Proposition 3.4] we have that $\Lambda_{L^p(G,A)}$ is an essential $L^1(G, A)$ -module. Moreover, $\Lambda_{L^p(G,A)}$ contains $L^1(G, A)$.

3. Identification for the multipliers spaces of $L^1(G, A)$ -module with the multipliers space of certain normed algebra

In this section, we obtain the generalization of the results of McKennon [10-12] to the Banach-valued spaces.

PROPOSITION 3.1. Let T be in $H_{L^1(G,A)}(L^p(G,A))$ and $f, g \in L^p(G,A)$. Then,

- (i) if $f \in L_p^t(G, A)$, $T(f) \in L_p^t(G, A)$;
- (ii) if $g \in L_p^i(G, A)$, T(f * g) = f * T(g).

PROOF. (i) Let f be in $L_p^t(G, A)$. By the definition $T \in H_{L^1(G,A)}(L^p(G, A))$,

$$\|T(f)\|_{L^{p}(G,A)}^{l} = \sup\{\|h * T(f)\|_{L^{p}(G,A)} \mid h \in C_{c}(G,A), \|h\|_{L^{p}(G,A)} \le 1\}$$

= sup{ $\|T(h * f)\|_{L^{p}(G,A)} \mid h \in C_{c}(G,A), \|h\|_{L^{p}(G,A)} \le 1\}$
 $\le \|T\| \|f\|_{L^{p}(G,A)}^{l} < \infty.$

Hence we get $T(f) \in L_p^t(G, A)$.

To prove (ii), let g be in $L_p^t(G, A)$. Since $C_c(G, A)$ is dense in $L^p(G, A)$, for each $f \in L^p(G, A)$ there exists $(f_n) \subset C_c(G, A)$ such that $\lim_n ||f_n - f||_{L^p(G, A)} = 0$.

From (2.1) we get $\lim_{n} ||f_n * g - f * g||_{L^p(G,A)} = 0$. By (i) we have

$$\lim_{n} \|f_{n} * T(g) - f * T(g)\|_{L^{p}(G,A)} = 0$$

and $f * T(g) = \lim_{n \to \infty} f_n * T(g) = \lim_{n \to \infty} T(f_n * g) = T(f * g).$

DEFINITION 3.2. For the space $\Lambda_{L^{p}(G,A)}$, the space $(\Lambda_{L^{p}(G,A)})$ is defined by

$$(\Lambda_{L^p(G,A)}) = \{T \in H_{L^1(G,A)}(L^p(G,A)) \mid T \circ W \in \Lambda_{L^p(G,A)}, \text{ for all } W \in \Lambda_{L^p(G,A)}\}.$$

LEMMA 3.3. The space $(\Lambda_{L^{p}(G,A)})$ is equal to the space $H_{L^{1}(G,A)}(L^{p}(G,A))$.

PROOF. Let $T \in H_{L^1(G,A)}(L^p(G,A))$. For any $S \in \Lambda_{L^p(G,A)}$, we have $S = W_{f*g}$, for each $f \in L_p^t(G,A)$, $g \in C_c(G,A)$. By Proposition 3.1 we get

$$(T \circ W_{f*g})(h) = T(h*f*g) = h*T(f*g) = W_{T(f*g)}(h) = W_{g*T(f)}(h)$$

for all $h \in L^{p}(G, A)$. Thus $T \circ S \in \Lambda_{L^{p}(G,A)}$. Consequently,

$$(\Lambda_{L^p(G,A)}) = H_{L^1(G,A)}(L^p(G,A)).$$

29

Let us note that we have the inclusion $M(\Lambda_{L^{p}(G,A)}) \subset H_{L^{1}(G,A)}(\Lambda_{L^{p}(G,A)})$.

THEOREM 3.4. Let G be a locally compact abelian group, $1 , and A be a commutative Banach algebra with identity of norm 1. The space of multipliers on Banach algebra <math>\Lambda_{L^{p}(G,A)}$, $M(\Lambda_{L^{p}(G,A)})$, is isometrically isomorphic to the space $(\Lambda_{L^{p}(G,A)})$.

PROOF. Define the mapping $F : \Lambda_{L^{p}(G,A)} \to M(\Lambda_{L^{p}(G,A)})$ by letting $F(T) = \rho_{T}$ for each $T \in \Lambda_{L^{p}(G,A)}$, where $\rho_{T}(S) = T \circ S$ for all $S \in \Lambda_{L^{p}(G,A)}$. Note that F is well defined and moreover if $\rho_{T}(S \circ K) = T \circ S \circ K = \rho_{T}(S) \circ K$ for all $S, K \in \Lambda_{L^{p}(G,A)}$, $\rho_{T} \in M(\Lambda_{L^{p}(G,A)})$.

It is obvious that the mapping $T \to \rho_T$ is linear. We now show that it is an isometry. We obtain easily $||T|| \ge ||\rho_T||$. Since W_{Φ_α} is a minimal approximate identity for the space $\Lambda_{L^p(G,A)}$, we have

$$\|\rho_T\| = \sup_{S \in \Lambda_{L^p(G,A)}} \frac{\|T \circ S\|}{\|S\|} \ge \sup_{\alpha} \frac{\|T \circ W_{\Phi_{\alpha}}\|}{\|W_{\Phi_{\alpha}}\|} \ge \|T\|.$$

Therefore, $\|\rho_T\| = \|T\|$.

Finally, we show that the mapping $T \to \rho_T$ is onto. It is sufficient to show that if ρ is an element of $M(\Lambda_{L^p(G,A)})$, the limit of $\rho \Phi_{\alpha}$ exists for the strong operator topology and this limit T satisfies $\rho_T = \rho$. Let ρ be in $M(\Lambda_{L^p(G,A)})$ and $(\Phi_{\alpha}) \subset L^1(G, A)$. By $\rho \Phi_{\alpha}(f * g) = \rho(\Phi_{\alpha} * f)g$, we have

(3.1)
$$\lim_{\alpha} (\rho \Phi_{\alpha})(f * g) = \rho f(g)$$

for all $f \in L^1(G, A)$, $g \in L^p(G, A)$. Since $L^p(G, A)$ is an essential $L^1(G, A)$ module, the limit of $(\rho \Phi_{\alpha})(f * g)$ exists in $L^p(G, A)$ and is denoted by Tg, and $Tg \in H_{L^1(G,A)}(L^p(G, A))$. From (3.1) we get, for all $f \in L^1(G, A)$,

$$(3.2) f \circ T = \rho f.$$

So for all $W \in \Lambda_{L^{p}(G,A)}$ we have

(3.3)
$$T \circ \Phi_{\alpha} \circ W = (\rho \Phi_{\alpha}) \circ W = \rho(\Phi_{\alpha} \circ W).$$

Since $\Lambda_{L^{p}(G,A)}$ is an essential $L^{1}(G, A)$ -module, we have $T \circ W = \rho(W)$ and also $\rho_{T}(W) = \rho(W)$ for all $W \in \Lambda_{L^{p}(G,A)}$. So $\rho_{T} = \rho$.

COROLLARY 3.5. The following spaces of multipliers are isometrically isomorphic: $M(\Lambda_{L^{p}(G,A)}) \cong H_{L^{1}(G,A)}(L^{p}(G,A)).$ **REMARK 3.6.** (i) Let p = 1. Since $L_1^t(G, A)$ is a Banach algebra, it follows that $L_1'(G, A) = L^1(G, A)$ and $\Lambda_{L^p(G,A)}$ is isomorphic to $L^1(G, A)$ as a Banach algebra. Thus by [14] we get $H_{L^1(G,A)}(L^p(G,A)) = M(L^1(G,A)) = M(G,A)$. Here M(G, A) denotes A-valued bounded measure space.

(ii) If $A = \emptyset$ we have the case of the scalar valued function space in [10, 11].

4. The identification for the space $L^1(G, A) \cap L^p(G, A)$

Before starting the identification, let us mention some properties of the space $L^1(G, A) \cap L^p(G, A)$.

If $1 , then the space <math>L^1(G, A) \cap L^p(G, A)$ is a Banach space with the norm $|||f||| = ||f||_{L^1(G,A)} + ||f||_{L^p(G,A)}$ for $f \in L^1(G, A) \cap L^p(G, A)$.

LEMMA 4.1. For $L^{1}(G, A) \cap L^{p}(G, A)$,

(i) $L^1(G, A) \cap L^p(G, A)$ is dense in $L^1(G, A)$ with respect to the norm $\|\cdot\|_{L^1(G, A)}$.

(ii) For every $f \in L^1(G, A) \cap L^p(G, A)$ and $x \in G$, $x \to L_x f$ is continuous, where $L_x f(y) = f(x^{-1}y)$ for all $y \in G$.

PROOF. (i) Since $C_c(G, A)$ is dense in $L^1(G, A)$ with respect to the norm $\|\cdot\|_{L^1(G,A)}$ and $C_c(G, A) \subset L^1(G, A) \cap L^p(G, A) \subset L^1(G, A)$ it is obtained.

(ii) Let $f \in L^1(G, A) \cap L^p(G, A)$. It is easy to see that $|||L_x f||| = |||f|||$. By [2] the function $x \to L_x f$ is continuous, $G \to L^p(G, A)$, where $1 \le p < \infty$. Therefore for any $x_o \in G$ and $\epsilon > 0$, there exists $U_1 \in \vartheta_{(x_o)}$ and $U_2 \in \vartheta_{(x_o)}$ such that for every $x \in U_1$

$$||L_x f - L_{x_o} f||_{L^p(G,A)} < \epsilon/2$$

and for every $x \in U_2$

$$\|L_x f - L_{x_o} f\|_{L^1(G,A)} < \epsilon/2.$$

Set $V = U_1 \cap U_2$, then for all $x \in V$, we have $||L_x f - L_{x_0} f||| < \epsilon$.

PROPOSITION 4.2. The space $L^1(G, A) \cap L^p(G, A)$ has a minimal approximate identity in $L^1(G, A)$.

LEMMA 4.3. The space $L^1(G, A) \cap L^p(G, A)$ is an essential $L^1(G, A)$ -module.

PROOF. Let $f \in L^1(G, A)$ and $g \in L^1(G, A) \cap L^p(G, A)$. Since $L^p(G, A)$ is an $L^1(G, A)$ -module, we have

$$||f * g|| = ||f * g||_{L^{1}(G,A)} + ||f * g||_{L^{p}(G,A)} \leq ||f|| ||g||.$$

By [13, Proposition 3.4] we get that $L^1(G, A) \cap L^p(G, A)$ is an essential $L^1(G, A)$ -module.

PROPOSITION 4.4. $L^1(G, A) \cap L^p(G, A)$ is a Banach ideal in $L^1(G, A)$.

PROPOSITION 4.5. $L^1(G, A) \cap L^p(G, A)$ is a Banach algebra with the norm $||| \cdot |||$.

PROOF. For any $f, g \in L^1(G, A) \cap L^p(G, A)$, using the inequality

 $\|\cdot\|_{L^1(G,A)}\leq \|\cdot\|,$

we get that $||f * g|| \le ||f|| ||g||$.

COROLLARY 4.6. The space $L^1(G, A) \cap L^p(G, A)$ is a Segal algebra.

PROOF. By Lemma 4.1 and Proposition 4.5 we obtain that $L^1(G, A) \cap L^p(G, A)$ is a Segal algebra.

We now return to Section 3 to mention the multipliers of $L^1(G, A) \cap L^p(G, A)$. Since $L^1(G, A) \cap L^p(G, A)$ is an $L^1(G, A)$ -module and a Banach algebra, then we get easily $M(L^1(G, A) \cap L^p(G, A)) \cong H_{L^1(G, A)}(L^1(G, A) \cap L^p(G, A))$.

PROPOSITION 4.7. $H_{L^1(G,A)}(L^1(G,A) \cap L^p(G,A))$ is an essential Banach module over $L^1(G,A)$.

PROOF. Let $f \in L^1(G, A)$ and $T \in H_{L^1(G,A)}(L^1(G, A) \cap L^p(G, A))$. Define the operator f T on $L^1(G, A) \cap L^p(G, A)$ by (f T)(g) = T(f * g) for all $f \in L^1(G, A) \cap L^p(G, A)$. By Proposition 4.5 T is well defined. Then $H_{L^1(G,A)}(L^1(G, A) \cap L^p(G, A))$ is an $L^1(G, A)$ -module. Let (Φ_{α}) be a minimal approximate identity for $L^1(G, A)$ and T be in $H_{L^1(G,A)}(L^1(G, A) \cap L^p(G, A))$. We have

$$\lim \|\Phi_{\alpha} \circ T - T\| = 0.$$

By [13, Proposition 3.4], we have that $H_{L^1(G,A)}(L^1(G,A) \cap L^p(G,A))$ is an essential Banach module over $L^1(G,A)$.

Define \wp to be the closure of $L^1(G, A)$ in $H_{L^1(G,A)}(L^1(G, A) \cap L^p(G, A))$ for the operator norm. Evidently,

$$H_{L^{1}(G,A)}(L^{1}(G,A) \cap L^{p}(G,A)) = (H_{L^{1}(G,A)}(L^{1}(G,A) \cap L^{p}(G,A)))_{e} = \wp = (\wp)_{e},$$

where $(\cdot)_e$ denotes the essential part and we have

$$H_{L^{1}(G,A)}(L^{1}(G,A) \cap L^{p}(G,A)) = (\wp).$$

32

[8]

Here (\wp) is defined as the space of the elements $T \in H_{L^1(G,A)}(L^1(G,A) \cap L^p(G,A))$ such that $T \circ \wp \subset \wp$.

Using the same method as in Theorem 3.4 we get the following lemma.

LEMMA 4.8. The multipliers space of Banach algebra \wp is isometrically isomorphic to the space (\wp).

We also get the following corollary.

COROLLARY 4.9. $H_{L^1(G,A)}(L^1(G,A) \cap L^p(G,A)) \cong M(\wp).$

So the multipliers space of $L^1(G, A) \cap L^p(G, A)$ can be identified with the multipliers space of the closure of $L^1(G, A)$ in $H_{L^1(G,A)}(L^1(G, A) \cap L^p(G, A))$.

REMARK 4.10. (i) It is evident that every measure $\mu \in M(G, A)$ defines multiplier for $L^1(G, A) \cap L^p(G, A)$, $1 . This is obvious from the fact that <math>\|\|\mu * f\| \le \|\mu\| \|\|f\|$, $f \in L^1(G, A) \cap L^p(G, A)$.

On the other hand, for $\mu \in M(G, A)$, we have $\mu \circ L^1(G, A) \subset L^1(G, A)$, the inclusion in the space $H_{L^1(G,A)}(L^1(G, A) \cap L^p(G, A))$.

Hence, $\mu \circ \wp \subset \wp$, thus M(G, A) can be embedded into (\wp) .

(ii) If $A = \not c$ and G is a noncompact locally compact abelian, we have the more general result than the Corollary 3.5.1 in Larsen [9].

References

- C. Datry, Multiplicateurs d'un L¹(G)-module de Banach consideres comme multiplicateurs d'une certaine algèbre de Banach (Groupe de travail d'Analyse Harmonique, Institut Fourier, Grenoble, 1981).
- [2] N. Dinculeanu, Integration on locally compact spaces (Nordhoff, The Netherlands, 1974).
- [3] H. Feichtinger, 'Multipliers of Banach spaces of functions on groups', Math. Z. 152 (1976), 47-58.
- [4] M. J. Fisher, 'Properties of three algebras related to L^p-multipliers', Bull. Amer. Math. Soc. 80 (1974), 262–265.
- [5] J. Griffin and K. McKennon, 'Multipliers and group L^p algebras', Pacific J. Math. 49 (1973), 365-370.
- [6] G. P. Johnson, 'Spaces of functions with values in a Banach algebra', Trans. Amer. Math. Soc. 92 (1959), 411-429.
- [7] H. C. Lai, 'Multipliers of Banach-valued function spaces', J. Austral. Math. Soc. (Ser. A) 39 (1985), 51-62.
- [8] H. C. Lai and T. K. Chang, 'Multipliers and translation invariant operators', Tohoku Math. J. 41 (1989), 31-41.
- [9] R. Larsen, An introduction to the theory of multipliers (Springer, Berlin, 1971).
- [10] K. McKennon, 'Multipliers of type (p, p)', Pacific J. Math. 43 (1972), 429-436.

- [11] —, 'Multipliers of type (p, p) and multipliers of group L^p algebras', Pacific J. Math. 45 (1972), 297–302.
- [12] -----, 'Corrections to [10, 11] and [5]', Pacific J. Math. 61 (1975), 603-606.
- [13] M. Rieffel, 'Induced Banach representations of Banach algebras and locally compact groups', J. Funct. Anal. 1 (1967), 443–491.
- [14] U. B. Tewari, M. Dutta and D. P. Vaidya, 'Multipliers of group algebra of vector-valued functions', Proc. Amer. Math. Soc. 81 (1981), 223–229.
- [15] J. K. Wang, 'Multipliers of commutative Banach algebras', Pacific J. Math. 11 (1961), 1131–1149.

Istanbul University

Faculty of Sciences

Department of Mathematics

34459 Vezneciler/Istanbul

Turkey

e-mail: serapoztop@hotmail.com, oztops@istanbul.edu.tr

34