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Abstract

Let C be a symmetrisable generalised Cartan matrix. We introduce four different versions of double Bott–Samelson

cells for every pair of positive braids in the generalised braid group associated to C. We prove that the decorated

double Bott–Samelson cells are smooth affine varieties, whose coordinate rings are naturally isomorphic to upper

cluster algebras.

We explicitly describe the Donaldson–Thomas transformations on double Bott–Samelson cells and prove that

they are cluster transformations. As an application, we complete the proof of the Fock–Goncharov duality conjecture

in these cases. We discover a periodicity phenomenon of the Donaldson–Thomas transformations on a family of

double Bott–Samelson cells. We give a (rather simple) geometric proof of Zamolodchikov’s periodicity conjecture

in the cases of Δ�AA .

When C is of type A, the double Bott–Samelson cells are isomorphic to Shende–Treumann–Zaslow’s moduli

spaces of microlocal rank-1 constructible sheaves associated to Legendrian links. By counting their F@-points we

obtain rational functions that are Legendrian link invariants.

1. Introduction

1.1. Cluster Structures on Double Bott–Samelson Cells

Bott–Samelson varieties were introduced by Bott and Samelson [BS58] in the context of compact Lie

groups and were reformulated by Hansen [Han73] and Demazure [Dem74] independently in the re-

ductive algebraic group setting. Bott–Samelson varieties give resolutions of singularities of Schubert

varieties and have many applications in geometric representation theory. Webster and Yakimov [WY07]

considered the product of two Bott–Samelson varieties and gave a stratification whose strata are

parametrised by a triple of Weyl group elements and observed that a family of strata are isomorphic to

double Bruhat cells introduced by Fomin and Zelevinsky [FZ99]. Lu and Mouquin [LM17] introduced

a Poisson variety called generalised double Bruhat cells, which is defined by a conjugate class in a

semisimple Lie group together with two n-tuples of Weyl group elements. Elek and Lu [EL19] further

studied the special case of generalised Bruhat cells where one of the n-tuples was trivial and proved

that their coordinate rings, as Poisson algebras, are examples of symmetric Poisson Cauchon-Goodearl-

Letzter (CGL) extension defined by Goodearl and Yakimov [GY18].

Motivated by the positivity phenomenon on double Bruhat cells, Fomin and Zelevinsky [FZ02]

introduced a class of commutative algebras called cluster algebras. Fock and Goncharov [FG09a]

introduced cluster varieties as the geometric counterparts of cluster algebras and conjectured that the
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coordinate rings of cluster varieties admit canonical bases parametrised by the integral tropical set of

their dual cluster varieties. The cluster structures on double Bruhat cells have been studied extensively

in [BFZ05, FG06, GSV10].

In this article, we introduce a new family of varieties called double Bott–Samelson cells as a natural

generalisation of double Bruhat cells and study their cluster structures.

Our generalisation goes in two directions: first, we extend the groups from semisimple types to

Kac–Peterson groups, whose double Bruhat cells have been studied by Williams [Wil13]; second, we

replace a pair of Weyl group elements (D, E) by a pair of positive braids (1, 3), which we believe is a

new construction. In particular, our double Bott–Samelson cells further generalise Lu and Mouquin’s

generalised double Bruhat cells associated to the identity conjugacy class [LM17] by dropping the

additional data of partitioning the positive braids b and d as two n-tuples of Weyl group elements and

extending the family to include the Kac-Peterson cases.

We present three versions of double Bott–Samelson cells, an undecorated one, Conf13 (B), and two

decorated ones, Conf13 (Asc) and Conf13 (Aad). The difference between the two decorated versions is

similar to the difference between double Bruhat cells associated to simply connected forms and adjoint

forms. There is one more version of double Bott–Samelson cell Conf13

(
A

fr
sc

)
, but it will not play a

significant role in the present article.

We prove the following result on cluster structures of double Bott–Samelson cells.

Theorem 1.1 (Theorems 2.30, 3.45 and 3.46). The double Bott–Samelson cells Conf13 (Asc) and

Conf13 (Aad) are smooth affine varieties. The coordinate ring O

(
Conf13 (Asc)

)
is an upper cluster al-

gebra and O

(
Conf13 (Aad)

)
is a cluster Poisson algebra.1 The pair

(
Conf13 (Asc) ,Conf13 (Aad)

)
forms

a cluster ensemble.

Because double Bruhat cells are special cases of double Bott–Samelson cells, it follows from our

result that the cluster structures on double Bruhat cells in the symmetrisable cases are canonical in the

sense that they do not depend on the choice of reduced words (initial seeds), solving a conjecture of

Berenstein, Fomin and Zelevinsky [BFZ05, Remark 2.14].

Inside a given upper cluster algebra, the subalgebra generated by all cluster variables is called its

cluster algebra2 [FZ02, BFZ05]. An interesting question to ask is whether an upper cluster algebra

coincides with its cluster algebra. Sufficient conditions to prove this equality include acyclicity [BFZ05],

local acyclicity [Mul14] and CGL extensions [GY18]. In this article, we provide a new family of cluster

varieties for which this equality holds.

Theorem 1.2 (Theorem 4.13). The upper cluster alegbra O(Conf13 (Asc)) coincides with its cluster
algebra.

1.2. Donaldson–Thomas Transformation and Periodicity Conjecture

On every cluster variety there is a special formal automorphism called the Donaldson–Thomas transfor-
mation, which is closely related to the Donaldson–Thomas invariants of certain 3D Calabi–Yau category

with stability conditions considered by Kontsevich and Soibelman [KS08]. Following the work of Gross

et al. [GHKK18], if the Donaldson–Thomas transformation is a cluster transformation, then the Fock–

Goncharov cluster duality conjecture holds. The cluster nature of Donaldson–Thomas transformations

has been verified on many examples of cluster ensembles, including moduli spaces of G-local systems

[GS18], Grassmannians [Wen21] and double Bruhat cells [Wen20]. As a direct consequence, the cluster

duality conjecture holds in those cases.

1See Definition A.18.
2In this article, we always assume that frozen cluster variables are invertible.
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In the present article we explicitly realise the Donaldson–Thomas transformation of the double

Bott–Samelson cell Conf13 (B) as a sequence of reflection maps followed by a transposition map (see

Subsection 2.3 for their definitions). We prove the following statement.

Theorem 1.3 (Theorems 4.8, 4.10). The Donaldson–Thomas transformation of Conf13 (B) is a cluster

transformation. The Fock–Goncharov duality conjecture3 holds for
(
Conf13 (Asc) ,Conf13 (Aad)

)
.

The key ingredients for constructing Donaldson–Thomas transformations are four reflection maps,
8A , 8A , A

8 and A8 , which are biregular isomorphisms between double Bott–Samelson cells that differ by

the placement of B8:

Conf
B81

3
(A)

8A //
Conf1B83 (A)

8A
oo Conf

1B8
3
(A)

A 8 //
Conf13B8 (A)A8

oo . (1.4)

We prove the following result on these reflection maps.

Theorem 1.5 (Corollary 4.12). Reflection maps are quasi-cluster transformations and hence are Poisson
maps.

In Section 5 we investigate the periodicity of Donaldson–Thomas transformations for a

class of double Bott–Samelson cells associated to semisimple algebraic groups. We prove the

following.

Theorem 1.6 (Theorem 5.1). If G is semisimple and the positive braids (1, 3) satisfy (31◦)< =

F2=
0

, then the Donaldson–Thomas transformation of Conf13 (B) is of a finite order dividing
2(< + =).

Zamolodchikov’s periodicity conjecture asserts that the solution of the Y-system associated to a pair

of Dynkin diagrams is periodic with period relating to the Coxeter numbers of the two Dynkin diagrams.

Keller gave a categorical proof of the conjecture in full generality in [Kel13].

Let Δ be a Dynkin diagram of finite type and let G be a group of type Δ . In this article we relate

the product Δ�A= to a double Bott–Samelson cell associated to G and give a new geometric proof of

Zamolodchikov’s periodicity conjecture (Corollary 5.10).

As explained in [Kel11, Section 5.7], Zamolodchikov’s periodicity implies a result on the periodicity

of the Donaldson–Thomas transformation. Weng [Wen21] gave a direct geometric proof of the period-

icity of DT in the case of A<�A= by realizing the Donaldson–Thomas transformation as a biregular

automorphism on a configuration space of lines.

Theorem 1.6 gives a new geometric proof of the periodicity of DT in the cases of Δ�A=.

Theorem 1.7 (Corollary 5.11). Let Δ be a Dynkin quiver of finite type. Then DTΔ�A=
is of a finite order

dividing 2(ℎ+=+1)
gcd(ℎ,=+1)

where h is the Coxeter number of Δ .

1.3. Positive Braids Closures

Let (1, 3) be a pair of positive braids in the braid group of type AA . Every word (i, j) of (1, 3) encodes

two sequences of crossings at the top and at the bottom of a Legendrian link Λi
j
embedded in the standard

contact R3 (see Subsection 6.2). Legendrian links obtained from different words of (1, 3) are related

by Legendrian Reidemeister moves and therefore are Legendrian isotopic. Abusing notations we denote

the corresponding isotopic class of Legendrian links by Λ1
3
.

3See Conjecture A.26.
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The reflection maps (1.4) correspond to Legendrian isotopies that move a crossing from top to bottom

or vice versa at the two ends of the link diagram. The following picture depicts such a move for the

reflection maps 1A ◦ A2 : Conf
B1B2
B1
(A) → Conf4B1B1B2

(A) of Dynkin type A2.

1 = B1B2

3 = B1

B1

B1

B2

↓

1 = 4

3 = B1B1B2

B1 B1

B2

Shende, Treumann and Zaslow STZ17] introduced a moduli space of microlocal rank-1 sheaves

M1 (Λ) associated to any Legendrian link Λ. By a result of Guillermou, Kashiwara and Schapira

[GKS12], the moduli spaces M1 (Λ) and M1 (Λ
′) are isomorphic if Λ and Λ′ are Legendrian isotopic

[STZ17, Theorem 1.1]. However, one should keep in mind that the isomorphisms between such moduli

spaces depends on the Legendrian isotopies.

By comparing the definitions of M1

(
Λi

j

)
and Conf13 (B) we obtain the following result.

Theorem 1.8 (Theorem 6.14). There is a natural isomorphism M1

(
Λi

j

)
� Conf13 (B).

Theorem 1.8 implies that the automorphisms on the moduli spaces M1

(
Λ1
3

)
induced by braid moves

are all trivial; therefore, one can canonically identify M1

(
Λi

j

)
for different choices of words for (1, 3)

and define the moduli space M1

(
Λ1
3

)
for a pair of positive braids (1, 3).

The cells Conf13 (A) associated to any generalised Cartan matrices are well defined over any finite

field F@ . Let

5 13 (@) :=
��Conf13 (A)

(
F@

) �� .
In Subsection 6.1 we provide an algorithm for computing 5 1

3
(@). The cell Conf13 (B) is isomorphic to

Conf13 (A) modulo a T × T action. Let r be the rank of the Cartan subgroup T. The orbifold counting of

F@-points of Conf13 (B) is

613 (@) :=
��Conf13 (B)

(
F@

) �� =
��Conf13 (A)

(
F@

) ����T × T
(
F@

) �� =
5 1
3
(@)

(@ − 1)2A
.

In general, 61
3
(@) is a rational function, with possible poles at @ = 1.

Theorem 1.9 (Corollary 6.15). Let (1, 3) be a pair of positive braids in the braid group of type AA .
The double Bott–Samelson cell Conf13 (B) (as an algebraic stack) and the rational function 61

3
(@) are

Legendrian link invariants for the positive braid closure Λ1
3
.
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1.4. Further Questions

Comparison with Generalised Double Bruhat Cells. Let u = (D1, D2, . . . , D=) and v = (E1, E2, . . . , E=)

be two n-tuples of Weyl group elements and let C be a conjugacy class in G. Define

B+uB+ :=

{
[G1, . . . , G=] ∈ G ×

B+

. . . ×
B+

G

���� G8 ∈ B+D8B+

}

and define B−vB− similarly. Lu and Mouquin [LM17] defined a generalised double Bruhat cell as

G
u,v

�
:=

{
[G1, . . . , G=,

H1, . . . , H=]

���� [G8] ∈ B+uB+, [H8] ∈ B−vB−,

(G1 . . . G=) (H1 . . . H=)
−1 ∈ �

}
.

Note that when � = {4} and = = 1, it coincides with the ordinary double Bruhat cells.

Let us lift D8 and E 9 to positive braid elements and set 1 = D1 . . . D= and 3 = E1 . . . E=. The

generalised double Bruhat cell G
u,v

{4}
is biregularly isomorphic to our decorated double Bott–Samelson

cell Conf13 (A) via the following map4 :

G
u,v

{4}
−→ Conf13 (A)

[G1, . . . , G=,

H1, . . . , H=]
↦−→



U+
D1 // G1B+

D2 // G1G2B+
D3 // . . .

D= // G1 . . . G=B+

B− E1

// H1B− E2

// H1H2B− E3

// . . .
E=

// H1 . . . H=U−


In particular, this isomorphism shows that the generalised double Bruhat cells G

u,v

{4}
admit natural cluster

structures. It further implies the following new result on generalised double Bruhat cells.

Corollary 1.10. Let u = (D1, . . . , D=), v = (E1, . . . , E=), u′ = (D′
1
, . . . , D′<) and v′ = (E′

1
, . . . , E′<). If

D1 . . . D= = D′
1
. . . D′< and E1 . . . E= = E′

1
. . . E′< in the braid group, then there is a canonical isomorphism

between G
u,v

{4}
and G

u′,v′

{4}
.

Remark 1.11. We conjecture that the same statement holds for other conjugacy classes � ≠ {4}. In

[LM17], Lu and Mouquin defined a Poisson structure on G
u,v

{4}
by pushing forward the Poisson structure

on products of flag varieties. In the adjoint form cases G = Gad, the space Conf13 (Aad) carries a

natural Poisson structure from its cluster Poisson structure. We believe that these two Poisson structures

coincide, but a detailed check is needed before we draw any definite conclusion.

In a recent work, Mouquin [Mou19] proved that the generalised double Bruhat cell G
u,u

{4}
is a Poisson

groupoid over the generalised Bruhat cell G
e,u

{4}
. We believe that the Poisson groupoid structure coincides

with Fock–Goncharov’s symplectic double for cluster varieties [FG09b]. We further observe that the

inverse map of this Poisson groupoid resembles the Donaldson–Thomas transformation on Conf41 (Aad),

and we would like to see a further investigation in these directions.

In general, the decorated double Bott–Samelson cells do not cover the cases when� ≠ {4}. Therefore,

we post the following question.

Problem 1.12. Is there a way to generalise the decorated double Bott–Samelson construction to include
all generalised double Bruhat cells? If yes, how do the Poisson structures arising from the two approaches
compare to each other?

We expect that such a generalisation (if it exists) is related to the braid cell defined below.

4The isomorphism was pointed out to us by J.H. Lu.

https://doi.org/10.1017/fms.2021.59 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.59


6 Linhui Shen and Daping Weng

Braid Cell. Let G be a split semisimple algebraic group. The general position condition between

Borel subgroups B B
′ can be rewritten as B

F0 // B′ (see Notation 2.3). In this case, a double

Bott–Samelson cell can be defined as a configuration space of Borel subgroups satisfying the following

relative position relation:

B0
1 //❴❴❴

F0

��

B2

F0

��
B1

3
//❴❴❴ B3

where the top and bottom dashed arrows represent a chain of flags with relative position conditions

imposed by the positive braids b and d, respectively. When the words of b and d are reduced, the double

Bott–Samelson cell ConfDE (A) is naturally isomorphic to the double Bruhat cells G
D,E .

In [WY07], Webster and Yakimov introduced a variety P
D
E,F associated to a triple of Weyl group

elements (D, E, F), which can be defined as the configuration space of Borel subgroups satisfying the

following relative position relation:

B0

F0

��

E // B2

DF0

��
B1

F∗
// B3

where F∗ := F0FF
−1
0

in the Weyl group. Because B1
F∗ // B3 is equivalent to B1 B3

F∗−1
oo , the above

relative position relation diagram is equivalent to the following one:

B0

F0

��

E // B2

DF0

��
B1 B3

F∗−1

oo

The chain B0
E // B2

DF0 // B3
F∗−1

// B1 can be treated as a chain of Borel subgroups with relative

position condition imposed by a braid b, where b is the concatenation of any triple of reduced words of

v, DF0 and F∗−1. The above relative position relation diagram reduces to the following one:

B0

F0

��
1

ss

❲ ❱
◗

✤

♠
❤❣

B1

(1.13)

Let us take one step further by allowing b to be any positive braid. The moduli space parametrising

the configuration (1.13) is called a braid cell Conf1 (B). By putting decorations on B0 and B1 we can

define its decorated version Conf1 (A). The cells Conf1 (A) generalise the open Richardson varieties
[LS16]. Following the proof of Theorem 1.1, one can show that Conf1 (A) is an affine variety. We make

the following conjecture.

Conjecture 1.14. The coordinate ring of Conf1 (Asc) is an upper cluster algebra.

Legendrian Link Invariants. As stated earlier, the double Bott–Samelson cell Conf13 (B) associated

to Dynkin type AA is a Legendrian link invariant for positive braids closures. Furthermore, Legendrian
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isotopies between the positive braid closures Λ1
3

and Λ1′

3′
give rise to isomorphisms between Conf13 (B)

and Conf1
′

3′ (B). We propose the following conjecture.

Conjecture 1.15. The isomorphisms Conf13 (B)
�

−→ Conf1
′

3′ (B) associated to Legendrian isotopies
between Λ1

3
and Λ1′

3′
are cluster Poisson transformations.

One strategy to prove this conjecture is to equip M1 (Λ) with a cluster Poisson structure for any

Legendrian link Λ and then show that the Legendrian versions of the Reidemeister moves induce

isomorphisms that preserve the cluster Poisson structures. Note that this is already true for the third

Legendrian Reidemeister moves – that is, the braid moves – but defining a cluster Poisson structure on

M1(Λ) and showing the cluster-ness of the remaining two Legendrian Reidemeister moves still seem

to be quite difficult tasks.

Theorem 1.8 naturally induces a cluster Poisson structure on M1

(
Λ1
3

)
. In [STWZ19], Shende et al.

studied cluster Poisson structures onM1(Λ) for Lengendrian linksΛ ⊂ )∞R2 that come from conormal

lifts of immersed curves in R2. Although their ambient contact manifold )∞R2 is different from ours

(which is the standard contact R3), it is still worthwhile to compare these two setups and the resulting

cluster Poisson structures. Therefore, we pose the following question.

Problem 1.16. How much does M1 (Λ) depend on the ambient contact manifold of Λ? Do the cluster
Poisson structures obtained from double Bott–Samelson cells coincide with those in [STWZ19] for
Legendrian links that can be embedded in both ways?

Shende, Treumann and Zaslow [STZ17] introduced a category Sh•Λ (R
2) of constructible sheaves

with singular support controlled by Λ, which can be viewed as a ‘categorification’ of Conf13 (B) �

M1

(
Λ1
3

)
. Conjecture 1.15 implies that the cluster K2 counterpart of Conf13 (B), namely, Conf13

(
A

fr
sc

)
,

is a Legendrian link invariant as well. We further ask the following.

Problem 1.17. Is there a categorification of Conf13

(
A

fr
sc

)
associated to Λ1

3
?

As observed from the examples, we conjecture that the number of components in Λ1
3

is equal to

1 − ord@=16
1
3
(@). In particular, 61

3
(@) is a polynomial when Λ1

3
is a knot.

2. Double Bott–Samelson Cells

2.1. Flags, Decorated Flags, Relative Position and Compatibility

In this section, we fix notations and investigate several elementary properties of flag varieties.

Let C be an A × A symmetrisable generalised Cartan matrix of corank l. Let Ã := A + ;.

Let (G,B+,B−,N,S) be a twin Tits system5 associated to C. Here G is a Kac–Peterson group, B+ and

B− are opposite Borel subgroups of G, N is the normaliser of T := B+ ∩B− in G and S is a set of Coxeter

generators for the Weyl group W := N/T.

Let Y ∈ {+,−}. We define two flag varieties:

BY := {Borel subgroups of G that are conjugate to BY} .

The group G acts transitively on BY by conjugation, with BY self-stabilizing. Therefore, we obtain

natural isomorphisms

BY � G/BY � BY\G

5We include a summary of twin Tits system in the appendix; see [Abr96] and [Kum02] for more details.
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that identify Borel subgroups conjugate to BY with left and right cosets of BY . When switching left

and right cosets, we get GBY = BYG
−1. Abusing notation, we shall use the terms ‘Borel subgroups’ and

‘flags’ interchangeably throughout this article.

Let UY = [BY ,BY] be the maximal unipotent subgroups inside BY . Define decorated flag varieties

A+ := G/U+ and A− := U−\G.

The inclusions UY ↩→ BY give rise to natural projections

A+ = G/U+ → G/B+ � B+ and A− = U−\G→ B−\G � B−.

We say that A ∈ AY is a decorated flag over B ∈ BY if B is the image of A under the above projections.

All G-actions in this article are left actions unless otherwise specified. For example, 6 ∈ G acts on

A− by 6. (U−G) := U−G6
−1.

The transposition is an anti-involution of G that swaps B+ and B−. It induces biregular isomorphisms

between (decorated) flag varieties:

B+

C

←→ B− and A+

C

←→ A−.

The images of B and A under transposition are denoted by B
C and A

C , respectively.

Notation 2.1. We use superscripts for elements in B+, subscripts for elements in B− and parenthesis

notations for elements in either flag variety; for example,

(1) Elements of B+: B
0,B1,B2, . . .

(2) Elements of B−: B0,B1,B2, . . .

(3) Elements that are in either B+ or B−: B,B(0),B(1),B(2), . . .

The same rule applies to decorated flags.

In this article we focus on a pair of Kac–Peterson groups Gsc and Gad. For semisimple cases, Gsc and

Gad are the simply connected and adjoint semisimple algebraic groups, respectively. In general, when

the Cartan matrix C is not invertible, the construction of Gsc and Gad depends on the choices of a lattice

P ⊂ h∗ and a basis {l8}
Ã
8=1 of P. See Appendix A for details.

The center of Gsc contains a finite subgroup Z such that Gad � Gsc/Z. Note that Z ⊂ BY . Therefore,

the flag varieties BY associated to either group are isomorphic. For the decorated flag varieties, the

covering map Gsc → Gad induces a |Z|-to-1 covering map c : Asc, Y → Aad, Y , respectively.

Let G be either Gsc or Gad. The group G admits Bruhat decompositions

G =
⊔
F ∈W

B+FB+ =
⊔
F ∈W

B−FB−

and a Birkhoff decomposition

G =
⊔
F ∈W

B−FB+.

Every G ∈ B−B+ = U−TU+ admits a unique decomposition (a.k.a. the Gaussian decomposition)

G = [G]− [G]0 [G]+

with [G]Y ∈ UY and [G]0 ∈ T. Such an element x is called Gaussian decomposable.

The above decompositions induce two W-valued ‘distance’ functions and a W-valued ‘codistance’

function that are invariant under G-diagonal actions.
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Definition 2.2. A pair of flags (GBY , HBY) is of Tits distance 3Y (GBY , HBY) = F if G−1H ∈ BYFBY .

A pair (GB−, HB+) is of Tits codistance 3 (GB−, HB+) = F if G−1H ∈ B−FB+.

A pair (B0,B
0) is said to be in general position (or opposite to each other) if 3

(
B0,B

0
)
= 4.

Notation 2.3. We shall use the following notations to encode the Tits (co)distances between flags:

(1) B
0 F // B1 means 3+

(
B

0,B1
)
= F.

(2) B0
F // B1 means 3− (B0,B1) = F.

(3) B0
F

B
0 means 3

(
B0,B

0
)
= F.

We often omit w in the diagrams if F = 4. Similar diagrams with decorated flags placed at one or both

ends imply that the pair of underlying flags is of the indicated Tits (co)distance.

Lemma 2.4.

(1) B
F // B′ if and only if B

′C F−1
// BC .

(2) B
F

B
′ if and only if B

′C F−1

B
C .

Proof. Obvious from the definition. �

The following lemma will be used many times. Its proof is included in the Appendix.

Lemma 2.5. Let D, E, F be Weyl group elements such that DE = F and ; (D) + ; (E) = ; (F). In each of
the following triangles, the black relative position holds if and only if the blue relative position holds.
Furthermore, each blue flag is uniquely determined by the pair of black flags.

B

B
′

B
′′

F

D E

B
0

B0 B1
D−1

F
E

B
0

B0

B
−1

E−1

F
D

B
0

B0

B
1

E

F
D

B
0

B0B−1 D

F
E

Every dominant weight _ of G gives rise to a regular function Δ_ on G such that Δ_ (G) = _([G]0)

for every G ∈ U−TU+. They induce G-invariant functions

Δ_ : A− ×A+ → A
1

(U−G, HU+) ↦→ Δ_ (GH) .

When G = Gsc, we take the fundamental weights l1, . . . , lÃ and set Δ 8 := Δl8
.

The following result is an easy consequence of the fact that Δ_ is invariant under transposition.

Lemma 2.6. Δ_

(
A0,A

0
)
= Δ_

( (
A

0
) C
, (A0)

C
)
.

A result of Geiss, Leclerc and Schröer (Theorem A.11) allows us to detect that general position of

decorated flags based on the Δ functions.

Theorem 2.7. A pair (A0,A
0) is in general position if and only if Δ_

(
A0,A

0
)
≠ 0 for every dominant _.

Remark 2.8. It suffices to check the nonvanishing of a finite set of Δ_. For example, when G = Gsc, it

suffices to check Δ 8 ≠ 0 for all i.
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Every F ∈ W admit two special lifts to G denoted as F and F. The following are refined versions of

Bruhat and Birkhoff decomposition:

G =
⊔
F ∈W

U+TFU+ =
⊔
F ∈W

U−FTU− =
⊔
F ∈W

U−TFU+.

The factor C ∈ T is uniquely determined for every 6 ∈ G in the above decompositions.

Definition 2.9.

(1) A pair of decorated flags GU+
F // HU+ is compatible if G−1H ∈ U+FU+.

(2) A pair of decorated flags U−G
F // U−H is compatible if GH−1 ∈ U−FU−.

Lemma 2.10. For B
F // B′ , a decoration on B uniquely determines a compatible decoration on B

′

and vice versa.

Proof. It follows from the uniqueness of the T-factor in the refined version of Bruhat decompositions

and Birkhoff decomposition. �

The following lemma is an analogy of the first case of Lemma 2.5 for decorated flags.

Lemma 2.11. Suppose that DE = F and ; (D) + ; (E) = ; (F).

(1) If A
D // A′ and A

′ E // A′′ are compatible, then so is A
F // A′′ .

(2) If A
F // A′′ is compatible, then there is a unique A

′ such that A
D // A′ and A

′ E // A′′

are compatible.

Proof. It follows from the fact that F = D E and F = D E. �

Definition 2.12. A pinning is a pair of decorated flags (U−G, HU+) such that GH ∈ U−U+.

Lemma 2.13. The following conditions are equivalent:

(1) The pair (A0,A
0) is a pinning.

(2) There exists a unique I ∈ G such that (A0,A
0) = (U−I

−1, IU+).
(3) we have Δ_

(
A0,A

0
)
= 1 for every dominant weight _.

Moreover, condition (2) implies that the action of G on the space of pinnings is free and transitive. When
G = Gsc, condition (3) can be replaced by showing that Δl8

(
A0,A

0
)
= 1 for 1 ≤ 8 ≤ Ã .

Proof. (1) =⇒ (2). Suppose that (A0,A
0) = (U−G, HU+) is a pinning. Then GH = [GH]− [GH]+ ∈ U

−
U
+.

Let I := G−1 [GH]− = H[GH]−1
+ . Then U−I

−1 = U− [GH]
−1
− G = U−G and IU+ = H[GH]−1

+ U+ = HU+. Note

that U−I
−1 = U−I

′−1 implies that I−1I′ ∈ U− and IU+ = I′U+ implies that I−1I′ ∈ U+. Therefore,

I−1I′ ∈ U− ∩ U+ = {4} and I = I′. The uniqueness of z follows.

(2) =⇒ (3). This is obvious from the definition of Δ_.

(3) =⇒ (1). By Theorem 2.7, Δ_

(
A0,A

0
)
= 1 implies that A0,A

0) is in general opposition. Let

A0 = U−G and A
0 = HU+. The product GH is Gaussian decomposable; that is, GH = [GH]− [GH]0 [GH]+. The

condition 1 = Δ_

(
A0,A

0
)
= Δ_ ([GH]0) implies that [GH]0 = 4. Therefore, GH ∈ U−U+. �

Corollary 2.14. There is a one-to-one correspondence between pinnings and opposite pairs of flags in
A− × B+ (respectively B− ×A+) given by the forgetful map.

Proof. Lemma 2.13 asserts that every pinning is of the form
(
U−I

−1, IU+
)
. Therefore, the forgetful map

is surjective. For injectivity, if
(
U−I

−1, IB+
)
=

(
U−I

′−1, I′B+
)

in A− × B+, then I−1I′ ∈ U− ∩ B+ = {4}

and hence I = I′. A similar proof can be applied to the B− ×A+ cases. �

The next lemma shows that notions of compatibility and pinnings respect the transposition.

https://doi.org/10.1017/fms.2021.59 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.59


Forum of Mathematics, Sigma 11

Lemma 2.15.

(1) A
F // A′ is compatible if and only if A

′C F−1
// AC is compatible.

(2) A A
′ is a pinning if and only if A

′C
A
C is a pinning.

Proof. (1) follows from the fact that FC = F−1 and F
C
= F−1. (2) is trivial. �

2.2. Double Bott–Samelson Cells

The semigroup Br+ of positive braids is generated by symbols B8 subject to the braid relations

B8B 9 . . .︸  ︷︷  ︸
<8 9

= B 9 B8 . . .︸  ︷︷  ︸
<8 9

, (2.16)

where <8 9 = 2, 3, 4, 6 or∞ according to whether C8 9C 98 is 0, 1, 2, 3 or ≥ 4.

A word for a positive braid 1 ∈ Br+ is a sequence i = (81, 82, . . . , 8=) such that 1 = B81 B82 . . . B8= .

Denote by H(1) the set of all words for b.

For an arbitrary Weyl group element, its reduced words are related by braid relations. Hence, there

is a set-theoretic lift W ↩→ Br+.

Definition 2.17. Let i = (81, . . . , 8=) ∈ H(1). An i-chain of flags is a sequence of flags:

B(i) := B(0)
B81 // B(1)

B82 // · · ·
B8= // B(=) .

Denote by C(i) the set of i-chains of flags.

Lemma 2.5 allows us to do local changes to a chain of flags with prescribed relative po-

sitions. If F = D1D2 = E1E2 in the Weyl group and ; (F) = ; (D1) + ; (D2) = ; (E1) +

; (E2), then for every chain B(0)
D1 // B(1)

D2 // B(2) , there is a unique flag B(3) such

that B(0)
E1 // B(3)

E2 // B(2) . Braid moves are a class of special local changes: whenever the braid

relation (2.16) holds, one can change a chain of flags uniquely from

. . . B(:) //B8 // B(: + 1)
B 9 // B(: + 2)

B8 // . . . B
(
: + <8 9 − 1

) B8 or B 9 // B
(
: + <8 9

)
. . .

to

. . . B(:) //
B 9 // B′(: + 1)

B8 // B′(: + 2)
B 9 // . . . B′

(
: + <8 9 − 1

) B 9 or B8 // B
(
: + <8 9

)
. . . .

Let i, j ∈ H(1). Let g be a sequence of braid moves taking i to j. It further induces a bijection

g
j

i
: C(i) −→ C(j).

Theorem 2.18. If i = j, then g
j

i
is the identity map.

Proof. Let i = (81, . . . , 8=) and j = ( 91, . . . , 9=). The map g
j

i
takes an i-chain B(i) = (B(0), . . . ,B(=))

to a j-chain B(j) = (B′(0), . . . ,B′(=)). It suffices to prove that if 8: = 9: for all < < : ≤ = then

B
′(<) = B(<).

Without loss of generality, we assume that B(8) = B
8 ∈ B+. Let B0 be a flag opposite to B

0. By the

second case of Lemma 2.5 for (D, E, F) = (B8 , 4, B8), we get a unique B1 such that

B
0

B0 B1B81

B81

.
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The third case of Lemma 2.5 implies that (B1,B
1) is in general position. Repeating the same construction

through the whole sequence, we obtain an i-chain B(i)>? = (B0,B1, . . . ,B=), called an opposite chain
of B(i), such that (B: ,B

: ) is in general position for 0 ≤ : ≤ =. The chain B(i)>? is uniquely determined

by the choice of B0.

Let us apply a braid move g to B(i), obtaining a g(i)-chain B(g(i)). Applying the same braid move

g to B(i)>? , we claim that the obtained chain is an opposite chain of B(g(i)). We prove the claim for an

A2-type braid move below. The same argument works for B2- and G2-type braid moves.

. . . // B: B8 // B:+1
B 9 // B:+2 B8 // B:+3 // . . .

. . . // B: B8
// B:+1 B 9

// B:+2 B8
// B:+3

// . . .

↓

. . . // B:
B 9 // B′:+1

B8 // B′:+2
B 9 // B:+3 // . . .

. . . // B: B 9
// B′

:+1 B8
// B′

:+2 B 9
// B:+3

// . . .

Note that a priori it is not obvious that the two pairs of flags in the middle are opposite. On the other

hand, we may run the opposite chain construction with the new top chain starting with the same choice

of B0, obtaining the following chain:

. . . // B:
B 9 // B′:+1

B8 // B′:+2
B 9 // B:+3 // . . .

. . . // B: B 9
// B′′

:+1 B8
// B′′

:+2 B 9
// B′′

:+3
// . . .

To show that B
′
:+1

= B
′′
:+1

, B
′
:+2

= B
′′
:+2

and B:+3 = B
′′
:+3

, it suffices to show B:+3 = B
′′
:+3

, because the

other two follow from the uniqueness part of Lemma 2.5. Note that F := B8B 9 B8 = B 9 B8B 9 is a Weyl group

element and during the opposite chain construction, B:+3 and B
′′
:+3

are both determined by the relative

position relations

B
:

F−1

❉
❉
❉
❉
❉
❉
❉
❉

B: F
// B:+3

and B
:

F−1

❈
❈
❈
❈
❈
❈
❈
❈
❈

B: F
// B′′

:+3

.

Therefore, we can conclude B:+3 = B
′′
:+3

from the uniqueness part of Lemma 2.5. This concludes the

proof of the claim that the opposite chain construction is braid move equivariant.

Now after a sequence of braid moves from i to j, we reach a j-chain B(j) = (B′0, . . . ,B′=) and its

opposite chain B(j)>? = (B′
0
, . . . ,B′=). If 8: = 9: for < < : ≤ =, we prove B

< = B
′< by induction.

For < = =, it is clear because braid moves do not change the flags at both ends of the chains.

Suppose that inductively we know that B
<+1 = B

′<+1. Applying the inductive hypothesis to the opposite

chain under the same sequence of braid moves we have B<+1 = B
′
<+1

. Because the opposite sequence

construction is braid move equivariant, we know that the bottom primed sequence can be constructed

from the top primed chain as an opposite sequence. By construction, B
′< is the unique flag such
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that

B
′<

B 9<+1 //

B 9<+1 ❊
❊
❊
❊
❊
❊
❊
❊
❊

B
′<+1

B
′
<+1

, and B
< is the unique flag such that

B
<

B8<+1 //

B8<+1 ❊
❊
❊
❊
❊
❊
❊
❊
❊

B
<+1

B<+1

. Note that B
′<+1 = B

<+1

and B
′
<+1

= B<+1. If 8<+1 = 9<+1, then B
′< = B

< by Lemma 2.5. �

Theorem 2.18 implies that g
j

i
is canonical and does not depend on the choice of g. This allows us to

replace the word i by the positive braid b.

Definition 2.19. Given a positive braid b, the set of b-chains of flags is defined as

C(1) =
⊔

i∈H(1)

C(i)
/

(bijections g
j

i
)

where i runs through all the words of b. We denote a b-chain as B(1). Similarly, let C±(1) ⊂ C(1) be

the set of b-chains of flags in B±.

Following the proof of Theorem 2.18, braid moves keep the initial and terminal flags of every chain

intact. For B(1) ∈ C(1), we denote its initial flag by B(1)8 and its terminal flag by B(1)C . Because braid

moves are equivarient under the G-actions on i-chains, one can lift the G-action to C(1).

Definition 2.20. Let b and d be positive braids. The double Bott–Samelson cell Conf13 (B) is

Conf13 (B) := G

∖{
(B(1),B(3)) ∈ C+ (1) × C−(3)

���� B(3)8 is opposite to B(1)8
B(3)C is opposite to B(1)C

}
.

After fixing words i = (81, 82, . . . , 8<) and j = ( 91, 92, . . . , 9=) for b and d, one can write a point in

Conf13 (B) as the G-orbit of a collection of flags

B
0

B81 // B1
B82 // B2 // . . . // B<−1

B8< // B<

B0 B 91

// B1 B 92

// B2
// . . . // B=−1 B 9=

// B=

Definition 2.21. The decorated double Bott–Samelson cell Conf13 (Asc) or Conf13 (Aad) is defined to

be the moduli space of configurations of flags that are points in Conf13 (B) together with a decorated

flag A
0 over B

0 := B(1)8 and a decorated flag A= over B= = B(3)C .

A
0

B81 // B1
B82 // B2 // . . . // B<−1

B8< // B<

B0 B 91

// B1 B 92

// B2
// . . . // B=−1 B 9=

// A=

Remark 2.22. Alternatively, one may think of Conf13 (Asc) as having chains of compatible decorated

flags along the horizontal edges, with the top chain determined by A
0 and the bottom chain determined

by A=, and think of Conf13 (Aad) as having two pinnings along the vertical edges, with the left pinning
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determined by A
0 and the right pinning determined by A=, as shown below. See Subsections 3.2 and 3.3

for more details.

•

•

•

•

•

•

•

•

· · ·

· · ·

Conf13 (Asc)

•

•

•

•

•

•

•

•

· · ·

· · ·

Conf13 (Aad)

Definition 2.23. The framed double Bott–Samelson cell Conf13

(
A

fr
sc

)
is defined to be the subspace of

Conf13 (Asc) whose decorated flags A
0 and A= induce a decorated flag over each flag via Lemma 2.10

and Corollary 2.14, so that any two consecutive decorated flags on the perimeter are either compatible

or form a pinning.

A
0

B81 // A1
B82 // A2 // . . . // A<−1

B8< // A<

A0 B 91

// A1 B 92

// A2
// . . . // A=−1 B 9=

// A=

Remark 2.24. Sometimes the indices on the flags in the diagrams of double Bott–Samelson cells may

not start from 0, as we will see in the next subsection.

There are canonical maps

Conf13

(
A

fr
sc

)
4 // Conf13 (Asc)

c

��

Conf13 (B) Conf13 (Aad)@
oo

(2.25)

where the maps e and q are forgetful maps and c is induced by the projection c : Asc → Aad.

Proposition 2.26. Let A = Asc or Aad. The forgetful map Conf13 (A) → Conf13 (B) makes Conf13 (A) a
T × T-principal bundle over Conf13 (B).

Proof. It follows from the fact that T acts freely and transitively on fibres of the projectionA± → B±. �

2.3. Reflections and Transposition

In this section we introduce five natural biregular morphisms between double Bott–Samelson cells: four

reflection maps and a transposition map.
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Let us start with the left reflection 8A : Conf1B83 (B) → Conf
B81

3
(B). Recall that elements of Conf1B83 (B)

are equivalence classes of collections of flags of the following relative pattern:

B0 B1

B
0

. . .

. . .

B8

By Lemma 2.5, there is a unique Borel subgroup B−1 such that

B0 B1

B
0

. . .

. . .
B
−1

B8

B8

B8

Note that (B−1,B1) is in general position. Hence, we get a configuration that belongs to Conf
B81

3
(B):

B
0

B1
. . .

. . .
B
−1

B8

This defines a left reflection

8A : Conf1B83 (B) → Conf
B81

3
(B).

One can reverse this construction and get another left reflection that is the inverse of 8A:

8A : Conf
B81

3
(B) → Conf1B83 (B).

Let us apply the same construction on the right: the flags B
<+1 and B=+1 uniquely determine each

other and hence we can define two right reflections that are inverse of each other:

. . . B
<

. . . B= B=+1B8

←→

. . . B
<

. . . B=

B
<+1

B8

A8 : Conf13B8 (B) → Conf
1B8
3
(B), and A 8 : Conf

1B8
3
(B) → Conf13B8 (B).

Notation 2.27. We adopt the convention of writing the reflection with the index i at one of the four

corners, indicating the double Bott–Samelson cell from which the reflection map originates.
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For 1 = B81 B82 · · · B8? ∈ Br+, we set 1◦ = B8? . . . B82 B81 . By composing reflection maps in the four

possible directions we get the following four biregular isomorphisms:

Conf3
◦1

4 (B) Conf13
◦

4 (B)

Conf13 (B)

�

ff▼▼▼▼▼▼▼▼▼▼

�

88qqqqqqqqqq

�

xxqqq
qq
qq
qq
qq

�

&&▼
▼▼

▼▼
▼▼

▼▼
▼▼

Conf41◦3 (B) Conf431◦ (B)

The reflection maps on Conf13 (B) can be naturally extended to reflection maps on Conf13 (A).

Below we present the construction by using the left reflection 8A as an example. Let us start with the

configuration on the left. First we reflect B0 from the lower left-hand corner to become B
−1 at the upper

left-hand corner; then we find the unique decorated flag A
−1 over B

−1 such that (A−1,A0) is compatible

(Lemma 2.10); finally, we forget the decoration of A
0 and ‘downgrade’ it to B

0.

B0 B1

A
0

. . .

. . .

B8

 

A
0

B1
. . .

. . .
B
−1

B8

 

A
0

B1
. . .

. . .
A
−1

B8

 

B
0

B1
. . .

. . .
A
−1

B8

Below is an illustration of the left reflection 8A . It moves the decoration before reflection.

B
1

B1
. . .

. . .
A

0
B8

 

A
1

B1
. . .

. . .
A

0
B8

 

A
1

B1
. . .

. . .
B

0
B8

 

B−1 B0

A
1

. . .

. . .

B8

The following lemma implies that the reflection maps can be restricted to Conf13

(
A

fr
sc

)
.
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Lemma 2.28. Let A0
B8 // A1 and A

0 B8 // A1 be compatible pairs. If either of

(1) A0
B8

A
0

(2) A1
B8

A
1

is true, then
(
A1,A

0
)

is a pinning if and only if
(
A0,A

1
)

is a pinning.

Proof. Due to the symmetry of the cases, it suffices to prove that under (1),
(
A0,A

1
)

is a pinning if(
A1,A

0
)

is. Note that by Lemma 2.5, we know that A0 A
1 and A1 A

0. By Lemma 2.13 we

may assume without loss of generality that A1 = U− and A
0 = U+. Then Lemma 2.5 together with the

compatibility condition on A0
B8 // A1 implies that A0 = U−B8 . On the other hand, by Lemma A.6 we

know that B
1 = 48 (@)B8B+ and hence A

1 = 48 (@)B8U+. Now to show that
(
A0,A

1
)

is a pinning, we just

need to notice that

U−B848 (@)B8U+ = U−4−8 (−@)U+ = U−U+. �

By Lemma 2.4 and Lemma 2.15, we obtain biregular isomorphisms (−)C , called the transposition

maps, from the double Bott–Samelson cells associated to (1, 3) to the ones associated to (3◦, 1◦), as

illustrated below:

A
0

B81 // B1
B82 // B2 // . . . // B<−1

B8< // B<

B0 B 91

// B1 B 92

// B2
// . . . // B=−1 B 9=

// A=

↓ (−)C

(A=)
C

B 9= // (B=−1)
C

B 9=−1 // (B=−2)
C // . . . // (B1)

C
B 91 // (B0)

C

(B<)C
B8<

//
(
B
<−1

) C
B8<−1

//
(
B
<−2

) C // . . . //
(
B

1
) C

B81

//
(
A

0
) C

Proposition 2.29. We have the following commutation relations:

(1) (−)C ◦ A8 =
8A ◦ (−)C ;

(2) (−)C ◦ A 8 = 8A ◦ (−)
C ;

(3) (−)C ◦ 8A = A 8 ◦ (−)C ;
(4) (−)C ◦ 8A = A8 ◦ (−)

C .

Proof. It follows directly from the definitions of the transposition and the reflection morphisms. �

2.4. Affineness of Decorated Double Bott–Samelson Cells

Theorem 2.30. Both Conf13 (A) and Conf13

(
A

fr
sc

)
are affine varieties. In particular, Conf13 (A) is the

nonvanishing locus of a single function; hence, it is smooth.
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Proof. Because reflection maps are biregular, it suffices to prove the theorem for the cases when

1 = 4. By Corollary 2.13 every element in Conf43 (A) admits a unique representative that takes the

form

U+

B0 B1
. . . U−CB81 B82 B8=

Let us rebuild the above picture by starting with the right edge U+ U−C , which is parametrised

by the maximal torus T. We find B=−1 that is B8= away from B−. By Corollary A.7, the space of B=−1 is

parametrised by A1. Then we proceed to find B=−2 that is B8=−1
away from B=−1 and so on until arriving

at B0. The parameter space is isomorphic to T × A=. Let us propagate the decoration from U−C to B:

such that every (A: ,A:−1) is compatible:

U+

A0
. . . A=−1 U−CB81 B82 B8=

Finally, we require that (A0,U+) is in general position. By Theorem 2.7 and Remark 2.8, it is

equivalent to the common nonvanishing locus of a finite collection of regular functions on T×A=, which

is equivalent to a single nonvanishing locus of the product of these regular functions. This concludes

the proof of the affineness and the nonvanishing locus nature of Conf43 (A).

The space Conf43

(
A

fr
sc

)
can be realised as a subvariety of Conf43 (Asc) by imposing the condition

that (U+,U−C) and (U+,A0) in the previous picture are pinnings. By Corollary 2.13, it is equivalent to

setting certain regular functions to be 1, which implies the affineness of Conf43

(
A

fr
sc

)
. �

3. Cluster Structures on Double Bott–Samelson Cells

3.1. Triangulations, String Diagrams and Seeds

In this section we construct seeds that define the cluster structures on double Bott–Samelson cells. The

general definition of a seed can be found in the Appendix. Our main tool is the amalgamation procedure

introduced by Fock and Goncharov [FG06].

We start with the definition of a triangulation.

Definition 3.1. Let (1, 3) be a pair of positive braids. A triangulation associated to (1, 3) is a trapezoid

with bases of lengths < = ; (1) and = = ; (3) together with

(1) a word i of b whose letters label the unit intervals along the top base of the trapezoid;

(2) a word j of d whose letters label the unit intervals along the bottom base of the trapezoid;

(3) a collection of line segments called diagonals, each of which connects a marked point on the top to

a marked point on the bottom and they divide the trapezoid into triangles.
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Example 3.2. Below is a triangulation associated to the pair of positive braids (B1B2B3, B3B1B1B3B2).

• • • •

• • • • • •

B1 B2 B3

B3 B1 B1 B3 B2

Proposition 3.3. Any two triangulations associated to the positive braids (1, 3) can be transformed
into one another via a sequence of moves of the following types:

(1) flipping a diagonal within a quadrilateral;
(2) changing the labelling of the unit intervals along the bases locally according to a braid relation.

The construction of seeds involves one more combinatorial gadget called a string diagram, which is

obtained from a triangulation as follows:

(1) Lay down Ã horizontal lines across the trapezoid; call the ith line from the top the ith level.

(2) For each triangle of the form
• •

•

B8

we put a node labeled by i on the ith level within the triangle.

(3) For each triangle of the form

• •

•

B8

we put a node labeled by −8 on the ith level within the

triangle.

(4) The nodes cut the horizontal lines into line segments called strings. Strings with nodes at both ends

are called closed strings. The remaining strings are called open strings.

Example 3.4. The blue diagram below is the string diagram associated to the triangulation in Example

3.2 with A = 3 and ; = 1.

• • • •

• • • • • •

B1 B2 B3

B3 B1 B1 B3 B2

1 1 −1

−2 2

3 3−3

1st level

2nd level

3rd level

4th level

Notation 3.5. We introduce two ways to denote strings in a string diagram: either by a lowercase Latin

letter starting from 0, 1, 2, . . . , or by a symbol
( 8
9

)
with 1 ≤ 8 ≤ Ã and 9 = 0, 1, 2, . . . . The symbol

( 8
9

)
indicates that it is the ( 9 + 1)th string on the ith level counting from the left.

A seed s consists of a finite set I of vertices, a subset �uf ⊂ � of unfrozen vertices, an � × �

matrix n called the exchange matrix and a collection of positive integers {30}0∈� called multipliers.
The entries of n are integers unless they are in the submatrix (�\�uf) × (�\�uf). We further require

that gcd (30) = 1 and n̂01 := n013
−1
1

are skew-symmetric. This requirement resembles the data of the

extended generalised symmetrisable Cartan matrix: the Ã × Ã matrix C is equipped with an integral

diagonal matrix D = diag (D1, . . . ,DA , 1, . . . , 1) such that gcd (D8) = 1 and D
−1

C is symmetric.

Now we associate a seed to every string diagram (and hence to every triangulation). Let I be the set

of strings and let �uf be the subset of closed strings. For a string a on the ith level we set 30 := D8 for
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1 ≤ 8 ≤ A and 30 := 1 if 8 > A . The exchange matrix n is

n =
∑

nodes =

n (=) .

The matrix n (=) is defined below for n labelled by 1 ≤ 8 ≤ A . If n is labelled by −8, then n (=) is defined

in the same way except that its entries are given by the opposite numbers.

◦ Let a and b be the two strings on the ith level with the node n as an endpoint as below:

8
0 1

Then we define

n
(=)

01
= −n

(=)

10
= −1.

◦ Let c be a string on the jth level that intersects with the triangle that contains n. We set

n
(=)
02 = −n

(=)

12
= −

C 98

2
, n

(=)
20 = −n

(=)

21
=

C8 9

2
.

◦ The remaining entries are 0.

Remark 3.6. Although n (=) have entries with denominator 2, when we sum up all nodes n, the entries

of the resulting matrix n are all integers except for those between two open strings.

When we perform the moves in Proposition 3.3, the corresponding mutations of string diagrams and

seeds are described in the following proposition. Its proof is a direct combinatorial check and will be

skipped. See [FG06, Theorem 3.15].

Proposition 3.7. (1a) If we flip a diagonal inside a quadrilateral

B8

B 9

•

•

•

•

with 8 ≠ 9 , the corresponding

nodes in the string diagram on different levels will slide across each other and the seed remains the same.

(1b) If we flip a diagonal inside a quadrilateral

B8

B8

•

•

•

•

←→

B8

B8

•

•

•

•

, the corresponding

two adjacent nodes in the string diagram are switched and the seed is mutated at the vertex corresponding
to the closed string between these two nodes.

8 −8
0 ←→

−8 8
0 and s

`0
←→ s′

(2) If we perform a braid move to the labelling of the intervals along one of the bases of the trapezoid,
depending on whether it is of Dynkin type A1 × A1, A2, B2 or G2, the corresponding string diagram
undergoes changes as described case by case below and the corresponding seed undergoes a sequence
of mutations. We will only depict the cases where a braid move takes place along the bottom base of the
trapezoid; the top base cases are completely analogous.
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◦ C8 9 = C 98 = 0: corresponding nodes slide across each other and the seed remains the same.

B8 B 9
• •

•

•
←→

B 9 B8
• •

•

•

◦ C8 9 = C 98 = −1:

B8 B 9 B8
• • • •

•

←→

B 9 B8 B 9
• • • •

•

8 8

9

0

←→
9 9

8

0

s
`0
←→ s′

◦ C8 9 = −2 and C 98 = −1:

• • • • •
B8 B 9 B8 B 9

•

←→
• • • • •

B 9 B8 B 9 B8

•

8 8

9 9
1

0

←→

8 8

9 9
1

0

s
`0
←→ ∗

`1
←→ ∗

`0
←→ s′

◦ C8 9 = −3 and C 98 = −1:

• • • • • • •
B8 B 9 B8 B 9 B8 B 9

•

←→
• • • • • • •
B 9 B8 B 9 B8 B 9 B8

•

8 8 8

9 9 9
2 3

0 1

←→
8 8 8

9 9 9
2 3

0 1

s
`3
←→ ∗

`2
←→ ∗

`1
←→ ∗

`0
←→ ∗

`3
←→ ∗

`1
←→ ∗

`3
←→ ∗

`2
←→ ∗

`0
←→ ∗

`3
←→ s′

The picture at the end of Section 2 shows that on the combinatorial level the transposition map

rotates the trapezoid by 180 degrees. The rotation gives rise to a bijection between the triangulations

associated to (b,d) and to (d,b). Correspondingly, there is a bijection between the string diagrams, given

by a horizontal flip plus a change of sign for every node.
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Example 3.8. Below are the bijections between triangulations and between string diagrams. Within the

two triangulations we point out a pair of corresponding triangles and within the two string diagrams we

point out a pair of corresponding strings.

• • • •

• • • • • •

B1 B2 B3

B3 B1 B1 B3 B2

l

••••

••••••

B1B2B3

B3B1B1B3B2

1 1 −1

−2 2

3 −3 3

4th level

3rd level

2nd level

1st level

l

−1−11

2−2

−33−3

4th level

3rd level

2nd level

1st level

Proposition 3.9. Transposition induces a seed isomorphism.

Proof. Note that the local exchange matrix n (=) is invariant under a simultaneous flip of the strings and

changing sign of the nodes. The proposition follows. �

It will be proved in later sections that the transposition also induces cluster isomorphisms between

the associated cluster ensembles.

3.2. Cluster Poisson Structure on Conf13 (Aad) and Conf13 (B)

In this section we associate a coordinate chart of Conf13 (Aad) to every seed s obtained from a triangula-

tion. We show that these coordinate charts are related by the cluster Poisson mutations corresponding to

the seed mutations in Proposition 3.7, equipping Conf13 (Aad) with a natural cluster Poisson structure.

The space Conf13 (B) inherits a cluster Poisson structure from that of Conf13 (Aad) via the projection

Conf13 (Aad) → Conf13 (B).
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Recall that points in Conf13 (Aad) are configurations of flags of the following form:

A
0

B81 // B1
B82 // B2 // . . . // B<−1

B8< // B<

B0 B 91

// B1 B 92

// B2
// . . . // B=−1 B 9=

// A=

When we draw certain diagonals on the trapezoid to make a triangulation, we can view each of the

extra diagonals as imposing a general position condition on the underlying undecorated flags it connects.

The coordinate system we construct will depend on a choice of such triangulation.

By Corollary 2.14 we know that the left edge B0 A
0 is equivalent to a pinning and by Lemma

2.13 we may use the G-action to move the whole configuration to a unique representative with B0 = B−

and A
0 = U+. We call such a unique representative the special representative and we will use it heavily

for the discussion below. Note that in this particular representative, the underlying undecorated flag of

A
0 is B+. The key lemma to define the cluster Poisson coordinates is the following.

Lemma 3.10. Fix the special representative with A
0 = U+ and B0 = B−. One can associate a unique

unipotent element 4−8 (?) to each triangle of the form

B8

and a unique unipotent element 48 (@)

to each triangle of the form

B8

, with ?, @ ≠ 0, such that for any diagonal B: B
; in the

triangulation (including the rightmost edge B= B
<),

B
;

B:

= GB+

GB−

.

where x is the product of unipotent elements 4−8 (?) and 48 (@) are associated to triangles to the left of
the diagonal according to their order from left to right on the triangulation.

Example 3.11. Let us convey the meaning of the above lemma in a concrete example. Consider the

following triangulation. Suppose we have fixed the special representative with A
0 = U+ and B0 = B−.

Then the lemma claims that there exist unique unipotent elements 4−8 (?) and 48 (@) associated to the

triangles (with ?, @ ≠ 0), such that any pair of undecorated flags connected by a diagonal can be obtained

by moving the pair (B−,B+) by a group element that is the product of those unipotent elements to the

left of that diagonal.

U+

B−

B
1

B
2

B
3

B1 B2 B3 B4 A5

B1 B2 B3

B3 B1 B1 B3 B2

43 (@1) 41 (@2) 41 (@3)

4−1 (?1) 4−2 (?2) 4−3 (?3)

43 (@4) 42 (@5)
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For example,

B
1

B3

=

GB+

GB−

with G = 43 (@1) 41 (@2) 41 (@3) 4−1 (?1), and

B
3

B4

=

HB+

HB−

with H =

43 (@1) 41 (@2) 41 (@3) 4−1 (?1) 4−2 (?2) 4−3 (?3) 43 (@4).

Proof of Lemma 3.10. Let us first look at the leftmost triangle. Without loss of generality, we may

assume that it is of the following shape (the upside-down case is similar):

B−

B+ B
1

B8

We would like to show that B
1 = 4−8 (?)B+ for some unique ? ≠ 0. Suppose that B1 = GB+. Then

from B− GB+ we know that x is Gaussian decomposable; that is, G = [G]− [G]0 [G]+. In particular,

GB+ = [G]−B+, so without loss of generality we may replace x by [G]− and assume that G ∈ U−. Now

the top edge also tells us that G ∈ B+B8B+. But U− ∩ B+B8B+ = U−8 = {4−8 (?)} � A
1
? . This shows that

G = 4−8 (?) for some p and we know that ? ≠ 0 because B1 ≠ B+. Also note that for different values of

p, 4−8 (?)B+ are distinct flags. Therefore, B
1 = 4−8 (?)B+ for some unique ? ≠ 0.

Now we move on to the next triangle. But instead of doing a new argument, we can move the whole

configuration by 4−8 (−?) so that B
1 becomes B+ and then repeat the same argument above. To be more

precise, let us suppose that the second triangle looks like the following:

B+ 4−8 (?)B+

B− B1

B8

B 9

 

move the whole

configuration

by4−8 (−?)

 

4−8 (−?)B+ B+

B− 4−8 (−?)B1

B8

B 9

Then by applying the same argument to the second triangle, we get 4−8 (−?)B1 = 4 9 (@)B− and hence

B1 = 4−8 (?)4 9 (@)B−.

We can repeat the argument again for the third triangle by first moving the special representative

by
(
4−8 (?)4 9 (@)

)−1
and similarly for the fourth triangle and so on. Each step will produce a unique

unipotent element as required by the lemma. �

Definition 3.12. The nonzero numbers ?8 and @8 are called Lusztig factorisation coordinates.

From the construction of Gad (see Appendix A.1 for more details), we have a basis
{
l∨8

}Ã
8=1

for the

cocharacter lattice of the maximal torus Tad and we can factor the unipotent elements 48 (@) and 4−8 (?) as

48 (@) = @l∨
8 48@

−l∨
8 and 4−8 (?) = ?−l

∨
8 4−8 ?

l∨
8 .

Therefore, instead of multiplying the unipotent group elements 4−8 (?) and 4 9 (@) according to their

order in the triangulation, we can split each of these unipotent group elements into three factors and

associate them to different parts of the corresponding string diagram. More precisely, we associate the
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maximal torus elements with strings and associate 4±8 with the nodes ±8.

• •

•

B8

?
 4−8 (?)  4−8

?−l
∨
8 ?l∨

8

• •

•

B8

@  4U (@)  48
@l∨

8 @−l
∨
8

We then make the following observation. To a closed string a on the ith level there are two maximal

torus elements attached, one at each end; we can multiply them and get a maximal torus element of the

form -
l∨

8
0 . To an open string a on the ith level on the left side of the string diagram there is one maximal

torus element attached and we can put it in the form -
l∨

8
0 . Note that these numbers -0 are ratios of

Lusztig factorisation coordinates and hence they are nonzero.

Moreover, any ordered product of unipotent group elements on the triangulation diagram is equal

to an ordered product of maximal torus elements of the form -
l∨

8
0 associated to the strings and the

Chevalley generators 4±8 associated to the nodes within the corresponding part of the string diagram,

according to their order on the string diagram. Note that because -l∨
8 4± 9 = 4± 9-

l∨
8 whenever 8 ≠ 9 ,

ambiguous ordering between factors on different levels does not affect the outcome of the products.

However, the Lusztig factorisation coordinates are not enough to define the cluster Poisson coordi-

nates. After finding all of the Lusztig factorisation coordinates, we can multiply all of the unipotent

elements associated to the triangles together according to the order of the triangulation and get a group

element g, and by Lemma 3.10, the rightmost edge of the special representative is

B
<

B=

=

6B+

6B−

. Because

A= is a decoration over B= = 6B−, there must be some C ∈ Tad such that A= = U−C
−16−1. Furthermore,

because
{
l∨8

}Ã
8=1

is a basis for the cocharacter lattice of Tad, we can write C =
∏Ã

8=1 C
l∨

8

8
for C8 ∈ G<.

Now for an open string a on the ith level on the right side of the string diagram, there may be

one maximal torus element coming from its left endpoint, which we can write as A
l∨

8

8
. We then define

-0 := A8C8 ∈ G< to be the number we associate to this open string a.

Definition 3.13. We call the numbers -0 the cluster Poisson coordinates associated to the seed (string

diagram/triangulation) on Conf13 (Aad).

Example 3.14. Let us demonstrate the construction of the cluster Poisson coordinates associated to the

triangulation in Example 3.11. Remember that we have A = 3 and ; = 1.

A
0

B0

B
1

B
2

B
3

B1 B2 B3 B4 A5

B1 B2 B3

B3 B1 B1 B3 B2

@1 @2 @3

?1 ?2 ?3

@4 @5

The string diagram of this triangulation is given in Example 3.4. By factoring the unipotent group

elements and taking in the extra factor of C =
∏

8 C
l∨

8

8
induced by the decoration A=, we get the following
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group elements associated to strings and nodes of the string diagram:

41 41 4−1

4−2 42

43 4−3 43

4th

-
l∨

4

(40)

3rd

-
l∨

3

(30)
-

l∨
3

(31)
-

l∨
3

(32)
-

l∨
3

(33)

2nd

-
l∨

2

(20)
-

l∨
2

(21)
-

l∨
2

(22)

1st

-
l∨

1

(10)
-

l∨
1

(11)
-

l∨
1

(12)
-

l∨
1

(13)

where

-(10)
=@2 -(11)

=
@3

@2

-(12)
=

1

@3?1

-(13)
=?1C1

-(20)
=

1

?2

-(21)
=?2@5 -(22)

=
C2

@5

-(30)
=@1 -(31)

=
1

@1?3

-(32)
=?3@4 -(33)

=
C3

@4

-(40)
=C4.

Note that we can recover all of the Lusztig factorisation coordinates from the cluster Poisson coordi-

nates and hence we can determine all of the underlying undecorated flags in the special representative

with

A
0

B0

=

A+

B−

using the cluster Poisson coordinates.

Recall that the transposition map induces a natural bijection between string diagrams of (1, 3) and

string diagrams of (3◦, 1◦) and a natural bijection between strings inside the two corresponding string

diagrams, as well as a seed isomorphism between the associated seeds. Now we would like to lift such

correspondence to the level of cluster Poisson coordinate charts.

Proposition 3.15. Let (-0) and
(
- ′0

)
be the cluster Poisson coordinate charts associated to two

corresponding string diagrams under transposition. Then under the transposition morphism C :

Conf13 (Aad) → Conf3
◦

1◦ (Aad), C∗- ′0 = -0.

Proof. Because cluster Poisson coordinates are computed using Lusztig factorisation coordinates, let us

first take a look at how transposition changes Lusztig factorisation coordinates. Let g be the group element

that is the ordered product of the unipotent elements associated to the triangles and let C =
∏Ã

8=1 C
l∨

8

8
be

the maximal torus element used to make A= = U−C
−16−1. Without loss of generality, we may assume

that the last triangle in the special representative is of the following form:

6B+

648 (−@)B− U−C
−16−1

B8

48 (@)
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Then under transposition, this triangle is mapped to the following triangle (here
C6C

 means move the

whole configuration by C6C ):

B−6
C

(
6−1

) C
C−1

U+ B+4−8 (−@)6
C

B8

C6C

 

B−

U+ B+4−8 (−@)C
−1

B8

=

B−

U+ 4−8 (@C
−1
8 )�+

B8

Therefore, the change of Lusztig factorisation coordinate for such configuration is @ ↦→ @C−1
8 . By similar

computations, it is not hard to find that under transposition, the Lusztig factorisation coordinates for

corresponding triangles in the two triangulations are related by

• •

•

B8

@
transposition
−→

• •

•

B8

@C−1
8

• •

•

B8

?
transposition
−→

• •

•

B8

?C8

Because the cluster Poisson coordinates associated to the closed strings are of the form ?/?, @/@,

?@ or (?@)−1, they do not change under transposition as a result of the formulas above.

Let 0′ be an open string on the ith level on the left of the string diagram after transposition. Then 0′

corresponds to an open string a on the ith level on the right of the string diagram before transposition.

If the right endpoint of 0′ is a node i, then the left endpoint of a is a node −8. Let p be the Lusztig

factorisation coordinate associated to this node −8. From the construction of cluster Poisson coordinates

and the coordinate transformation formula for Lusztig factorisation coordinates above, we see that

-0 = ?C8 = -0′ .

On the other hand, if the right endpoint of 0′ is a node −8, then the left endpoint of a is a node i. Let q
be the Lusztig coordinate associated to this node i. Then again we have

-0 = @−1C8 = -0′ .

Because if we apply transposition twice we get back the identity map, it follows that C∗-0′ = -0 also

holds for open strings 0′ on the right. This finishes the proof. �

Corollary 3.16. The cluster Poisson coordinates associated to closed strings are unchanged under a
change of decorations over B

0 and B=.
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Proof. From the construction of cluster Poisson coordinates it is obvious that the ones associated to

closed strings are unaffected by a change of decoration on B=. But then because the roles of B
0 and

B= are interchanged under transposition and the cluster Poisson coordinates remain unchanged under

transposition, we can deduce that the cluster Poisson coordinates associated to the closed strings are

unaffected by a change of decoration on B
0. �

This corollary shows that the subset of cluster Poisson coordinates associated to closed strings

actually descend to coordinates on Conf13 (B). We call these coordinates the cluster Poisson coordinates
on Conf13 (B) associated to the seed (string diagram/triangulation).

In order to justify the name ‘cluster Poisson coordinates’, we need to show that they actually

transform as cluster Poisson coordinates, which boils down to showing the cluster Poisson analogue of

Proposition 3.7.

Proposition 3.17.

(1) If 8 ≠ 9 , then

8

− 9
-2 -3

-0 -1

←→

8

− 9
-2 -3

-0 -1

On the other hand, if we interchange two neighbouring nodes of opposite signs on the same level,
we get

−8 88th level
-0 -1 -2

9 th level
-3

←→
8 −88-level

- ′0 - ′
1 - ′2

9-level
- ′
3

where

- ′0 = -0-1 (1 + -1)
−1 , - ′1 = -−1

1 ,

- ′2 = -2-1 (1 + -1)
−1 , - ′3 = -3 (1 + -1)

−C8 9 .

(2) If we perform a braid move to the string diagram, depending on whether it is of Dynkin type A1×A1,
A2, B2 or G2, the cluster Poisson coordinates transform according to the sequences of mutations
described in Proposition 3.7 (we will only depict the case where a braid move takes place among
nodes labelled by simple roots; the cases where they are labelled by opposite simple roots are
completely analogous).
◦ C8 9C 98 = 0:

8

9
-2 -3

-0 -1

←→
8

9
-2 -3

-0 -1

◦ C8 9C 98 = −1:

8 8

9

-0 -1 -2

-3 -4

←→
9 9

8

- ′
3

- ′
1

- ′4

- ′0 - ′2
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where

- ′0 = -0 (1 + -1) , - ′1 = -−1
1 , - ′2 = -2-1 (1 + -1)

−1 ,

- ′3 = -3-1 (1 + -1)
−1 , - ′4 = -4 (1 + -1) .

◦ C8 9 = −2 and C 98 = −1:

8 8

9 9
-4 -1 - 5

-2 -0 -3

←→
8 8

9 9
- ′4 - ′

1
- ′

5

- ′2 - ′0 - ′
3

where

- ′0 =-0

1

�1
- ′1 =

1

-2
0-1

�2
0 - ′2 =-2

�1

�0

- ′3 =-3�0 - ′4 =-4-
2
0-1

1

�1
- ′5 =- 5 -1

�1

�2
0

and

�0 = 1 + -1 + -0-1 �1 = 1 + -1 + 2-0-1 + -
2
0-1 . (3.18)

◦ C8 9 = −3 and C 98 = −1:

8 8 8

9 9 9
-6 -2 -3 -ℎ

-4 -0 -1 - 5

←→
8 8 8

9 9 9
- ′6 - ′2 - ′

3
- ′
ℎ

- ′4 - ′0 - ′
1

- ′
5

where

- ′0 =-0

�3

�1�2
- ′1 =-1

�0

�3

- ′2 =
1

-3
0-

3
1
-2
2-3

�3
0

�3

- ′3 =-2

�3
1
�2

�3
0

- ′4 =-4

�2

�0

- ′5 =- 5 �1 - ′6 =-3
0-

3
1-

2
2-3-6

1

�2
- ′ℎ =-3-ℎ

�3

�3
1

and

�0 =1 + -3 + 3-1-3 + 3-2
1-3 + 3-2

1-2-3 + -
3
1-3 + 2-3

1-2-3 + -
3
1-

2
1-3

+ 2-0-
2
1-2-3 + 2-0-

3
1-2-3 + 2-0-

3
1-

2
2-3 + -

2
0-

3
1-

2
2-3 ,

�1 =1 + -3 + 2-1-3 + -
2
1-3 + -

2
1-2-3 + -0-

2
1-2-3

�2 =1 + -3 + 3-1-3 + 3-2
1-3 + 3-2

1-2-3 + -
3
1-3 + 2-3

1-2-3 + -
3
1-

2
2-3

+ 3-0-
2
1-2-3 + 3-0-

3
1-2-3 + 3-0-

3
1-

2
2-3 + 3-2

0-
3
1-

2
2-3

+ -3
0-

3
1-

2
2-3
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�3 =1 + 2-3 + -
2
3 + 6-1-3 + 6-1-

2
3 + 6-2

1-3 + 15-2
1-

2
3 + 3-2

1-2-3 + 3-2
1-2-

2
3

+ 2-3
1-3 + 20-3

1-
2
3 + 2-3

1-2-3 + 12-3
1-2-

2
3 + 15-4

1-
2
3 + 18-4

1-2-
2
3

+ 3-4
1-

2
2-

2
3 + 6-5

1-
2
3 + 12-5

1-2-
2
3 + 6-5

1-
2
2-

2
3 + -

6
1-

2
3 + 3-6

1-2-
2
3

+ 3-6
1-

2
2-

2
3 + -

6
1-

3
2-

2
3 + 3-0-

2
1-2-3 + 3-0-

2
1-2-

2
3 + 3-0-

3
1-2-3

+ 12-0-
3
1-2-

2
3 + 18-0-

4
1-2-

2
3 + 6-0-

4
1-

2
2-

2
3 + 12-0-

5
1-2-

2
3

+ 12-0-
5
1-

2
2-

2
3 + 3-0-

6
1-2-

2
3 + 6-0-

6
1-

2
2-

2
3 + 3-0-

6
1-

3
2-

2
3 + 3-2

0-
4
1-

2
2-

2
3

+ 6-2
0-

5
1-

2
2-

2
3 + 3-2

0-
6
1-

2
2-

2
3 + 3-2

0-
6
1-

3
2-

2
3 + -

3
0-

6
1-

3
2-

2
3 . (3.19)

The coordinate transformations in the last two cases are written in the form of the factorisa-
tion formula (A.17) and are obtained from the corresponding mutation sequences described in
Proposition 3.7.

Proof.
(1) The case where 8 ≠ 9 follows from the Lie group identity 4− 948 = 484− 9 . The other case follows

from the Lie group identity

4−8-
l∨

8

1
48 =

(
-1

1 + -1

)l∨
8

(48)

(
1

-1

)l∨
8

(4−8)

(
-1

1 + -1

)l∨
8 ∏

9≠8

(1 + -1)
−C8 9l

∨
9 .

(2) The case C8 9 = C 98 = 0 follows from the Lie group identity

4 948 = 484 9 .

The case C8 9 = C 98 = −1 follows from the Lie group identity

48-
l∨

8

1
4 948 = (1 + -1)

l∨
8

(
-1

1 + -1

)l∨
9 (
4 9

) (
1

-1

)l∨
9 (
484 9

)
(1 + -1)

l∨
9

(
-1

1 + -1

)l∨
8

.

The other two cases can be proved by a computer check and the technique of cluster folding. See

[FG06, Section 3.6, 3.7]. �

3.3. Cluster K2 Structure on Conf13 (Asc) and Conf13

(
A

fr
sc

)
In this section we associate a coordinate chart of the decorated double Bott–Samelson cell Conf13 (Asc)

to every seed s obtained from a triangulation and show that these coordinate charts are related by cluster

K2 mutations corresponding to the seed mutations stated in Proposition 3.7, equipping Conf13 (Asc)

with a natural cluster K2 structure. By restricting the cluster K2 structure on Conf13 (Asc) to the framed

double Bott–Samelson cell Conf13

(
A

fr
sc

)
, we also obtain a cluster K2 structure on the latter.

Take a point in Conf13 (Asc). We can propagate the decoration over B
0 horizontally across the top of

the trapezoid using Lemma 2.10, equipping each flag on the top base with a decoration so that every

adjacent pair is compatible. Similarly, we can do the same on the bottom base: propagating the decoration

over B= horizontally across the bottom and equipping each flag on the bottom base with a decoration.

A
0

B81 // A1
B82 // A2 // . . . // A<−1

B8< // A<

A0 B 91

// A1 B 92

// A2
// . . . // A=−1 B 9=

// A=
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Definition 3.20. Fix a triangulation and consider its corresponding string diagram and seed. Let a
be a string on the ith level in the string diagram (and hence a vertex in the corresponding seed).

Let A; A
: bea diagonal in the triangulation that a intersects. Let us set

�0 := Δl8

(
A; ,A

:
)
.

For notation convenience we also adopt the shorthand Δ 8 (;, :) = Δl8

(
A; ,A

:
)
.

Because a string may cross many different diagonals, the first thing we need to check is the well-

defined-ness of �0.

Proposition 3.21. The functions �0 are well defined.

Proof. It suffices to show that for a string a on the ith level that intersects both sides of a triangle, the

functions �0 obtained by using each of the two sides of the triangle are equal. Without loss of generality,

we suppose that the triangle looks like the following (after fixing a representative), with C ∈ Tsc:

U−C

U+ A
1

B 9

0
8th level

By Lemma A.6, we know that A
1 = 4 9 (?)B 9U+. Then

Δl8

(
U−C,A

1
)
=

(
C4 9 (?)B 9

)l8 =

(
C4− 9

(
?−1

)
?
U∨
9 4 9

(
−?−1

))l8

=

(
C ?

U∨
9

)l8

= Cl8

= Δl8
(U−C,U+) ,

where
(
C ?

U∨
9

)l8

= Cl8 uses the assumption that 8 ≠ 9 . �

Corollary 3.22. For a triangle of either of the following forms

U+

U−C A
B8

88th level
1 2

9 th level
0 9

U−

CU+ A
B8

−88th level
1 2

9 th level
0 9

the underlying undecorated flag B associated to A is

B = 4±8
©«
∏

9≠8 �
−C 98

0 9

�1�2

ª®¬
B±,

where the ± sign depends on the orientation of the triangle in the same way as the sign of the corre-
sponding node in the string diagram.
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Proof. We will only show the computation for the case on the right; the case on the left is completely

analogous. By comparison, we see that we need to act by t to move the triangle in the last proof into the

configuration stated in the corollary. Therefore,

B = C48 (?)B8B+ = 48 (C
U8 ?) B8B+ = 4−8

(
C−U8 ?−1

)
B+.

But then because �1 = Cl8 , �2 = Cl8 ? and �0 9
= Cl 9 for any 9 ≠ 8, we have

∏
9≠8 �

−C 98

0 9

�1�2

=

∏
9≠8 C

−C 98l 9

?C2l8
= C−

∑
9 C 98l 9 ?−1 = C−U8 ?−1. �

Proposition 3.23. An assignment of G< values to all of the functions {�0} associated to a trian-
gulation recovers a point in Conf13 (Asc). As a corollary, these functions form a torus chart on
Conf13 (Asc).

Proof. The idea is to mimic the proof of Lemma 3.10 and use the unipotent elements given by Corollary

3.22 to construct the b-chain and the d-chain of decorated flags. Without loss of generality, we may

assume that the leftmost triangle is of the following shape:

B0

A
0

B
1

B8

Then we can set A0 = U− and A
0 = CU+ with C :=

∏Ã
9=1 �

U∨
9

( 90)
. Then by Corollary 3.22 we get

B
1 = 4−8 (?) B+ with ? =

∏
9≠8 �

−C 98

(
9
0)

�
(80)

�
(81)

. Then the compatibility condition requires that the decorated flag

A
1 is given by 4−8 (?)AU+ with A := C (CU8 ?)−U

∨
8 as a maximal torus element.

The rest proceeds similar to the proof of Lemma 3.10, with one slight caveat: when the triangles

switch orientation (between upward pointing and downward pointing), we need to move the whole

configuration by not just a unipotent element but a product of a unipotent element and a maximal

torus element so that we may continue to use Corollary 3.22. For example, suppose that the second

triangle looks like the picture on the left below. Then we need to move the whole configuration by

A−14−8 (−?).

CU+ 4−8 (?)AU+

U− B1

B8

B 9

 

move the whole

configuration

by A−14−8 (−?)

 

A−14−8 (−?)CU+ U+

U−A A−14−8 (−?)B1

B8

B 9

In the end we will get a b-chain and a d-chain of compatible decorated flags, with their initial flags and

terminal flags in general position. Then to get a point in Conf13 (Asc), we simply forget the decorations

everywhere except A
0 and A=. �

Definition 3.24. We call the functions �0 the cluster K2 coordinates associated to the seed (string

diagram/triangulation) on Conf13 (Asc).
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Because the framed double Bott–Samelson cell Conf13

(
A

fr
sc

)
has compatible decorated flags around

the perimeter, it can be seen as the subset of Conf13 (Asc) with all cluster K2 coordinates associated to

open strings set to 1. It then follows that the cluster K2 coordinates associated to closed strings restrict

to a set of coordinates on Conf13

(
A

fr
sc

)
, which we call the cluster K2 coordinates on Conf13

(
A

fr
sc

)
associated to the seed (string diagram/triangulation).

In order to justify the name ‘cluster K2 coordinates’, we need to show that they actually transform as

cluster K2 coordinates.

Proposition 3.25.

(1) If 8 ≠ 9 , then

8

− 9
�2 �3

�0 �1

←→
8

− 9
�2 �3

�0 �1

On the other hand, if we interchange two neighbouring nodes of opposite signs on the same level,
we get

−8 88th level
�0 �1 �2

9 th level
� 9

←→
8 −88th level

�0
�′
1 �2

9 th level
� 9

where

�′1 =
1

�1

(
�0�2 +

∏
9≠8

�
−C 98

9

)
.

(2) If we perform a braid move to the string diagram, depending on whether it is of Dynkin type A1×A1,
A2, B2 or G2, the cluster Poisson coordinates transform according to the sequences of mutations
described in Proposition 3.7 (we will only depict the case where a braid move takes place among
nodes labelled by simple roots; the cases where they are labelled by opposite simple roots are
completely analogous).
◦ C8 9C 98 = 0:

8

9
�2 �3

�0 �1

←→
8

9
�2 �3

�0 �1

◦ C8 9C 98 = −1:

8 8

9

�0 �1 �2

�3 �4

←→
9 9

8

�3 �′
1

�4

�0 �2
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where

�′1 =
1

�1

(�0�4 + �2�3) .

◦ C8 9 = −2 and C 98 = −1:

8 8

9 9
�4 �1 � 5

�2 �0 �3

←→
8 8

9 9
�4 �′

1
� 5

�2 �′0 �3

where

�′0 =
�0� 5

�1

�̃0, and �′1 =
�2� 5

�1

�̃1

and �̃0 and �̃1 are the polynomials in Equation (3.18) with the substitution -: =
∏

; �
n:;
;

where
n is the exchange matrix associated to the seed on the left.

◦ C8 9 = −3 and C 98 = −1:

8 8 8

9 9 9
�6 �2 �3 �ℎ

�4 �0 �1 � 5

←→
8 8 8

9 9 9
�6 �′2 �′

3
�ℎ

�4 �′0 �′
1 � 5

where

�′0 =
�0�ℎ

�3

�̃0 �′1 =
�1�ℎ

�3

�̃1 �′2 =
�6�ℎ

�3

�̃2 �′3 =
�2�

2
ℎ

�−2
3

�̃3

and �̃0, �̃1 , �̃2 , �̃3 are the polynomials in Equation (3.19) with the substitution -: =
∏

; �
n:;
;

where n is the exchange matrix associated to the seed on the left.

The coordinate transformations in the last two cases are written in the form of the factorisation

formula (A.16).

Proof.

(1) The case where 8 ≠ 9 is clear from the definition of cluster K2 coordinates. For the other case, we

can use Corollary 3.22 to recover the local configuration of decorated flags.

4−8
©«
−

∏
9≠8 �

−C 98

9

�0�1

ª®¬
�
U∨
8

0

∏
9≠8

�
U∨
9

9
U+

�
U∨
8

1

∏
9≠8

�
U∨
9

9
U+

U− U−�
U∨
8

2

∏
9≠8

�
U∨
9

9
48

©«
−

∏
9≠8 �

−C 98

9

�1�2

ª®¬
�
−U∨

8

1

∏
9≠8

�
−U∨

9

9

B8

B8
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By using the Lie group identity 48 (@)C = C48 (C
−U8@), we can simplify the bottom right decorated

flag as U−

(
�2

�1

)U∨
8

48

(
− �1

�2

)
. Now we want to flip the diagonal and compute Δl8

along this new

diagonal. Note that

(
�2

�1

)U∨
8

48

(
−
�1

�2

)
4−8

©«
−

∏
9≠8 �

−C 98

9

�0�1

ª®¬
�
U∨
8

0

∏
9≠8

�
U∨
9

9

=

(
�2

�1

)U∨
8

4−8 (· · · )
©«
1 +

∏
9≠8 �

−C 98

9

�0�2

ª®¬
U∨
8

48 (· · · )�
U∨
8

0

∏
9≠8

�
U∨
9

9

= 4−8 (· · · )

(
1

�1

(
�0�2 +

∏
9≠8

�
−C 98

9

))U∨
8 ∏

9≠8

�
U∨
9

9
48 (· · · ).

Therefore, it follows that �′
1
= 1

�1

(
�0�2 +

∏
9≠8 �

−C 98

9

)
.

(2) The case C8 9 = C 98 = 0 is clear from the definition of cluster K2 coordinates. For the case

C8 9 = C 98 = −1, we again use the computation in the proof of Proposition 3.21 to recover the local

configuration of decorated flags from the string diagram on the left as follows (to save space we

write the diagram sideways):

U+U−�
U∨
8

0 �
U∨
9

3

∏
:≠8, 9

�
U∨
:

:

U−�
U∨
8

1
�
U∨
9

3

∏
:≠8, 9

�
U∨
:

:
48

©«
−
�3

∏
:≠8, 9 �

−C:8
:

�0�1

ª®¬

U−�
U∨
8

1
�
U∨
9

4

∏
:≠8, 9

�
U∨
:

:
4 9

©«
−
�1

∏
:≠8, 9 �

−C: 9

:

�3�4

ª®¬
48

©«
−
�3

∏
:≠8, 9 �

−C:8
:

�0�1

ª®¬

U−�
U∨
8

2 �
U∨
9

4

∏
:≠8, 9

�
U∨
:

:
48

©«
−
�4

∏
:≠8, 9 �

−C8:
:

�1�2

ª®¬
4 9

©«
−
�1

∏
:≠8, 9 �

−C: 9

:

�3�4

ª®¬
48

©«
−
�3

∏
:≠8, 9 �

−C:8
:

�0�1

ª®¬

B8

B 9

B8

Similarly, from the string diagram on the right we have the following configuration of

decorated flags:
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U+U−�
U∨
8

0 �
U∨
9

3

∏
:≠8, 9

�
U∨
:

:

U−�
U∨
8

0 �′
U∨
9

1

∏
:≠8, 9

�
U∨
:

:
4 9

©«
−
�0

∏
:≠8, 9 �

−C: 9

:

�′
1
�3

ª®¬

U−�
U∨
8

2 �′
U∨
9

1

∏
:≠8, 9

�
U∨
:

:
48

©«
−
�′
1

∏
:≠8, 9 �

−C:8
:

�0�2

ª®¬
4 9

©«
−
�0

∏
:≠8, 9 �

−C: 9

:

�′
1
�3

ª®¬

U−�
U∨
8

2 �
U∨
9

4

∏
:≠8, 9

�
U∨
:

:
4 9

©«
−
�2

∏
:≠8, 9 �

−C: 9

:

�′
1
�4

ª®¬
48

©«
−
�′
1

∏
:≠8, 9 �

−C:8
:

�0�2

ª®¬
4 9

©«
−
�0

∏
:≠8, 9 �

−C: 9

:

�′
1
�3

ª®¬

B 9

B8

B 9

By the uniqueness part of Lemma 2.11, it suffices to show that the last decorated flags from the two

diagrams are equal, which boils down to showing that

48

(
−
�4

∏
:≠8, 9 �

−C:8

:

�1�2

)
4 9

(
−
�1

∏
:≠8, 9 �

−C: 9

:

�3�4

)
48

(
−
�3

∏
:≠8, 9 �

−C:8

:

�0�1

)

=4 9

(
−
�2

∏
:≠8, 9 �

−C: 9

:

�′
1
�4

)
48

(
−
�′
1

∏
:≠8, 9 �

−C:8

:

�0�2

)
4 9

(
−
�0

∏
:≠8, 9 �

−C: 9

:

�′
1
�3

)
.

But this is precisely the Lie group identity

48 (@1) 4 9 (@2) 48 (@3) = 4 9

(
@2@3

@1 + @3

)
48 (@1 + @3) 4 9

(
@1@2

@1 + @3

)
.

The proof for the other two cases can be found in [GS19, Section 7.6] here �

From the proof of case 1 above we also deduce the following identity, which is useful in the next

section.

Corollary 3.26. Suppose that G = Gsc and A
: B8 // A:+1 and A;

B8 // A;+1 are compatible pairs
that are part of a decorated double Bott–Samelson cell. Then

Δ 9 (; + 1, :) Δ 8 (;, : + 1) − Δ 8 (;, :) Δ 8 (; + 1, : + 1) =
∏
9≠8

Δ 9 (∗, ∗)
−C 98 ,

where (∗, ∗) means either of (;, :), (;, : + 1), (; + 1, :) and (; + 1, : + 1).
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Proof. First we observe that both sides of the equation are regular functions on the decorated double

Bott–Samelson cell and therefore it suffices to show the equality with four extra open conditions:

A
:

A
:+1

A; A;+1

B8

B8

But then this reduces to the identity

�′1�1 − �0�2 =
∏
9≠8

�
−C 98

9

in case 1 of the last proposition. �

Lastly, let us investigate how the cluster K2 coordinates transform under the transposition morphism.

Proposition 3.27. Let (�0) and
(
�′0

)
be the cluster K2 coordinate charts associated to two correspond-

ing string diagrams under transposition. Then under the transposition morphism C : Conf13 (Asc) →

Conf3
◦

1◦ (Aad), C∗�′0 = �0.

Proof. It follows from Lemma 2.6. �

3.4. Coordinate Rings as Upper Cluster Algebras

Decorated Bott–Samelson cells are affine. In this section we show that their coordinate rings are

O

(
Conf13 (Asc)

)
� up

(
�

1
3

)
and O

(
Conf13 (Aad)

)
� up

(
�

1
3

)
,

where up
(
�

1
3

)
is the upper cluster algebra arising from the family of mutation equivalent seeds

associated to (1, 3) and up
(
�

1
3

)
is the corresponding cluster Poisson algebra.

Let us start with the first claim. We simplify the notation and write O
(
Conf13 (Asc)

)
as O1

3 .

Lemma 3.28. The ring O
1
3 is a unique factorisation domain (UFD).

Proof. The proof of Theorem 2.30 shows that O1
3 is the nonvanishing locus of some function on T×A=,

which is also the nonvanishing locus of some function on A# for # = = + dim T. Note that O(A# ) is a

polynomial ring. The ring O
1
3 is a localisation of O(A# ) and therefore is a UFD. �

Lemma 3.29. The vanishing locus {�2 = 0} in Conf13 (Asc) associated with any closed string c is of
codimension 1.

Proof. Fix a triangulation containing c as a closed string. Suppose that c is on the ith level. We assign

a Tits codistance B8 to a diagonal in the triangulation if this diagonal intersects c and assign a Tits

codistance e otherwise. Because c is a closed string, the leftmost and the rightmost diagonals (the two

slanted sides of the trapezoid) must be assigned with Tits codistance e. Therefore, this configuration

describes a subset ,2 of Conf13 (Asc). We claim that ,2 is of codimension 1 within Conf13 (Asc) and

,2 ⊂ {�2 = 0}. Note that the lemma follows from this claim.

Let us compute the dimension of ,2 . Without loss of generality, we can fix the leftmost pair of

flags A
0

B0 for any point in ,2 to be U+ B , which exhausts the diagonal G-action on the
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configuration of flags. By Proposition A.8, we see that for most triangles in the triangulation, under the

Tits codistance assignment, each of them contributes a G< factor of,2; the only exceptions are the two

triangles containing the endpoints of c and they contribute a {∗}-factor and a A1-factor, respectively.

In the end, there is also another decoration over the last flag of the bottom chain, which gives rise to a

dim T-factor of ,2 . In conclusion, this shows that

,2 � G
; (1)+; (3)−2
< × A1 × T,

where ; (1) and ; (3) are the lengths of the positive braids b and d. On the other hand, we recall from

Theorem 2.30 that

dim Conf13 (Asc) = dim T + ; (1) + ; (3).

Therefore, ,2 is indeed of codimension 1.

To see that ,2 ⊂ {�2 = 0}, consider the triangle containing the left endpoint of the closed string c.

Suppose that the triangle is of the following form:

A 9 A 9+1

A
:

8

B8

B8

8th level
2

By using the G-action, we may assume without loss of generality that A
: = CU+ and A 9 = U−. Then

A 9+1 must be U−B8 . Therefore,

�2 = Δl8

(
B8

)
= 0.

This shows that ,2 ⊂ {�2 = 0}. The case with an upside-down triangle can be proved in a similar

way. �

Fix a triangulation for Conf13 (Asc). Take the very first triangle on the left and consider the corre-

sponding node in the string diagram; let a be the closed string on the right of this node and suppose that

a is on the ith level. Its associated cluster variable �0 is a regular function on Conf13 (Asc).

A0 A1

A
0

B8
· · ·

· · ·

88th level
0

9 th level

A
0

A
1

A0

B8
· · ·

· · ·

−88th level
0

9 th level

Lemma 3.30. The function �0 is an irreducible element of O1
3 .

Proof. Let us prove the case of the picture on the right; the case of the picture on the left is completely

analogous. Without loss of generality, we set A
0 = CU+ and A0 = U−. From Corollary 3.22 we know that

if we impose the general position condition B
1

B− , then

B
1 = 4−8

(∏
9≠8 C

−C 98l 9

Cl8 �0

)
B+ = 48

(
Cl8 �0∏
9≠8 C

−C 98l 9

)
B8B+.
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On the other hand, we know from Lemma A.6 that the argument
Cl8 �0∏

9≠8 C
−C 98 l 9

parametrises the moduli

space of all of the flags that are of Tits distance B8 away from B+, which is isomorphic to A1. Because

Cl8 and Cl 9 (the frozen cluster K2 variables) are never zero on Conf13 (Asc) by definition, it follows that

�0 also parametrises the A1 moduli space of flags. Recall from the proof of Theorem 2.30 that such a

parameter is precisely one of the generators of the polynomial ring O(A# ). Hence, �0 is a unit or an

irreducible element in O
1
3 . However, �0 cannot be a unit, because by Lemma 3.29, its vanishing locus

{�0 = 0} is nonempty and of codimension 1. Therefore, �0 must be an irreducible element. �

Next we will use an induction to prove that all nonfrozen cluster K2 coordinates associated to the fixed

triangulation are irreducible elements of O1
3 . Because triangles in a triangulation possess a well-defined

ordering from left to right, by associating each closed string c to the triangle corresponding to its left

node, we get an ordering < on the closed strings. We will perform an induction according to this order.

Let c be a closed string on the jth level. Let 1′ be the positive braid that is the remaining part of the

word for b after deleting all of the letters occurring before the triangle corresponding to the left node of

the closed string c and let 3 ′ be the positive braid that is the remaining part of the word for d after deleting

all of the letters occurring before the triangle corresponding to the left node of the closed string c.

A
0 · · · A

: · · · A
<

A0 · · · A; A;+1 · · · A=B 9

9
2

3 ′

1′

Lemma 3.31. Let S be the set of strings that crosses the diagonal A; A
: . Then as algebras,

O
1
3

[
1∏

4<2 �4

]
� C

[
�±4

]
4<2

⊗
C

[
�±

5

]
5 ∈(

O
1′

3′ .

Proof. The statement of the proposition is equivalent to the geometric statement that the distinguished

open subset (nonvanishing locus) *∏
4<2 �4

of Conf13 (Asc) is biregularly isomorphic to a fibre product

)<2 ×
)(

Conf1
′

3′ (Asc) where )<2 is a torus with coordinates {�4}4<2 and )( is a torus with coordinates{
� 5

}
5 ∈(

. Note that given a point in*∏
4<2 �4

we automatically get a point in )<2 using the coordinates

{�4}4<2 and a point in Conf1
′

3′ (Asc) by taking the decorated flags in the truncated part corresponding to

the shape (1′, 3 ′) and they are mapped to the same point in the torus )( because they both have
{
� 5

}
as

nonzero coordinate functions. On the other hand, given a point in the fibre product )<2 ×
)(

Conf1
′

3′ (Asc)

we can recover a point in *∏
4<2 �4

by building some extra decorated flags upon the configuration in

Conf1
′

3′ (Asc) using the nonzero functions {�4}4<2 . These two morphisms are obviously regular and

inverses of each other; therefore, *∏
4<2 �4

� )<2 ×
)(

Conf1
′

3′ (Asc) and the original statement follows

immediately. �

Now we are ready to give the proof of the general statement.

Proposition 3.32. �2 are irreducible elements in O
1
3 for all closed strings c.
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Proof. We will do an induction based on the order < on closed strings. Lemma 3.30 takes care of the

base case. Now inductively suppose that �4 are irreducible for all closed strings 4 < 2. By Lemma 3.30

we know that �2 is an irreducible element of O1′

3′ . Then �2 = 1 ⊗ �2 is also an irreducible element

in C
[
�±4

]
4<2

⊗
C

[
�±

5

]
5 ∈(

O
1′

3′ � O
1
3

[
1∏

4<2 �4

]
(which is a UFD as well because it is a localisation of a

UFD). This means that the factorisation of �2 in O
1
3 must be of the form

�2 = �
∏
4<2

�=4
4 (3.33)

for some irreducible element F. Now to prove that �2 is indeed irreducible in O
1
3 , it suffices to prove

that =4 = 0 for all 4 < 2.

For each 4 < 2, consider the subset ,4 associated with the closed string e as constructed in the

proof of Lemma 3.29. We claim that ,4 ⊂ {�4 = 0 but �2 ≠ 0}. If the left endpoint of c lies on the

right of the right endpoint of e, then the claim is obvious because any diagonal crossing c is assigned

with a general position condition. On the other hand, if the left endpoint of c lies on the left of the right

endpoint of e, we consider the triangle containing the left endpoint of e. Note that in this case, the level

of c must be distinct from the level of e. By symmetry, let us assume that it looks like the following:

A; A;+1

A
:

9
B8 B8

B 9

9 th level
2

8th level
4

By using the G-action, we can fix A
: = B8CU+ for some C ∈ T, A; = U− and A;+1 = U−B 94− 9 (@) for some

@ ≠ 0. Because 8 ≠ 9 , we have

�2 = Δl 9

(
B 94− 9 B8CU+

)
= Δl 9

(
@
U∨
9 (B8 (C)) B8

)
≠ 0.

This shows that ,4 ⊂ {�4 = 0 but �2 ≠ 0}, which implies that {�4 = 0 but �2 ≠ 0} is nonempty.

Therefore, we can conclude that =4 = 0 in (3.33). �

Now because �2 associated to closed strings are all irreducible elements in O
1
3 , their vanishing loci

�2 := {�2 = 0} are all irreducible divisors. Furthermore, we deduce the following corollary from the

proposition above.

Corollary 3.34. For any two distinct closed strings c and e, codim (�2 ∩ �4) ≥ 2 in Conf13 (Asc) and
ord�2

�4 = 0.

Proof. First note that the codimension statement follows from the order statement. This is because

ord�2
�4 = 0 implies that �4 is invertible along �2 and hence �2 \ �4 is open in �2; but then because

�2 and �4 are both irreducible, this is equivalent to codim (�2 ∩ �4) ≥ 2.

To compute the order of �4 along �2 , note that ord�2
�4 ≥ 0 because �4 is a regular function on

Conf13 (Asc). On the other hand, ord�2
�4 > 0 implies that �4 is a multiple of �2 , which is impossible,

as we saw from the proof of last proposition. �

Our strategy to show that O1
3 � up

(
�

1
3

)
is analogous to Berenstein, Fomin and Zelevinsky’s proof

that the coordinate ring of double Bruhat cells is an upper cluster algebra, which relies on the following

theorem.

Theorem 3.35 ([BFZ05], Corollary 1.9). Fix an initial seed s0 and let A0 := {�0} be the corresponding
initial K2 cluster. Let A2 be the K2 cluster obtained from A via a single mutation in the direction of c.
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If the restriction of the exchange matrix n;s0

��
� uf×� is full-ranked, then upper cluster algebra up(A) is

equal to the intersection

C
[
A±0

]
∩

⋂
2 nonfrozen

C
[
A±2

]
⊂ Frac (C [A0]) .

In geometric terms, the full-rank condition on n;s0

��
� uf×� is equivalent to saying that the canonical

map ? : )�;s0
→ )

�uf ;suf
0

is surjective (see Appendix A.2 for definition) and the intersection of

Laurent polynomial rings is precisely the coordinate ring of the union of the corresponding seed tori

Spec C
[
A±

0

]
∪

⋃
2 Spec C

[
A±2

]
.

Going back to the decorated double Bott–Samelson cell Conf13 (Asc), because we are free to choose

any seed in the mutation equivalent family as the initial seed, for the sake of simplicity let us fix our

initial seed to be one that is associated to a triangulation in which all triangles of the form
• •

•

come before triangles of the form

• •

•
; that is, a triangulation that looks like the following:

A0 A1 A2 · · · A=

A
0 · · · A

<−2
A
<−1 A

<

Note that any closed string c in the corresponding string diagram lies in a part that is of one of the

following three forms:

A
0

A:−1 · · ·A: A; A;+1B8 B8

8 8
2

A
0

A:−1 A:

· · ·

· · · A=

A
;

A
;+1

8 −8

B8

B8

2

(3.36)

A
0

A:−1 · · ·A: A; A;+1

B8 B8

−8 −8
2
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The following lemma is essentially equivalent to Zelevinsky’s result on double Bruhat cells [Zel00,

Lemma 3.1 (4)]. But because the decorated flag language we use is significantly different from what is

in his proof, we rephrase his proofs below for the purpose of completeness.

Lemma 3.37. For a triangulation chosen as above and any closed string c in the corresponding string

diagram, the once-mutated cluster K2 variable �′2 (as an element in Frac
(
O

1
3

)
a priori) belongs to O

1
3

and Conf13 (Asc) contains the seed torus Spec C
[
A±2

]
.

Proof. Let us consider the top case first.

A
0

A:−1 · · ·A: A; A;+1B8 B8

8 88th level
0 2 1

9 th level
; 9 A 9

ℎth level
ℎ

Let S denote the set of indices j whose corresponding simple reflections B 9 occur between the two B8 .

Let ; 9 and A 9 denote the strings on level j going across the triangles corresponding to these two B8 . Then

the cluster K2 mutation formula says that

�′2 =
1

�2

©«
�0

∏
9∈(

�
−C 98

A 9 + �1

∏
9∈(

�
−C 98

; 9

ª®¬
as a rational function on Conf13 (Asc). Note that �′2 is obviously regular outside of the divisor �2 .

Along the divisor �2 we need to do a small trick. Recall from Corollary 3.34 that

ord�2
Δlℎ

(
A: ,A

0
)
= 0

for all ℎ ≠ 8. Let us multiply both sides of the cluster K2 mutation formula by the product
∏

ℎ∉(∪{8 } �
−Cℎ8

ℎ
.

Now fix a decorated flag A
−1 such that A

−1 B8 // A0 is a compatible pair and A:−1 A
−1 are in

general position (not necessarily compatible). Such a decorated flag exists because the decorated double

Bott–Samelson cell associated to the triangle

A
−1

A
0

A:−1

B8

is not empty. Then Corollary 3.26

implies that

�′2

∏
ℎ∉(∪{8 }

�
−Cℎ8

ℎ
=

1

�2

(�0 (Δ 8 (; + 1,−1) Δ 8 (;, 0) − Δ 8 (;,−1) Δ 8 (; + 1, 0))

+�1 (Δ 8 (:,−1) Δ 8 (: − 1, 0) − Δ 8 (: − 1,−1) Δ 8 (:, 0)))
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=
1

�2

(�0Δ 8 (; + 1,−1) �2 − �0Δ 8 (;,−1) �1

+�1Δ 8 (:,−1) �0 − �1Δ 8 (: − 1,−1) �2)

=�0Δ 8 (; + 1,−1) − �1Δ 8 (: − 1,−1) .

The last equality was due to the fact that Δ 8 (;,−1) = Δ 8 (:,−1) because there is no more B8 between

the two B8 . Therefore, we conclude that6

�′2 =
�0Δ 8 (; + 1,−1) − �1Δ 8 (: − 1,−1)∏

ℎ∉(∪{8 } �
−Cℎ8

ℎ

. (3.38)

Note that the order of vanishing of the denominator
∏

ℎ∉(∪{8 } �
−Cℎ8

ℎ
is zero. Therefore, �′2 is a regular

function by the standard codimension 2 argument.

To show that Conf13 (Asc) contains Spec C
[
A±2

]
, it suffices to show that we can construct a configu-

ration in Conf13 (Asc) for any assignment of nonzero numbers to
{
�′2

}
∪{�0}0≠2 . When the assignment

of numbers satisfies

�0

∏
9∈(

�
−C 98

A 9 + �1

∏
9∈(

�
−C 98

; 9
≠ 0,

we can reproduce �2 from these numbers and we get a unique point in the complement of the divisor �2 .

When the above nonvanishing condition is not satisfied, �2 = 0 and we need to do a small trick

similar to the one we did in proving that �′2 is regular. First we observe that by using the cluster K2

coordinates on the left of �2 (including the ones associated to the left open strings and closed strings

that are < 2) we can build a unique configuration

A
0

A0 · · · A:−1

.

Next we fix a decorated flag A
−1 the same way as before. Let us now consider the cluster K2 coordinate

chart associated to the following triangulation:

A
−1

A:−1 A: · · · A;B8

(3.39)

We claim that the nonzero values of
{
�′2

}
∪ {�0}0≠2 can produce nonzero cluster K2 coordinates

associated to the above triangulation.

First let us apply Corollary 3.26 to A
−1 B8 // A0 and A:−1

B8 // A: ; the assumption �2 =

Δ 8 (:, 0) = 0 reduces the identity in Corollary 3.26 to

Δ 8 (:,−1) �0 =
∏
9≠8

�
−C 98

; 9
.

Because both �0 and �; 9 are assumed to be nonzero, we can solve forΔ 8 (:,−1) using the above identity

and the result is still nonzero. This shows A: A
−1 and produces nonzero values for the cluster K2

coordinates along this diagonal.

6It is worth mentioning that �′2 is independent of the choice of the decorated flag A
−1.
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Let p be an integer with : ≤ ? ≤ ;. By applying Proposition 3.21 to the triangle

A
−1

A
0

A?

B8

,

we know that for any 9 ≠ 8, Δ 9 (?,−1) = Δ 9 (?, 0) ≠ 0. This combined with the fact that Δ 8 (?,−1) =

Δ 8 (:,−1) ≠ 0 proves that A? A
−1 and gives nonzero values for all cluster K2 coordinates along

these diagonals. Using these nonzero cluster K2 coordinates in the triangulation (3.39), we can uniquely

construct decorated flags A: ,A:+1, . . . ,A; .

Next we rewrite Equation (3.38) as

Δ 8 (; + 1,−1) =

�′2

∏
ℎ∉(∪{8 }

�
−Cℎ8

ℎ
+ �1Δ 8 (: − 1,−1)

�0

.

Note that everything on the right is given already (including Δ 8 (: − 1,−1) from the choice of A
−1).

Therefore, we can compute Δ 8 (; + 1,−1) using this equation. Though this equation does not guarantee

that Δ 8 (; + 1,−1) is nonzero, it is nevertheless a number in A1 because the denominator on the

right-hand side is nonzero. Recall from Lemma 3.30 that Δ 8 (; + 1,−1) parametrises all of the Borel

subgroups that are of Tits distance B8 away from A;; therefore, it can be used to uniquely determine A;+1.

Furthermore, this decorated flag A;+1 must satisfy Δ 9 (; + 1, 0) = Δ 9 (; + 1,−1) = �A 9 ≠ 0 for all 9 ≠ 8

and Δ 8 ( 9 + 1, 0) = �1 ≠ 0. Therefore, we know that A;+1 A
0 .

Once we have the pair of decorated flags A;+1 A
0 , we can then use the cluster K2 coordinates

on the right of �2 to build the remaining decorated flags

A
0 · · · A

<

A;+1 · · · A=

. This finishes the

reconstruction of the configuration from the nonzero numerical assignments to the cluster K2 variables{
�′2

}
∪ {�0}0≠2 .

Next let us consider the middle case.

A
0

A:−1 A:

· · ·

· · · A=

A
;

A
;+1

8 −8

B8

B8

8th level
0 2 1

ℎth level
;ℎ

6th level
<6

9 th level
A 9

Let (− denote the set of indices h whose corresponding simple reflections Bℎ occur after the last B8
along the bottom edge of the trapezoid and let (+ denote the set of indices j whose corresponding simple

reflections B 9 occur before the first B8 along the top edge of the trapezoid. Let ;ℎ denote the string on level

ℎ ∈ (−, going across the triangle corresponding to the left B8; let A 9 denote the string on level 9 ∈ (+,

going across the triangle corresponding to the right B8; let <6 denote the string on level 6 ∈ (+ ∩ (−,

going across the diagonal separating the upward pointing and downward pointing triangles. Then the
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cluster K2 mutation formula says that

�′2 =
1

�2

(
�0�1

∏
6∈(+∩(−

�
−C68

<6
+

(∏
ℎ∈(−

�
−Cℎ8

;ℎ

) (∏
9∈(+

�
−C 98

A 9

) (∏
6∉(−∪(+∪{8 }

�
−C68

<6

))
.

(3.40)

Note that �′2 is obviously regular outside of the divisor �2 .

Along the divisor �2 we again need to do a small trick. First note that by Corollary 3.34,

ord�2

(∏
6∉((+∩(−)∪{8 }

�
−C68

<6

)
= ord�2

((∏
ℎ∉(−∪{8 }

�
−Cℎ8

;ℎ

) (∏
9∈(−\(+

�
−C 98

A 9

))
= 0.

Let us call this product M. We multiply both sides of Equation (3.40) by M and then try to do some sim-

plification. Fix a decorated flag A
−1 such that A

−1 B8 // A0 is a compatible pair and A:−1 A
−1

(not necessarily compatible) and fix a decorated flag A=+1 such that A=

B8 // A=+1 is a compatible pair

and A
;+1

A=+1 are in general position (not necessarily compatible). Then by Corollary 3.26 we

have

"
∏

6∈(+∩(−

�
−C68

<6
= Δ 8 (= + 1,−1) Δ 8 (=, 0) − Δ 8 (=,−1) Δ 8 (= + 1, 0) ,

"

( ∏
ℎ∈(−

�
−Cℎ8

;ℎ

) ©«
∏
9∈(+

�
−C 98

A 9

ª®¬
©«

∏
6∉(−∪(+∪{8 }

�
−C68

<6

ª®¬
="

( ∏
ℎ∈(−

�
−Cℎ8

;ℎ

) ©«
∏

9∉((−\(+)∪{8 }

�
−C 98

A 9

ª®¬
=
©«

∏
ℎ∉(−∪{8 }

�
−Cℎ8

;ℎ

ª®¬
©«

∏
9∈(−\(+

�
−C 98

A 9

ª®¬
( ∏
ℎ∈(−

�
−Cℎ8

;ℎ

) ©«
∏

9∉((−\(+)∪{8 }

�
−C 98

A 9

ª®¬
=

(∏
ℎ≠8

Δℎ (:, 0)
−Cℎ8

) (∏
9≠8

Δ 9 (=, ;)
−C 98

)

= (Δ 8 (:,−1) Δ 8 (: − 1, 0) − Δ 8 (: − 1,−1) Δ 8 (:, 0))

(Δ 8 (= + 1, ;) Δ 8 (=, ; + 1) − Δ 8 (=, ;) Δ 8 (= + 1, ; + 1)) .

Plugging these into M times Equation (3.40) and remembering

Δ 8 (:,−1) =Δ 8 (=,−1) ,

Δ 8 (= + 1, 0) =Δ 8 (= + 1, ;) ,

Δ 8 (:, 0) = Δ 8 (=, 0) =Δ 8 (=, ;) = �2 ,

we get that

"�′2 =�0�1Δ 8 (= + 1,−1) − �1Δ 8 (: − 1,−1) Δ 8 (= + 1, ;)

− �0Δ 8 (:,−1) Δ 8 (= + 1, ; + 1) + �2Δ 8 (: − 1,−1) Δ 8 (= + 1, ; + 1)

= det
©«

�0 Δ 8 (= + 1, ;) �2

Δ 8 (: − 1,−1) Δ 8 (= + 1,−1) Δ 8 (:,−1)

0 Δ 8 (= + 1, ; + 1) �1

ª®¬
.
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Note that along the divisor �2 , the upper right-hand corner of the last matrix vanishes. Therefore, we

can conclude that along the divisor �2 ,

�′2 =

det
©«

�0 Δ 8 (= + 1, ;) 0

Δ 8 (: − 1,−1) Δ 8 (= + 1,−1) Δ 8 (:,−1)

0 Δ 8 (= + 1, ; + 1) �1

ª®¬∏
6∉((+∩(−)∪{8 }

�
−C68

<6

, (3.41)

is a regular function as well.

To show that Conf13 (Asc) contains SpecC
[
A±2

]
, it suffices to show that we can construct a configura-

tion in Conf13 (Asc) for any assignment of nonzero numbers to
{
�′2

}
∪ {�0}0≠2 . Most of the arguments

are similar to the top case, so we will be brief. There is nothing to show when

�0�1

∏
6∈(+∩(−

�
−C68

<6
+

( ∏
ℎ∈(−

�
−Cℎ8

;ℎ

) ©«
∏
9∈(+

�
−C 98

A 9

ª®¬
©«

∏
6∉(−∪(+∪{8 }

�
−C68

<6

ª®¬
≠ 0

because we can already recover a nonzero value for �2 . When this nonvanishing condition fails,

�2 = 0 and we have to do a small trick again. In fact, we only need to focus on the parallelogram

A
0 · · · A

;+1

A:−1 · · · A=

because everything outside can be constructed from the given values of

cluster K2 variables as usual. Therefore, it suffices to show that starting from a given A
0

A:−1 we

can construct the rest of the decorated flags in the parallelogram based on the nonzero values of the

given cluster K2 variables.

With the decorated flag A
−1, we can find unique decorated flags A: ,A:+1, . . . ,A= using the K2 cluster

associated to the following triangle:

A
−1

A:−1 A: · · · A=B8

With the decorated flag A=+1, we can find unique decorated flags A
1,A2, . . . ,A; using the K2 cluster

associated to the following triangle:

A=+1

A
0

A
1 · · · A

;
B8

To determine the last decorated flag A
;+1, we need to compute Δ 8 (= + 1, ; + 1) using Equation (3.41);

note that the numerical value of everything else in that equation is already given and the coefficient of

Δ 8 (= + 1, ; + 1) is �0Δ 8 (:,−1), which is nonzero. Therefore, we get Δ 8 (= + 1, ; + 1) as an A1 number,

which, combined with A=+1 A
; , determines the decorated flag A

;+1 uniquely.

We will omit the proof for the bottom case because it is completely analogous to the top case. �
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Proposition 3.42. The union * := Spec C
[
A±

0

]
∪

⋃
2 Spec C

[
A±2

]
is of codimension at least 2 in

Conf13 (Asc).

Proof. Let *0 := Spec C
[
A±

0

]
and let *2 := Spec C

[
A±2

]
. Note that

Conf13 (Asc) \* =

( ⋃
2 unfrozen

�2

)
∩

(( ⋃
4 unfrozen

*4

)2)

=

( ⋃
2 unfrozen

�2

)
∩

( ⋂
4 unfrozen

(*4)
2

)

=
⋃

2 unfrozen

(
�2 ∩

( ⋂
4 unfrozen

(*4)
2

))

⊂
⋃

2 unfrozen

(�2 ∩ (*2)
2) .

From the proof of the Lemma 3.37 we see that �2 ∩*2 is a nonempty open subset of �2 . Because �2

is irreducible, �2 ∩ (*2)
2 must be at least codimension 1 inside �2 and hence at least codimension 2

inside Conf13 (Asc). �

To prove O1
3 � up

(
�

1
3

)
, we still need to verify the surjectivity condition on the canonical map p. We

will do so by realising the map ? : )�;s0
→ )

�uf ;suf
0

as a restriction of the composition Conf13 (Asc) →

Conf13 (Aad) → Conf13 (B).

Proposition 3.43. Consider the surjective map c : Conf13 (Asc) → Conf13 (Aad). For any closed
string c,

c∗ (-2) =
∏
0

�n20
0 ,

where n20 is the exchange matrix for the given seed.

Proof. Note that it suffices to prove this statement on one seed. Let us again use the seed as in

Lemma 3.37.

B0 B1 B2 · · · B=−1 A=

A
0

B
1 · · · B

<−2
B
<−1 B

<

Then the closed strings again come in three types, as described in (3.36). Let us first look at the top case.

A
0

B:−1 · · ·B: B; B;+1B8 B8

8 88th level
0 2 1

9 th level
; 9 A 9
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To work out the cluster Poisson coordinate -2 , we need to first compute the two Lusztig factorisation

coordinates at the two ends of the closed string c. Consider the triangle containing the left endpoint.

By acting by some D ∈ U+ we can move the chosen representative configuration into a configuration

with B:−1 = B− and A
0 = U+. Because the cluster K2 coordinates are invariant under the G-action, by

Corollary 3.22 we see that the unipotent element that moves B:−1 to B: is 48
©«
∏

9≠8 �
−C 98

; 9

�0�2

ª®¬
and hence

the Lusztig factorisation coordinate on the left is @ =

∏
9≠8 �

−C 98

; 9

�0�2
. By a similar argument, we get that the

Lusztig factorisation coordinate on the right is @′ =

∏
9≠8 �

−C 98
A 9

�1�2
. Therefore, we obtain

c∗ (-2) =
@′

@
=

�0

∏
9≠8 �

−C 98

A 9

�1

∏
9≠8 �

−C 98

; 9

=
∏
0

�n20
0 .

For the middle case, the Lusztig factorisation coordinate on the left can be computed the same as

above, which is @ =

∏
9≠8 �

−C 98

; 9

�0�2
.

A
0

B:−1 B:

· · ·

· · · A=

B
;

B
;+1

8 −8

B8

B8

8th level
0 2 1

9 th level
; 9 < 9 A 9

However, the Lusztig factorisation coordinate on the right is slightly more complicated to compute.

Recall from Corollary 3.22 that when triangles switch orientation, one also needs to move the whole

configuration by the maximal torus element C :=
∏Ã

9=1 A
U∨
9

< 9
. But then in the computation of cluster

Poisson coordinates on Conf13 (Aad), we do not allow maximal torus elements appearing in the middle;

therefore, we need to push this extra factor of t all the way to the right, resulting in an extra CU8 factor

(the same technique was also used in the proof of Proposition 3.15). Therefore, the Lusztig factorisation

coordinate p is

? =

∏
9≠8 �

−C 98

A 9

�1�2

CU8 =

∏
9≠8 �

−C 98

A 9

�1�2

�2
2∏

9≠8 �
−C 98

< 9

=
�2

∏
9≠8 �

−C 98

A 9

�1

∏
9≠8 �

−C 98

< 9

.

Now by the definition of cluster Poisson coordinates, we find that

c∗ (-2) =
1

?@
=

�0�1

∏
9≠8 �

−C 98

< 9(∏
9≠8 �

−C 98

; 9

) (∏
9≠8 �

−C 98

A 9

) =
∏
0

�n20
0 .

The bottom case can be either computed analogous to the top case or obtained from the top case

using the transposition morphism as an intertwiner. �
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Proposition 3.44. Consider the seed as in Lemma 3.37. Let < 9 be the string that passes through the

diagonal A= A
0 . For an open string f on the ith level next to a node n, denote the open strings

on the same side as 5 and on the 9 th level with 9 ≠ 8 by 0 9 and denote the string on the other side of f
by b. Then we have

c∗
(
- 5

)
=




∏
9≠8 �

−C 98
0 9

�1� 5
if

5
8

1
or

1
−8

5
;

�1

∏
9≠8 �

−C 98
<9

� 5

∏
9≠8 �

−C 98
0 9

if
5
−8

1
or

1
8

5
.

If f is a string on the ith level that is open on both ends (which typically happens for 8 > A), then we
have

c∗
(
- 5

)
=

Ã∏
9=1

�
C 98

< 9
.

In particular, these formulas are all in the form

c∗
(
- 5

)
=

( ∏
2 closed

�
n 5 2
2

)
·
(
Laurent monomial in �6 for open string 6

)
.

Proof. The cases where f is on the left side of the string diagram with a node attached can be obtained

in the same way as in the proof of the last proposition. The cases where f is on the right side of the

string diagram with a node attached can then be obtained from the cases on the left via the transposition

morphism. It remains to show the case where f is open on both ends, for which

c∗
(
- 5

)
= CU8 = C

∑Ã
9=1 C 98l 9 =

Ã∏
9=1

�
C 98

< 9
. �

Our chosen triangulation determines a cluster Poisson seed torus)� on Conf13 (Aad) and a cluster K2

seed torus )� on Conf13 (Asc). Because these two seed tori are both cut out by the same general position

conditions on the underlying undecorated flags, the surjective map c : Conf13 (Asc) → Conf13 (Aad)

restricts to a surjective map c : )� → )� .

Moreover, the formulas from Proposition 3.43 and Proposition 3.44 showed that c fits in the following

commutative diagram (where the maps 4, 5 , ? and q are defined in Appendix A.2):

)�uf
4 //

5
!!❈

❈
❈
❈
❈
❈
❈
❈

)�

c

��

?

!!❈
❈
❈
❈
❈
❈
❈
❈

)� @
// )�uf

In particular, this diagram is just a restriction of the maps in Diagram (2.25) to some open subsets

corresponding to our choice of triangulation.

Because ? = @ ◦c and both q and c are surjective, we know that p is surjective as well. By combining

the surjectivity of p and the codimension 2 condition (Proposition 3.42), we finally prove our first claim

at the beginning of the section.
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Theorem 3.45. O1
3 � up

(
�

1
3

)
.

Let us look at the other claim at the beginning of this subsection, O
(
Conf13 (Aad)

)
� up

(
�

1
3

)
. We

will use a technique similar to the proof of [SW20, Theorem 2.15].

First note that from the commutation diagram above we get an injective algebra homomorphism

c∗ : up
(
�

1
3

)
→ up

(
�

1
3

)
(see Proposition A.28 and Proposition A.30). In particular, an element

� ∈ Frac
(
up

(
�

1
3

))
is in up

(
�

1
3

)
if and only if c∗ (�) is in up

(
�

1
3

)
.

Theorem 3.46. O
(
Conf13 (Aad)

)
� up

(
�

1
3

)
.

Proof. Because Conf13 (Aad) contains a cluster Poisson seed torus )� as an open dense subset, we have

Frac
(
O

(
Conf13 (Aad)

))
� Frac (O ()�)) = Frac

(
up

(
�

1
3

))
, which contains both O

(
Conf13 (Aad)

)
and up

(
�

1
3

)
as subalgebras. Now consider the following commutative diagram of algebras:

Frac
(
O

(
Conf13 (Aad)

))
� _

c∗

��

j

�

// Frac
(
up

(
�

1
3

))
� _

c∗

��

Frac
(
O

(
Conf13 (Asc)

))
�

U
// Frac

(
up

(
�

1
3

))

Suppose that f is a regular function on Conf13 (Aad). Then we know that j( 5 ) ∈ Frac
(
up

(
�

1
3

))
.

To show that j( 5 ) is actually in up
(
�

1
3

)
, we only need to show c∗ ◦ j( 5 ) ∈ up

(
�

1
3

)
by Proposition

A.28. But this is true because c∗ ◦ j( 5 ) = U ◦ c∗( 5 ) is in the image of the composition

O

(
Conf13 (Aad)

)
c∗

−→ O

(
Conf13 (Asc)

)
U
−→ up

(
�

1
3

)
.

On the other hand, suppose that F is an element in up
(
�

1
3

)
. Then we know that j−1(�) is a rational

function on Conf13 (Aad). Because c : Conf13 (Asc) → Conf13 (Aad) is surjective, to show the regularity

of j−1 (�), it suffices to show that c∗ ◦ j−1(�) is a regular function on Conf13 (Asc). But this is true

because c∗ ◦ j−1(�) = U−1 ◦ c∗(�) is in the image of the composition

up
(
�

1
3

)
c∗

−→ up
(
�

1
3

)
U−1

−→ O

(
Conf13 (Asc)

)
. �

4. Donaldson–Thomas Transformation of Bott–Samelson Cells

In this section we will show that the cluster Donaldson–Thomas transformation exists on the unfrozen

Poisson cluster algebra up
(
�

1
3

)uf

and realise it as a biregular morphism on the undecorated double

Bott–Samelson cell Conf13 (B). We will first show it for the case
(
�

4
1

)uf
by constructing a maximal green

sequence, whose existence implies the existence of cluster Donaldson–Thomas sequence (see Appendix

A.2 for more details) and then deduce the general cases
(
�

1
3

)uf

by using the reflection maps defined in

Subsection 2.3.

4.1. A Maximal Green Sequence for
(
�

4
1

)uf

Let us consider the cluster Poisson algebra up
(
�

4
1

)uf
associated to the undecorated double Bott–

Samelson cell Conf41 (B). Our goal is to construct a maximal green sequence.

https://doi.org/10.1017/fms.2021.59 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.59


Forum of Mathematics, Sigma 51

We should first fix an initial seed. Due to the fact that the positive braid upstairs is the identity e,

the trapezoid is in fact a triangle and there is only one available triangulation in this case, which is the

following:

B
0

B
1

B
2

B
3 · · · B

=
B 91 B 92 B 93 B 94 B 9=

B0

Because all of the triangles are of the shape

B 9

, the corresponding string diagram only has

simple roots at the nodes. To better demonstrate the idea, let us use the word

(2, 1, 3, 2, 1, 3, 1, 3, 2, 2, 1)

as a running example. The string diagram looks like the following (we will only draw the closed strings

because open strings are not part of the unfrozen seed).

1

2

3

2

1

3

1

3

2 2

1

Recall that the closed strings become vertices of the seed suf and the associated exchange matrix n has

two types of nonvanishing entries: ±1 for neighbouring vertices on the same horizontal level and ±C 98

between nearby vertices on the ith and jth levels. Because the magnitude of these entries is determined

by the horizontal levels of the vertices, the only extra data we need to record are the signs. We will hence

use arrows of the form 0 1 to denote the first case with n01 = −n10 = 1 and use arrow

0 1 to denote the second case with n01 > 0 and n10 < 0.

Using such notation, our running example gives rise to a seed that can be described as follows:(1
1

) (1
2

) (1
3

)

(2
1

) (2
2

) (2
3

)

(3
1

) (3
2

)

We are now ready to describe a maximal green sequence for seeds of such form. First, for each entry

8: of the word i = (81, 82, . . . , 8=), we define

C: := # {; | : < ; ≤ = and 8; = 8: } .
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Note that if 8: is the first occurrence of the letter i in the word i, then there are exactly C: many closed

strings on level i.
Next for each 8: we define a mutation sequence

!: := `(8:C:)
◦ · · · ◦ `(8:2 )

◦ `(8:1 )
.

In particular, if 8: is the last occurrence of the letter i in the word i, then !: is trivial. We then claim the

following.

Theorem 4.1. The mutation sequence

!= ◦ !=−1 ◦ · · · ◦ !2 ◦ !1

is a maximal green sequence.

In the running example, the mutation sequence described in Theorem 4.1 is

!11 ◦ !10 ◦ !9 ◦ !8 ◦ !7 ◦ !6 ◦ !5 ◦ !4 ◦ !3 ◦ !2 ◦ !1

=!9 ◦ !7 ◦ !6 ◦ !5 ◦ !4 ◦ !3 ◦ !2 ◦ !1

=

(
`(21)

)
◦

(
`(11)

)
◦

(
`(31)

)
◦

(
`(12)
◦ `(11)

)
◦

(
`(22)
◦ `(21)

)
◦

(
`(32)
◦ `(31)

)
◦

(
`(13)
◦ `(12)

◦ `(11)

)
◦

(
`(23)
◦ `(22)

◦ `(21)

)
.

Proposition 4.2. In terms of triangles in the triangulation, the mutation sequence !: is equivalent to a
reflection map 8: A followed by a change of coordinates corresponding to a sequence of mutations that

moves the new triangle

B8

to the right across all triangles of the shape .

Proof. Recall that if we start with a cluster Poisson coordinate chart on the left, then the reflection

morphism maps it to the cluster Poisson coordinate chart on the right.

B
0 · · ·

B0 B1 · · ·
B8

8A
−→

B
−1

B
0 · · ·

B1 · · ·

B8

In particular, these two cluster Poisson coordinates have isomorphic unfrozen seeds because the sign

change of the leftmost node of the string diagram does not change the exchange matrix entries between

closed strings. Now it remains to show that cluster Poisson coordinates pull back to their corresponding

cluster Poisson coordinates via 8A
∗. But by the definition of cluster Poisson coordinates, it suffices to

show that if the triangle in the picture on the left is

B+

48 (@)B− B−B8

, then the triangle in the picture

on the right is

4−8
(
@−1

)
B+ B+

B−

B8

. By the definition of the reflection map 8A , it suffices to show

https://doi.org/10.1017/fms.2021.59 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.59


Forum of Mathematics, Sigma 53

that 48 (@)B−
B8

4−8
(
@−1

)
�+ . But this follows from the following computation:

B−48 (@)
−14−8

(
@−1

)
B+ =B−48 (−@)4−8

(
@−1

)
B+

=B−B8@
−U∨

8 48 (@)B+

=B−B8B+. �

The last proposition shows that the mutation sequence in Theorem 4.1 defines a biregular map that

is a composition of left reflections:

(
9=A

)
◦

(
9=−1

A
)
◦ · · · ◦

(
91A

)
: Conf41 (B) → Conf1

◦

4 (B),

where B 91 B 92 . . . B 9= = 1.

Now it remains to prove Theorem 4.1. For simplicity, let us first investigate what happens when

1 = (B1, B1, B1, B1).

It is not hard to see that the initial seed looks like the following:

0 1 2

From Appendix A.2, we can use auxiliary frozen vertices (principal coefficients) to keep track of the

colouring of the vertices. We adopt the convention of labelling the auxiliary frozen vertex connecting

to vertex a in the initial seed by 0′.

(1
1

) (1
2

) (1
3

)

(1
1

) ′ (1
2

) ′ (1
3

) ′

The sequence of mutations for such a seed described in Theorem 4.1 is then `0 ◦`1 ◦`0 ◦`2 ◦`1 ◦`0
and the seed after each mutation looks like the following (going from left to right across each row and

going from the top row to the bottom row):

(1
1

) ′ (1
2

) ′ (1
3

) ′

(1
1

) (1
2

) (1
3

)

(1
1

) ′ (1
2

) ′ (1
3

) ′

(1
1

) (1
2

) (1
3

)

(1
1

) ′ (1
2

) ′ (1
3

) ′

(1
1

) (1
2

) (1
3

)

(1
1

) ′ (1
2

) ′ (1
3

) ′

(1
1

) (1
2

) (1
3

)
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(1
1

) ′ (1
2

) ′ (1
3

) ′

(1
1

) (1
2

) (1
3

)

(1
1

) ′ (1
2

) ′ (1
3

) ′

(1
1

) (1
2

) (1
3

)

The case of a longer positive braid 1 = (B1, B1, . . . , B1) can be done in a similar way. Before we go

into cases with more than one letter, let us first make the following observation for this case.

Proposition 4.3. If 1 = (B1, B1, . . . , B1), then the following is true for the sequence of mutations given
by Theorem 4.1:

◦ n01′ is −1, 0 or 1 for any two vertices a and b.
◦ In each cycle, the first mutation we do changes the colour of the first green vertex to red (counting

from left to right) and then each mutation we do moves this red colour to the right while restoring
the green colour for the vertices behind.

◦ At the end of each cycle, all red vertices are to the right of all green vertices and the separation
point is the last node with a simple root labelling (counting from left to right).

1 · · · 1 −1 · · · −1

◦ After going through the mutation sequence in Theorem 4.1 completely, the final seed looks like the
following:

· · ·

· · ·

(1
1

)
(1
1

) ′
(1
2

)
(1
2

) ′
(1
3

)
(1
3

) ′
( 1
=−2

) ( 1
=−1

) (1
=

)
( 1
=−2

)′ ( 1
=−1

)′ (1
=

) ′

Proof. It follows from an induction on the number of vertices in the seed. �

Now let us turn to the more complicated cases with more than one letter. We start with the following

proposition.

Proposition 4.4. If a seed comes from a triangulation, then between the ith level and the jth level, the
exchange matrix can always be depicted locally by an oriented cycle using the arrow notation as below
(plus some degenerate cases):

− 9 · · · − 9

8 · · · 8 • · · · •

•· · ·•

Proof. This statement follows from seed amalgamation. �

Remark 4.5. Please be aware that degenerate cases include situations like the following two:

· · ·8 88 8

9 9

• · · · •

•
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· · ·− 9 − 9− 9 − 9

−8 −8

• · · · •

•

Proposition 4.6. If one mutates according to Theorem 4.1, then the following are true:

◦ n01′ = 0 for vertices a and b on different levels.
◦ n01′ is either −1, 0 or 1 for vertices a and b on the same level.
◦ Within each cycle, the mutations only change colours of vertices within the level (say the ith) on

which the mutations are taking places and they change the colours in the same way as the case of
positive braids (B8 , B8 , . . . , B8) (Proposition 4.3).

Proof. We do an induction on the number of mutations. The base case is trivial. For the inductive step,

let us first prove the claim ‘n01′ = 0 for vertices a and b on different levels’. At the beginning of each

cycle, the vertex we pick for step (1) always looks like the following:

...

88

...

0

0 ...

· · ·

· · ·

Note that the squiggly arrows going across different levels always go away from vertex a. Therefore,

when we mutate at a, no new arrow will be added between the auxiliary frozen vertices connected to a
and other vertices on other levels.

When we are in the middle of a cycle, we know from Proposition 4.4 that the part of the seed we are

mutating must look like the following:

8−88

...

...

01

01 ...

· · ·

· · ·

Again, the squiggly arrows going across different levels always point away from vertex a. Therefore,

when we mutate at a, still no new arrow will be added between auxiliary frozen vertices connected to

a and other vertices on other levels. Therefore, the claim that n23′ = 0 for vertices c and d on different

levels remains true.

But then because the colour of the vertex c is recorded by n23′ , we know that the colour change must

only occur at the ith level. The other two claims then follow immediately from Proposition 4.3. �

Proof of Theorem 4.1. From our last proposition we know that on each horizontal level the colours of

the vertices change in the same way as the single letter case; therefore, it is true that Theorem 4.1 mutates

at green vertices only and eventually all green vertices turn red. �

4.2. Cluster Donaldson–Thomas Transformation on Conf13 (B)

Now we have obtained a maximal green sequence for the seed ig associated to one triangulation of

Conf41 (B), so we are very close to getting a cluster Donaldson–Thomas transformation; all we need
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in addition is an appropriate seed isomorphism that permutes the rows of the c-matrix, making it

into −id.

Recall from Proposition 4.2 that the maximal green sequence given in Theorem 4.1 can be thought

of as a sequence of left reflections. So after completing the mutation sequence in Theorem 4.1, we get a

triangulation for Conf1
◦

4 (B). This implies that we need some cluster isomorphism that maps Conf1
◦

4 (B)

back to Conf41 (B). One obvious choice is the transposition map (−)C from Subsection 2.3. We know

from Proposition 3.15 that the transposition map is indeed a cluster isomorphism and combinatorially

it is indeed a seed isomorphism that maps the seed after the maximal green sequence back to the initial

seed with the property that the c-matrix is permuted into −id.

Combining the transposition map with the maximal green sequence from the last subsection, we

can now describe the cluster Donaldson–Thomas transformation on the double Bott–Samelson cell

Conf41 (B) geometrically, which is the composition

DT : Conf41 (B) Conf1
◦

4 (B) Conf41 (B).

a sequence of
left reflections transposition

Example 4.7. Let us do another example to state in more details how the cluster Donaldson–Thomas

transformation works. Take 1 = B1B2B3 and the cluster Donaldson–Thomas transformation on Conf41 (B)

is given by the following operations:

• • • •
B1 B2 B3

•
1A
−→

• •

• • •
B2 B3

B1 change of

coordinates

−→

• •

• • •
B2 B3

B1

2A
−→

• •

• • •
B2 B1

B3

change of

coordinates

−→

• •

• • •
B2 B1

B3

3A
−→

• • • •
B3 B2 B1

•

transposition
−→

• • • •
B1 B2 B3

•

Let us now look at the general case for double Bott–Samelson cell Conf13 (B). By a similar argument

as in Proposition 4.2, one can prove that reflection maps A 8 are more than just biregular maps: they are

cluster isomorphisms that preserve the cluster structures on the undecorated double Bott–Samelson cells.

To be more precise, suppose that 1 = B81 B82 . . . B8< . Consider the biregular map [ := A 81 ◦ A 82 ◦ · · · ◦ A 8< .

This is not only a biregular map from Conf13 (B) onto Conf431◦ (B) but also a cluster isomorphism

between up
(
�

1
3

)uf

and up
(
�

4
31◦

)uf

, whose cluster Donaldson–Thomas transformation was shown in

the previous sections.

Because [ is a cluster isomorphism, by a result of Goncharov and Shen (Theorem A.36), we know that

the cluster Donaldson–Thomas transformation on Conf13 (B) can be obtained from that of Conf431◦ (B) as

DTConf1
3
(B) = [−1 ◦ DTConf4

31◦
(B) ◦ [.
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Let us draw a picture to describe what such composition really does. We begin with a triangulation

associated to the pair (1, 3) where the first set of triangles are of the shape (corresponding to

letters of d) and the second set of triangles are of the shape (corresponding to letters of b).

3 1
sequence of A 8

−→
3 1◦

sequence of 8A
−→ 1 3◦

transposition
−→

3 1◦
sequence of A8
−→

3 1

There are some further simplifications that we can perform: first, we can use Proposition 2.29 to turn

each A8 ◦ (−)
C into (−)C ◦ 8A; then we can cancel the left reflections 8A and 8A , which yields the following

simplified version:

3 1

sequence of A 8

on the 1 part

and sequence of 8A

on the 3 part

−→ 3◦ 1◦

=
1◦ 3◦

transposition
−→

3 1

In conclusion, we have proved the following theorem.

Theorem 4.8. The cluster Donaldson–Thomas transformation on Conf13 (B) is the composition of a
series of reflection maps on both sides and the transposition map as described above.

Remark 4.9. When we computed DTConf1
3
(B) = [−1 ◦DTConf4

31◦
(B) ◦[ we chose to work with the cluster

transformation [ : Conf13 (B) → Conf431◦ (B) defined as a composition of reflections A 8; alternatively,

one can work with the cluster transformation [′ : Conf13 (B) → Conf41◦3 (B) defined as a composition of

reflections 8A . The resulting cluster Donaldson–Thomas transformation DTConf1
3
(B) would be the same

due to the uniqueness of cluster Donaldson–Thomas transformation. Moreover, we could have studied

DTConf14 (B)
instead of DTConf4

1
(B) and used it to compute the general case; the result would also be the

same.

The existence of the cluster Donaldson–Thomas transformation is a part of a sufficient condition

(Theorem A.38) of the Fock–Goncharov cluster duality conjecture (Conjecture A.26). In the cluster en-

semble
(
Conf13 (Asc) ,Conf13 (Aad)

)
, we already proved the surjectivity of the map ? : Conf13 (Asc) →

Conf13 (B) from the proof of Theorem 3.45 and we just constructed the cluster Donaldson–Thomas

transformation explicitly on Conf13 (B). Therefore, we obtain the following result.

Theorem 4.10. The Fock–Goncharov cluster duality conjecture A.26 holds for the cluster ensemble(
Conf13 (Asc) ,Conf13 (Aad)

)
.

4.3. Reflection Maps as Quasi-Cluster Transformations

So far we have considered the Donaldson–Thomas transformation on the undecorated double Bott–

Samelson cell Conf13 (B), which can be seen as the unfrozen part of a cluster Poisson variety �
1
3

(up

to codimension 2). In this section we would like to investigate the lift of the Donaldson–Thomas trans-

formation to the decorated double Bott–Samelson cell Conf13 (A). Because the Donaldson–Thomas
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transformation on Conf13 (B) can be broken down into a sequence of reflection maps followed by

a transposition, we can define the lift of the Donaldson–Thomas transformation to Conf13 (B) to

Conf13 (A) to be the same composition of reflection maps and transposition on Conf13 (A) according to

Subsection 2.3.

The next question is whether such a lift is a cluster transformation. Unfortunately, the answer is no: in

general, the reflection maps between decorated double Bott–Samelson cells are not cluster isomorphisms

because the underlying seeds are not isomorphic. However, the following weaker statement is true (see

Definition A.32 for the definition of quasi-cluster transformation).

Proposition 4.11. Reflection maps are quasi-cluster transformations.

Proof. Because left and right reflection maps are intertwined by a transposition map, which is a

cluster isomorphism even on the decorated double Bott–Samelson cell level, it suffices to only show

the claim for right reflection maps. But then because A 8 and A8 are inverses of each other and the

inverse of a quasi-cluster transformation is also a quasi-cluster transformation, it suffices to only

consider A 8 .

Let us first consider the adjoint case A 8 : Conf
1B8
3
(Aad) → Conf13B8 (Aad). Suppose we start with

the following cluster coordinate chart. Then A 8 should produce the last configuration according to its

definition.

· · ·

· · ·

B+

U−C
−1

4−8 (?)B+
B8

reflect the

underlying

flag

−→

· · ·

· · ·

B+

U−C
−1 48

(
?−1

)
B−B8

find

compatible

decoration

−→

· · ·

· · ·

B+

U−C
−1 U−C

−1 (?CU8 )U
∨
8 48

(
−?−1

)
B8

forget the

decoration

on U−

−→

· · ·

· · ·

B+

B− U−C
−1 (?CU8 )U

∨
8 48

(
−?−1

)
B8

According to the construction of the Lusztig factorisation coordinates and the cluster Poisson coordi-

nates, the last picture above indicates that the Lusztig factorisation corresponding to the given trian-

gulation before A 8 ends at . . . 4−8 (?)C, which corresponds to the following cluster Poisson coordinates;

note that the dots represent the factors that possibly come from the other ends of the strings (note that

the squiggly arrow only denotes the sign of the exchange matrix).

−88th level
. . . ?−1 ?CU8

9 th level
. . . CU9
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After applying A 8 , the Lusztig factorisation ends at . . . 48
(
?−1

)
C (?CU8 )−U

∨
8 , which corresponds to the

following cluster Poisson coordinates:

88th level
. . . ?−1 (?CU8 )−1

9 th level
. . . CU9 (?CU8 )−C8 9

By comparing the two, we see that the pullback of most cluster Poisson coordinates under A 8 remains

unchanged; the only cluster Poisson coordinates that are different are the ones associated to the open

strings on the right side of the string diagram. In particular, the last frozen variable -8 on the ith level

gets inverted:

A 8∗
(
- ′8

)
= -−1

8 ,

and the last frozen variable - 9 on any other level (say jth) is rescaled:

A 8∗
(
- ′9

)
= - 9-

−C8 9

8
.

Because A 8
��
Conf

1B8
3
(B)

is already known to be a cluster transformation, to show that A 8 : Conf
1B8
3
(Aad) →

Conf13B8 (Aad) is a quasi-cluster transformation, we only need to show that A 8 is a Poisson map, which

boils down to showing {
A 8∗- ′0, A

8∗- ′1
}
=

{
- ′0, -

′
1

}
for any two strings a and b. From the string diagram of Conf

1B8
3
(Aad) we see that -8 only has nonvan-

ishing Poisson bracket with the variable associated to the closed string to the left of it (call it -2) and

the frozen variables - 9 on the other levels. Therefore, any change to Poisson brackets of cluster Poisson

variables can only occur on
{
- ′2 , -

′
8

}
,
{
- ′2 , -

′
9

}
and

{
- ′8 , -

′
9

}
. Because the Poisson structure on a cluster

Poisson variety is known to be log canonical, we apply log to simplify the computation:

{
log

(
A 8∗- ′2

)
, log

(
A 8∗- ′8

)}
=

{
log -2 , log -−1

8

}
= − {log -2 , log -8} = −

1

D8

=
{
log - ′2 , log - ′8

}
{
log

(
A 8∗- ′2

)
, log

(
A 8∗- ′9

)}
=

{
log -2 , log

(
- 9-

−C8 9

8

)}
=

{
log -2 , log - 9

}
− C8 9 {log -2 , log -8}

=
C 98

2D 9

−
C8 9

D8

+ E =
C 98

2D 9

−
C 98

D 9

+ E = −
C 98

2D 9

+ E

=

{
log - ′2 , log - ′9

}
{
log

(
A 8∗- ′8

)
, log

(
A 8∗- ′9

)}
=

{
log -−1

8 , log
(
- 9-

−C8 9

8

)}
= −

{
log -8 , log - 9

}
= −

(
−

C 98

D 9

)
=

C 98

D 9

=

{
log - ′8 , log - ′9

}
.

Here E accounts for the contribution from the earlier parts of the diagram and they are invariant under

right reflections. This finishes proving that the reflection map A 8 is a quasi-cluster transformation in the

adjoint case.
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Next let us consider the simply connected case. By definition, the action of a quasi-cluster transfor-

mation on a cluster K2 variety is induced from its action on a cluster Poisson variety. If we express the

action of A 8 on our chosen seed above using the character lattice N of )� , it can be expressed as the

following matrix, which consists of an identity matrix for the most part except for the submatrix with

rows and columns corresponding to the frozen variables on the right:

©«

id 0 0 · · · 0

0 −1 0 · · · 0

0 −C8 9 1 · · · 0
...

...
...
. . . 0

0 −C8: 0 · · · 1

ª®®®®®®¬

8th

9 th
...

:th

By Lemma A.33, the induced quasi-cluster transformation action on the cluster K2 variety should then

be acting on the character lattice M of )� by the matrix that is the transpose inverse of the one above

with C8 9 replaced by C 98 , which is

©«

id 0 0 · · · 0

0 −1 −C 98 · · · −C:8

0 0 1 · · · 0
...

...
...

. . . 0

0 0 0 · · · 1

ª®®®®®®¬

8th

9 th
...

:th

Therefore, to show that A 8 : Conf
1B8
3
(Asc) → Conf13B8 (Asc) is a quasi-cluster transformation, it suffices

to show that all cluster K2 coordinates remain the same except the last frozen variable �′8 on the ith
level, which should transform by

A 8∗
(
�′8

)
= �−1

8

∏
9≠8

�
−C 98

9
.

So let us verify this transformation formula geometrically. By a similar computation as in the adjoint

case, the reflection map turns the following configuration on the left to the one on the right in the simply

connected case:

· · ·

· · ·

U+

U−C
−1

4−8 (?)?
−U∨

8 U+

B8
A 8

−→

· · ·

· · ·

U+

U−C
−1 U−C

−1 (?CU8 )U
∨
8 48

(
−?−1

)
B8

Because the cluster K2 coordinates are computed by evaluating the (U−,U+)-invariant function Δl 9

and
〈
U∨8 , l 9

〉
= X8 9 , we see that the only cluster K2 coordinate that changes under A 8 is �′8 :

A 8∗
(
�′8

)
= Δl8

(
C−1 (?CU8 )U

∨
8

)
= ?CU8−l8 .

On the other hand, by computation we get

�−1
8

∏
9≠8

�
−C 98

9
=

(
?−U

∨
8 C−1

)−l8
∏
9≠8

((
?−U

∨
8 C−1

)l 9
)−C 98

= ?Cl8 C
∑

9≠8 C 98l 9 = ?CU8−l8 ,

which agrees with A 8∗
(
�′8

)
, as predicted by the transformation formula. �
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Because reflection maps are quasi-cluster transformations on the decorated double Bott–Samelson

cells and the transposition map is a cluster isomorphism, it follows that the Donaldson–Thomas transfor-

mation on decorated double Bott–Samelson cells, as a composition of such maps, is also a quasi-cluster

transformation.

Corollary 4.12. The Donaldson–Thomas transformation on any decorated double Bott–Samelson
cell is a quasi-cluster transformation. It then follows that the Donaldson–Thomas transformation on
Conf13 (Aad) is a Poisson map.

Using the fact that reflection maps are quasi-cluster transformations, we can also prove the following

sufficient condition on the equality between upper cluster algebras and cluster algebras (Theorem 1.2).

Theorem 4.13. The upper cluster algebra O

(
Conf13 (Asc)

)
coincides with its cluster algebra.

Proof. By Theorem 3.45, it suffices to show thatO
(
Conf13 (Asc)

)
is generated by cluster variables (with

invertible frozen cluster variables). From Lemma A.33 we know that a quasi-cluster transformation

modifies unfrozen cluster K2 variables by Laurent monomials in the frozen cluster K2 variables and

maps the frozen cluster K2 variables to Laurent monomials in the frozen cluster K2 variables. Therefore,

we can apply a sequence of reflection maps to reduce the question to proving that O
(
Conf43 (Asc)

)
is

generated by cluster variables for any positive braid d.

U+

B0 B1
. . . U−CB81 B82 B8=

Recall from Theorem 2.30 that any point in Conf13 (Asc) can be represented by a unique representative as

shown above and Conf13 (Asc) is the nonvanishing locus of a single function f in T×A=, where T captures

the freedom of the maximal torus element t and the coordinates of A= are parametrising the relative

positions between each pair of adjacent flags in the bottom chain. Note that by definition, the function f
is the product of the frozen cluster K2 variables on the left and the torus factor T is parametrised by the

frozen cluster K2 variables on the right. By assumption, the frozen cluster K2 variables are invertible in

the cluster algebra, too. Therefore, it remains to show that the coordinates of the affine space factor A=

are polynomials in unfrozen cluster K2 variables and Laurent polynomials in frozen cluster K2 variables.

First, from the proof of Lemma 3.30 we know that the first affine parameter of the pair B0

B81 // B1 is

a monomial in unfrozen cluster K2 variables and a Laurent monomial in frozen cluster K2 variables.

Next we can apply the quasi-cluster transformation A 81 ◦ 81A to move first letter B81 to the end of the d-

chain. Then Lemma 3.30 implies again that the affine parameter of the pair B1

B82 // B2 is a monomial

in unfrozen cluster K2 variables (not necessarily of the initial seed) and a Laurent monomial in frozen

cluster K2 variables. The same argument can be applied to the rest of the affine parameters and we can

conclude thatO
(
Conf43 (Asc)

)
is generated by cluster K2 variables (with invertible frozen variables). �

5. Periodicity of DT transformations and Zamolodchikov’s Periodicity Conjecture

In this section we prove the periodicity of DT transformations for a family of double Bott–Samelson

cells. We give a new geometric proof of Zamolodchikov’s periodicity conjecture.

Below G is a semisimple algebraic group. The longest Weyl group element F0 can be uniquely lifted

to a positive braid. Its square Ω := F2
0

is a central element in the braid group Br. Let 1 = B81 B82 . . . B8= be

a positive braid. Recall that 1◦ = B8= . . . B82 B81 .
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Theorem 5.1. Let b and d be positive braids such that (31◦)< = Ω=. The cluster Donaldson–Thomas
transformation of Conf13 (B) is of a finite order dividing 2(< + =).

Example 5.2. Let G = PGL7. Its Weyl group is the symmetric group (7. Take the element D =

(1 2 3 7 6 5) ∈ (7 in cycle notation. The length of u is 7. Its lift to Br satisfies D3 = F0. Let 3 = D= ∈ Br.

Then 36 = Ω=. The order of the DT transformation of Conf43 (B) divides 12 + 2=.

Proof. The cluster Donaldson–Thomas transformations on Conf13 (B) and Conf431◦ (B) are intertwined

by a sequence of reflection maps on the right; hence, they share the same order. It suffices to consider

the cases Conf41 (B) with 1< = Ω=. Let 1 = B81 B82 . . . B8; . We start with a configuration

B0

B
0

B
1 . . .

B
;−1

B
;

B81 B82 B8;−1
B8;

(5.3)

The cluster DT transformation of Conf41 (B) is a sequence of left reflections followed by transposition.

Concretely, we obtain a collection of Borel subgroups B1, . . . ,B; by the reflections 8A

B; B;−1
. . . B1 B0

B
;

B8; B8;−1
B82 B81

and then apply the transposition map to get a new configuration in Conf41 (B)

(
B
;
) C

B
C
0

B
C
1

. . . B
C
;−1

B
C
;B81 B82 B8;−1

B8;

(5.4)

Let us apply the cluster DT transformation to (5.4) again, obtaining

B;

B
; B

C
;+1

. . . B
C
2;−1

B
C
2;B81 B82 B8;−1

B8;

(5.5)

To better describe the patterns, we introduce the following notations for Borel subgroups in B+:

B(0) := g(B0), B(1) := B0, B(2) := g(B;), B(3) := B; , B(4) := B2; ,

where g is a natural isomorphism from B− to B+ that takes B−6 to 6−1F0B+. Recall the automorphism

∗ on B+ by B ↦→ B
∗ := g(BC ). The configurations (5.3)–(5.5) can be rewritten as
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B(1)

B(0) B(2)

F0

1

F0 DT
↦−→

B
∗
(2)

B
∗
(1)

B
∗
(3)

F0

1

F0 DT
↦−→

B(3)

B(2) B(4)

F0

1

F0

(5.6)

Here in each configuration we abbreviate the bottom b-chain into a single dashed arrow. We adopt the

same convention in the rest of the proof.

Let us cut the first and last triangles in (5.6) at B(2) . We claim that the obtained chains

B(2)
F0 // B(1)

F0 // B(0)
1 //❴❴❴ B(2) , B(2)

1 //❴❴❴ B(4)
F0 // B(3)

F0 // B(2)

are equivalent under the braid moves from Ω1 to 1Ω. Indeed, let B1 be the unique flag such

that B(1)

B∗
81 // B1

F0B81 // B(0) . The first left reflection in the first DT is

81A :

B(1)

B(0) g(B1) . . . B(2)

F0

B81 B82 B8;

F0 ↦−→

B1 B(1)

g(B1) . . . B(2)

B∗81

F0

B82 B8;

F0

Let us cut them at B(2) . The obtained chains are equivalent under the braid moves F0B81 = B∗81F0:

B(2)
F0 // B(1)

F0 // B(0)
1 //❴❴❴ B(2)

= B(2)
F0 // B(1)

F0 // B(0)
B81 // g(B1)

B−1
81
1

//❴❴❴ B(2)

= B(2)
F0 // B(1)

B∗
81 // B1

F0 // g(B1)
B−1
81
1

//❴❴❴ B(2)

Repeat the same procedure for the rest of the left reflections. Eventually the braid moves fromF01 to 1∗F0

turn the chain B(2)
F0 // B(1)

F0 // B(0)
1 //❴❴❴ B(2) into B(2)

F0 // B(1)
1∗ //❴❴❴ B(3)

F0 // B(2) .

Similarly, the second DT turns the latter into B(2)
1 //❴❴❴ B(4)

F0 // B(3)
F0 // B(2) by braid moves.

Applying the transformation DT2 recursively, we obtain the configurations

B(2:−1)

B(2:−2) B(2:)

F0

1

F0 DT2

−→

B(2:+1)

B(2:) B(2:+2)

F0

1

F0

Let us concatenate max{<, =} + 1 copies of the chain B(2<)
1 //❴❴ B(2<+2)

F0 // B(2<+1)
F0 // B(2<) . We

apply DT2 to move Ω = F2
0

to the right. The braid moves (1Ω)=+1 = 1=+1Ω1+= give rise to
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. . .
1//❴❴ B(2<+2)

F0 // B(2<+1)
F0 // B(2<)

1 //❴❴ B(2<+2)
F0 // B(2<+1)

F0 // B(2<)

= . . .
F0// B(2<+2)

1 //❴❴ B(2<+4)
F0 // B(2<+3)

F0 // B(2<+2)
F0 // B(2<+1))

F0 // B(2<)

= . . .

= . . .
1 //❴❴ B(2(<+=))

1 //❴❴ B(2(<+=)+2)
F0 // B(2(<+=)+1)

F0 // B(2(<+=))
Ω=

//❴❴ B(2<) .

Conversely, we apply DT−2 to move b to the right and obtain

. . .
1//❴❴ B(2<+2)

F0 // B(2<+1)
F0 // B(2<)

1 //❴❴ B(2<+2)
F0 // B(2<+1)

F0 // B(2<)

= . . .
F0// B(2<−1)

F0 // B(2<−2)
1 //❴❴ B(2<)

F0 // B(2<−1)

F0 // B(2<−2)
1 //❴❴ B(2<)

= . . .
F0// B(2<−4)

1 //❴❴ B(2<−2)

F0 // B(2<−3)

F0 // B(2<−4)
1 //❴❴ B(2<−2)

1 //❴❴ B(2<)

= . . .

= . . .
F0 // B(0)

1 //❴❴ B(2)
F0 // B(1)

F0 // B(0)
1 //❴❴ B(2)

1 //❴❴ B(4)
1 //❴❴ . . .

1 //❴❴ B(2<)

= . . .
F0 // B(0)

1 //❴❴ B(2)
F0 // B(1)

F0 // B(0)
Ω=
//❴❴ B(2<) .

Here the last step uses the condition that 1< = Ω=.

Let us compare the two final chains under the above braid moves. By Theorem 2.18, we get

B(0)
1 //❴❴ B(2)

F0 // B(1)
F0 // B(0)

= B(2(<+=))
1 //❴❴ B(2(<+=)+2)

F0 // B(2(<+=)+1)
F0 // B(2(<+=)) ,

which concludes the proof. �

Zamolodchikov’s periodicity conjecture

A Y-system is a system of algebraic recurrence equations associated with a pair of Dynkin diagrams.

The periodicity conjecture, first formulated by Zamolodchikov in his study of thermodynamic Bethe

ansatz, asserts that all solutions to this system are of period dividing the double of the sum of the Coxeter

numbers of underlying Dynkin diagrams. This periodicity property plays a significant role in conformal

field theory and statistical mechanics. It was first settled by Keller [Kel13] in full generality by using

highly nontrivial techniques including cluster algebras and their additive categorification. We refer to

[Kel13] for an introduction to the periodicity conjecture.

Let us reformulate the periodicity conjecture in terms of cluster mutations. Let Δ be a Dynkin

diagram with the Cartan matrix C. A bipartite colouring on Δ gives rise to a seed with the same vertex

set I, multipliers {30} and the exchange matrix

n01 =

{
2(0)C10 if 0 ≠ 1,

0 otherwise,

where 2(0) = 1 if the vertex a is coloured black and 2(0) = −1 if it is coloured white.
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Given two bipartite Dynkin diagrams Δ and Δ ′, their square product Δ�Δ ′ is defined to be a seed

with vertex set � × � ′ and exchange matrix

n (8,8′) , ( 9 , 9′) =



−2 (8′) n8 9 if 8′ = 9 ′,

2(8)n8′ 9′ if 8 = 9 ,

0 otherwise.

Example 5.7. The quiver D4�A3 is as follows:

•

◦

◦ ◦

D4

◦ • ◦

A3

• ◦ •

◦ • ◦

• ◦ •

• ◦ •

D4�A3

Let g = g−◦g+, where g+ is a sequence of mutations at the black vertices ofΔ�Δ ′ and g− is a sequence

of mutations at white ones. Note that g preserves the quiver Δ�Δ ′. Following [FZ03], the mutation

sequence g gives rise to the Zamolodchikov transformation Za on the cluster Poisson variety XΔ�Δ′ . Let

h and ℎ′ be the Coxeter numbers of Δ and Δ ′, respectively. By [Kel13, Lemma 2.4], Zamolodchikov’s

periodicity conjecture is equivalent to the identity

Zaℎ+ℎ
′

= Id. (5.8)

Below we give a new geometric proof of (5.8) for Δ�A=. Let G be a group of type Δ and let B be its

flag variety. We fix a bipartite colouring on Δ and set

1 := B11
B12

. . . B1;︸          ︷︷          ︸
black vertices

and F := BF1
BF2

. . . BF<︸            ︷︷            ︸
white vertices

.

Let

? = F1F . . .︸   ︷︷   ︸
=+1 factors

and @ = 1F1 . . .︸   ︷︷   ︸
=+1 factors

Recall the construction of seeds for double Bott–Samelson cells. The quiver associated to the following

triangulation of Conf
?
@ (B) is Δ�A=.

B
0 F //

❅
❅
❅
❅
❅
❅
❅
❅

B
1

❅
❅
❅
❅
❅
❅
❅
❅

1 // B2 F //

❅
❅
❅
❅
❅
❅
❅
❅

B
3 1 // . . . // B=+1

B0
1

// B1 F
// B2

1
// B3 F

// . . . // B=+1

Therefore, Conf
?
@ (B) is birationally isomorphic to the cluster Poisson variety XΔ�A=

.
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Lemma 5.9. The transformation Za acts on Conf
?
@ (B) as

B
0 F // B1 1 // B2 F // B3 1 // . . . // B=−1 // B= // B=+1

B0
1

// B1 F
// B2

1
// B3 F

// . . . // B=−1
// B=

// B=+1

↦→

B
−2 F // B−1 1 // B0 F // B1 1 // . . . // B=−3 // B=−2 // B=−1

B2
1

// B3 F
// B4

1
// B5 F

// . . . // B=+1
// B=+2

// B=+3

where B
−2 and B

−1 are the unique flags obtained by reflecting B1 and B0 on the left and B=+2 and B=+3

are obtained by reflecting B
=+1 and B

= on the right. In other words, Za is equivalent to the composition
of a Coxeter sequence of reflections on the left from bottom to top with another Coxeter sequence of
reflections on the right from top to bottom.

Proof. The colours of the closed strings (vertices of the seed Δ�A=) look like the following:

1

F

F

1

1

F

F

1

black vertices in Δ

white vertices in Δ •

◦

◦

•

•

◦

· · ·

Note that black vertices in the quiver Δ�A= correspond to strings cut out by triangles with the same base

labellings. Mutations at all of the black vertices of Δ�A= correspond to a collection of diagonal flips

within a quadrilateral with the same base labellings (either b or w). This turns the above triangulation

into the left one below:

1

F

F

1

1

F

F

1

· · ·

1

1

F

F

1 F

F

1

· · ·

Now reflect the leftmost collection of triangles with base labelled by a b-chain to the top and the rightmost

collection of triangles (with base labelled by either a b-chain or a w-chain) to the bottom and then flip

the rest of the nonflipped diagonals. The resulting triangulation is depicted by the above right picture.

Because these reflections and the diagonal flips only involve triangles that are labelled differently, no

mutation is involved. By shifting the top chain to the right by two units we get the following triangulation

on the left:

F

1

1

F

F

1

1

F

. . .

F

1

1

F

F

1

1

F

· · ·
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Similarly, mutating at the white vertices of Δ�A= corresponds to another collection of diagonal flips,

which turns the above left triangulation to the above right one. Let us again reflect the leftmost collection

of triangles to the top and the rightmost collection of triangles to the bottom and flip the rest of the

diagonals. The resulting triangulation coincides with the initial one.

In the whole process there are two sequences of reflections on the left from bottom to top (one for a

b-chain and the other for a w-chain) and two similar sequences of reflections on the right from top to

bottom, which is the action described in the lemma. �

Corollary 5.10. Zaℎ+=+1 = Id.

Proof. Let R be the isomorphism from Conf
?
@ (B) to Conf4@?◦ (B) by reflections on the right. Elements

in Conf4@?◦ (B) are described as

B2=+3

F0

tt✐✐✐✐
✐✐
✐✐
✐✐
✐✐
✐✐
✐✐
✐✐
✐✐
✐✐

B0
1

// B1 F
// B2

1
// . . .

F
// B2=

1
// B2=+1 F

// B2=+2

F0

kk❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲

Consider the Coxeter element 2 = 1F. We have 2ℎ = F2
0

as positive braids. Therefore, the

chain B2=+2
F0 // B2=+3

F0 // B0 can be written as h copies of c chains as below, where B(8) = B28 for

0 ≤ 8 ≤ = + 1:

B(0)

B(1)

B(2) B(3)

...

B(=+1)

B(=+2)

B(=+3)· · ·

B(=+ℎ)

2

2

2

2

2

2

2

2

2

2

After conjugation by R, the transformation Za acts on Conf4@?◦ (B) by rotating the above circle clockwise

by one step. Therefore, Zaℎ+=+1 = Id. �

As in [Kel11, Sec.5.7], Zamolodchikov’s periodicity implies that

(DTΔ�Δ′)
< = Id, where < =

2(ℎ + ℎ′)

gcd(ℎ, ℎ′)
.

We close this section by presenting a direct proof of the above identity for Δ�A=.

Corollary 5.11. (DTΔ�A=
)< = Id where < =

2(ℎ+=+1)
gcd(ℎ,=+1)

.
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Proof. In the braid group we have

(@?◦)
ℎ

gcd(ℎ,=+1) =
©«
1F1F1F . . . 1F︸               ︷︷               ︸
=+1 copies of 1F

ª®®®¬

ℎ
gcd(ℎ,=+1)

= 2
ℎ (=+1)

gcd(ℎ,=+1) = Ω
(=+1)

gcd(ℎ,=+1) .

By Theorem 5.1, the order of the DT transformation of Conf
?
@ (B) divides

2(ℎ+=+1)
gcd(ℎ,=+1)

. �

6. Points Counting and Positive Braid Closures

6.1. Points Counting over a Finite Field

The proof of Theorem 2.30 showed that the space Conf13 (A) can be realised as the nonvanishing locus

of an integral polynomial given by Theorem 2.7. Therefore, Conf13 (A) is well defined over any finite

field F@ . In this section we present an algorithm7 counting its F@ points

5 13 (@) :=
��Conf13 (A) (F@)

�� .
Let u and v be Weyl group elements and B8 a simple reflection. We set

%
D,E
8

=




@ if E = B8D and ; (B8D) < ; (D),

@ − 1 if E = D and ; (B8D) > ; (D),

1 if E = B8D and ; (B8D) > ; (D),

0 otherwise.

(6.1)

Theorem 6.2. Let i = (81, . . . , 8=) be a word of 31◦. Then

5 13 (@) = (@ − 1)Ã
∑

(D1 ,...,D=−1) ∈W=−1

=∏
:=1

%
D:−1 ,D:

8:
, (6.3)

where D0 = D= = 4 and Ã = dim T.

Proof. Because Conf13 (A)
∼
= Conf431◦ (A), it suffices to count F@-points of the latter space. Note that

every configuration in Conf431◦ (A) has a unique representative such that the pair of flags associated to its

left side is U+ B− . Then let us fix a triangulation by taking diagonals from the top vertex to all of

the bottom vertices and label all of the diagonals by Weyl group elements indicating the Tits codistances

between the top flag and the bottom flags. It gives rise to a decomposition of the space Conf431◦ (A).

Moving across the triangulation from left to right, we associate the number of possible configurations

to each triangle based on Lemma A.8: q for A1, @ − 1 for G<, 1 for {∗} and 0 for ∅. In the end there is

another decoration A= over the last flag B=, which gives another multiple of (@ − 1)Ã =
��T (
F@

) ��. Taking

the summation over all possible cases, we get (6.3). �

Inspired by a recent result of Galashin and Lam [GL20] on computing the F@-point count of positroid

cells, we relate the computation of 5 1
3
(@) with Hecke algebras.

Let us first briefly recall the definition of Hecke algebra H associated with a generalised Cartan

matrix C. As a noncommutative algebra, H is generated over Z
[
@±1

]
by the elements {)8}8∈S, where S

is the set of Coxeter generators. The generators )8 satisfy the usual braid relations (A.4) imposed by the

Cartan matrix as well as the following identity:

()8 + @) ()8 − 1) = 0 ∀8 ∈ S. (6.4)

7This algorithm was suggested to us by J.H. Lu.
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Note that (6.4) implies that

)−1
8 = @−1)8 +

(
1 − @−1

)
∀8 ∈ S. (6.5)

For any positive braid 1 ∈ Br
+ with braid word (81, 82, . . . , 8;), we define

)1 := )81)82 · · ·)8; .

Note that this is well defined because the generators )8 also satisfy the braid relations. Because any

Weyl group element F ∈ W defines a unique positive braid via any reduced word of w, we define )F
to be the corresponding product of the generators )8 according to the reduced word. In particular, as a

consequence of (6.4), for any Weyl group elements D, E ∈ W with E = B8D, we have

)8)D =

{
)E if ; (E) > ; (D),

(1 − @))D + @)E if ; (E) < ; (D).
(6.6)

It is known that {)F }F ∈W forms a linear basis of H; that is, H �
⊕

F ∈W Z
[
@±1

]
)F . We define a

Z
[
@±1

]
-linear map n : H→ Z

[
@±1

]
by

n ()F ) =

{
1 if F = 4,

0 otherwise.

Corollary 6.7. Let i = (81, . . . , 8=) be a word of 31◦ and let Ã := dim T. Then

5 13 (@) = (@ − 1)Ã@=n
(
)−1
31◦

)
.

Proof. By comparison with (6.3), it suffices to show that

@=n
(
)−1
31◦

)
=

∑
(D1 ,...,D=−1) ∈W=−1

=∏
:=1

%
D:−1 ,D:

8:
.

Without loss of generality, let us assume that 1 = 4. Let (81, 82, . . . , 8=) be a braid word for d. Then

)−1
3

= )−1
8=
)−1
8=−1
· · ·)−1

1
. By substituting in (6.5), we get

@=
(
)−1
3

)
=

(
)8= + (@ − 1)

) (
)8=−1

+ (@ − 1)
)
· · ·

(
)81 + (@ − 1)

)
.

For each 0 ≤ : ≤ =, define ℎ:F (@) to be the coefficients in the expansion

(
)8: + (@ − 1)

)
· · ·

(
)81 + (@ − 1)

)
=

∑
F ∈W

ℎ:F (@))F .

We claim that for any D: ∈ W,

∑
(D1 ,...,D:−1) ∈W:−1

:∏
;=1

%
D; ,D;−1

8;
= ℎ:D:

(@), (6.8)

and the theorem will follow from this claim and the definition of the linear map n .

We will do an induction on k. The claim is trivial for the base case : = 0. For the inductive step, we

define D := D: and E := B8:+1D. If ; (E) > ; (D), we have

(
)8:+1 + (@ − 1)

)
ℎ:D (@))D = ℎ:D (@))E + (@ − 1)ℎ:D (@))D ,
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which covers the middle two cases in (6.1). On the other hand, if ; (E) < ; (D), then by (6.6) we have(
)8:+1 + (@ − 1)

)
ℎ:D (@))D = ℎ:D (@) ((1 − @))D + @)E + (@ − 1))D) = ℎ:D (@)@)E ,

which covers the first case in (6.1). By combining these cases, we see that (6.8) remains true for : + 1

and hence the induction is finished. �

The group T×T acts on Conf13 (A) by altering the decorations A
0 and A=. It induces a transitive T×T-

action on each fibre of the projection c : Conf13 (A) → Conf13 (B). As stacks we have the isomorphism

Conf13 (A) /(T × T)
∼
= Conf13 (B).

Therefore, the number of F@-points of Conf13 (B) as a stack is

613 (@) :=
��Conf13 (B) (F@)

�� =
��Conf13 (A) (F@)

����T × T(F@)
�� =

5 1
3
(@)

(@ − 1)2Ã
.

Note that, in general, 61
3
(@) is a rational function with possible poles at @ = 1. We include the code of a

Python program that computes 61
3
(@) for positive braid closures in Appendix A.3.

Example 6.9. Let G = SL2, 1 = 4 and 3 = B1B1B1. Let us fix a triangulation given by drawing diagonals

from the top vertex to all of the vertices at the bottom. Below are all possible cases of different Tits

codistances:

B1B1B1

•

• • • •

B1B1B1

B1

•

• • • •
B1B1B1

B1

•

• • • •

B1B1B1

B1 B1

•

• • • •

The first case gives (@ − 1)3, the fourth case gives 0 and each of the rest give @(@ − 1). Therefore,

5 13 (@) =
(
(@ − 1)3 + 2@(@ − 1)

)
(@ − 1) = @4 − 2@3 + 2@2 − 2@ + 1.

613 (@) =
5 1
3
(@)

(@ − 1)2
= @2 + 1.

Remark 6.10. This example coincides with Example 6.38 in [STZ17]. In the next section, we show that

Conf13 (B) is isomorphic to the moduli space M1

(
Λ1
3

)
of microlocal rank-1 sheaves in [STZ17].
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6.2. Legendrian links and Microlocal Rank-1 Sheaves

Let us briefly recall some basic definitions about Legendrian links. The space R3 is equipped with the

standard contact structure from the 1-form U = HdG − dI. A Legendrian link in R3 is a link Λ such that

the restriction of U to Λ vanishes. Two links are Legendrian isotopic if there is an isotopy between them

that preserves the property of being Lengendrian at every stage. A Legendrian link Λ can be visualised

by its image under the front projection c� from R3 to the GI-plane. The constraint U |Λ = 0 implies that

the y coordinate of Λ is determined by the slope of its front projection.

Shende, Treumann and Zaslow [STZ17] have associated to every Legendrian link Λ a category

Sh•Λ (R
2) of constructible sheaves on the GI plane with singular support controlled by the front projection

of Λ. Using a theorem of Guillermou–Kashiwara–Schapira [GKS12], they proved that the category

Sh•Λ (R
2) is invariant under Legendrian isotopies. As a consequence, the moduli space M1(Λ) of

microlocal rank-1 sheaves in Sh•Λ(R
2) is a Legendrian link invariant.

In this section we investigate Legendrian links arising from a pair (1, 3) of positive braids of Dynkin

type AA . Let i and j be reduced words of b and d, respectively. Associated to (i, j) is a Legendrian link

Λi
j
, whose front projection is described by the following steps:

(1) We draw 2A + 2 many horizontal strands on the GI-plane.

(2) The top A + 1 strands have crossings encoded by i and the bottom A + 1 strands have crossings

encoded by j.

(3) We close up both ends of the strands by cusps.

Example 6.11. Let A = 2. Let i = (1, 2) and j = (1). The front projection c� (Λ
i
j
) of Λi

j
is

B1

B1

B2

Connected components of the complement of c� (Λ
i
j
) are called faces. We use 5in to denote the face

enclosed by the (A + 1)-th and the (A + 2)-th strands and 5out to denote the unbounded face. Crossings

and cusps of c� (Λ
i
j
) cut its strands into segments called edges. Two faces are said to be neighbouring

if they are separated by an edge e. Note that one of the neighbouring faces is above e and the other is

below e with respect to the z-direction in the GI plane.

Let us present an equivalent working definition of microlocal rank-1 sheaves associated to Λi
j
. See

[STZ17] for the original definition.

Definition 6.12. A microlocal rank-1 sheaf F associated to Λi
j
consists of the following data:

◦ assigned to every face f is a finite-dimensional vector space + 5 over a field k;

◦ assigned to every edge e is a full-rank linear map q4 : + 5 → +6, where f and g are neighbouring

faces separated by e, with f sitting below e

such that

◦ the dimensions of vector spaces assigned to any neighbouring faces differ by 1;

◦ dim+ 5in = A + 1 and dim+ 5out
= 0;

◦ for every crossing illustrated on the left below, the following sequence is exact:

+B

(qBF ,qB4) // +F ⊕ +4

qF=−q4= // += (6.13)
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◦ for every cusp illustrated on the right below, q 5 6 ◦ q6 5 = id+ 5
:

+B

+4+F

+=

qB4qBF

q4=qF=

+ 5 +6

q 5 6

q6 5

One can think of a microlocal rank-1 sheaf as a quiver representation and two microlocal rank-1

sheaves are isomorphic if they are isomorphic as quiver representations. Let M1 (Λ
i
j
) be the moduli

space of isomorphism classes of microlocal rank-1 sheaves associated to Λi
j
. The space M1 (Λ

i
j
) is

invariant under Legendrian isotopies.

Theorem 6.14. Let i and j be reduced words of positive braids b and d, respectively. There exists a
natural isomorphism from M1(Λ

i
j
) to Conf13 (B).

Proof. Let F be a a microlocal rank-1 sheaf. Let us align the cusps of c� (Λ
i
j
) on a horizontal line that

separates the GI-plane into two halves. We slice up the bottom half vertically at the crossings. For each

slice, the sheave F gives rise to A + 2 vector spaces with full-ranked linear maps connecting them. See

the first graph in Figure 1. Let

*8 := Im(+8 → . . .→ +A+1).

By Definition 6.12, every local linear map is a codimension 1 inclusion. Therefore, we obtain a complete

flag B =
(
0 = *0 ⊂ *1 ⊂ · · · ⊂ *A+1 = + 5in

)
.

Let B = (*0 ⊂ *1 ⊂ · · · ⊂ *A ⊂ *A+1) and B
′ =

(
* ′

0
⊂ * ′

1
⊂ · · · ⊂ * ′A ⊂ * ′

A+1

)
be flags associated

to two adjacent slices sharing a crossing on the jth level. By the exactness condition (6.13), we get

* 9 ≠ * ′9 and*8 = * ′8 if 8 ≠ 9 . Therefore, B
B 9 // B′ in B−. Because the crossings of the strands in the

bottom half are encoded by j, by associating flags to the slices, we get a j-chain

B0

B 91 // B1

B 92 // . . .
B 9= // B= .

Similarly, let us slice up the top half vertically at the crossings. For each slice, we get the data as

shown on the the second graph in Figure 1. The dimension condition forces dim+8 = 8 and the linear

maps are all surjective. Let

,8 := ker (+A+1 → +A → · · · → +8) .

It determines a complete flag B =
(
0 = ,A+1 ⊂ ,A ⊂ . . .,0 = + 5in

)
. Similarly, a crossing on the ith

level at the top half imposes the condition that two adjacent flags are of Tits codistance B8 in the flag

variety B+. Therefore, the top half of a microlocal rank-1 sheaf F gives rise to an i-chain

B
0

B81 // B1
B82 // . . .

B8< // B< .

Now we have obtained an i-chain and a j-chain fromF. From the construction of the braid closure, we

know that the left cusps are nested as in the third graph of Figure 1. By Definition 6.12, the composition
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V0 = Vfin

V1

.

.

.

Vr

Vr+1 = Vfout

Vr+1 = Vfout

Vr

.

.

.

V1

V0 = Vfin

V0 V1 · · · Vr+1

Figure 1. Flags obtained from microlocal rank-1 sheaves.

+8 → +A+1 → +8 is the identity map id+8
. Therefore,

*8 ∩,8 := im(+8 → +A+1) ∩ ker(+A+1 → +8) = 0.

Therefore, the flags B
0 and B0 are in general position. Similarly, the flags B

< and B= are in general

position. Putting them together, we get a configuration

B
0

B81 // B1
B82 // . . .

B8< // B<

B0 B 91

// B1 B 92

// . . .
B 9=

// B=

This defines a map

M1(Λ
i
j) → Conf13 (B).

It is not hard to show that this construction can be reversed to get an isomorphism class of microlocal

rank-1 sheaves from a point in Conf13 (B). �

Theorem 6.14 is a slight generalisation of [STZ17, Prop 1.5]. It shows that M1(Λ
i
j
) is equipped with

a natural cluster Poisson structure. As a direct consequence, we obtain the following.

Corollary 6.15. The space Conf13 (B) (as an algebraic stack) and 61
3
(@) are Legendrian link invariants

for closures of positive braids (1, 3).
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A. Appendix

A.1. Basics about Kac–Peterson Groups

In this appendix we collect the necessary information on Kac–Peterson groups (a.k.a. minimal Kac–

Moody groups). We will mostly follow S. Kumar [Kum02].

A generalised Cartan matrix is a matrix C = (C8 9 ) whose diagonal entries are all 2 and whose

off-diagonal entries are nonpositive integers, such that C8 9 = 0 if and only if C 98 = 0.

A realisation of an A × A generalised Cartan matrix C is a quadruple (h, h∗,Π∨,Π) such that

◦ h and h∗ are dual complex vector spaces of dimension Ã := A + ;, where l is the corank of C;

◦ Π = {U1, . . . , UA } ⊂ h∗ and Π∨ =
{
U∨

1
, . . . , U∨A

}
⊂ h are linearly independent subsets;

◦
〈
U∨8 , U 9

〉
= C8 9 for 8, 9 = 1, . . . , A .

Every C admits a unique up to isomorphism realisation ([Kac83, Prop. 1.1]).

The Kac–Moody algebra gC associated to C is a Lie algebra, with the generators �8 , �−8 (8 = 1, . . . , A)

and h and the relations




[�, � ′] = 0 (�, � ′ ∈ h),

[�, �8] = 〈�, U8〉 �8 ,

[�, �−8] = − 〈�, U8〉 �8 (8 = 1, . . . A; � ∈ h),[
�8 , �− 9

]
= X8 9U

∨
8 (8, 9 = 1, . . . , A),

ad
1−C8 9

�8
� 9 = 0,

ad
1−C8 9

�−8
�− 9 = 0 (8 ≠ 9).

(A.1)

From now on, let C be a symmetrisable generalised Cartan matrix; that is, there is an invertible

diagonal matrix D such that D
−1

C is symmetric. The matrix D may be chosen such that its diagonal

entries are positive integers with gcd = 1. Let (h, h∗,Π∨,Π) be a realisation of C. We further fix once

and for all a lattice P ⊂ h∗ with a basis {l1, . . . , lÃ } such that Π ⊂ P and

〈
U∨8 , l 9

〉
= X8 9 for 8 = 1, . . . , A and 9 = 1, . . . , Ã .

The lattice P is called the weight lattice. A weight _ ∈ P is dominant if
〈
U∨8 , _

〉
≥ 0 for every U∨8 ∈ Π.

Denote by P+ the set of dominant weights.

The elements l1, . . . , lÃ are called the fundamental weights. They extend C to an Ã × Ã matrix

C̃ = (C8 9 ) =

(
C DA

A 0

)

such that U 9 =
∑Ã

8=1 C8 9l8 for 9 = 1, . . . , A .

Lemma A.2. The matrix C̃ is invertible.

Proof. The matrix C is of corank l. We may apply elementary column transformations to the first r
columns of C̃ and obtain a matrix

C̃′ =

(
0 C

′
DA

L ∗ 0

)
.

The first r column vectors of C̃ are linearly independent because Π is a linearly independent subset of

h∗. Therefore, the ; × ; submatrix L is invertible. Meanwhile, the matrix C̃ is symmetrisable. Therefore,

the first r row vectors of C̃ are linearly independent and the A × A submatrix (C′ DA) of C̃
′ is invertible.

It follows then that C̃′ (and hence C̃) is invertible. �
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Using the matrix C̃ we can extend Π to a basis {U8}
Ã
8=1 of h∗ such that

U 9 =

Ã∑
8=1

C8 9l8 .

Let
{
U∨8

}Ã
8=1

and
{
l∨8

}Ã
8=1

be, respectively, the dual basis of {l8}
Ã
8=1 and {U8}

Ã
8=1. Then

U∨8 =

Ã∑
9=1

C8 9l
∨
9 and

〈
U∨8 , U 9

〉
= C8 9 (8, 9 = 1, . . . , Ã).

Define Q :=
⊕Ã

8=1 ZU8 ⊂ P. The quotient group P/Q is a finite abelian group of order | det(C̃) |.

We define two algebraic tori

Tsc := Hom (P,G<) and Tad := Hom (Q,G<) .

Both Tsc and Tad have h as their Lie algebras. The embedding Q ⊂ P induces a surjective homomorphism

from Tsc to Tad, whose kernel Z is isomorphic to P/Q.

The Kac–Peterson group Gsc (respectively Gad) is generated by Tsc (respectively Tad) and the one-

parameter groups

U8 := {exp (?�8) | ? ∈ G0} , 8 ∈ {±1, . . . ,±A},

with relations determined by (A.1). They are also known as the minimal Kac–Moody groups, in the sense

that they are constructed by only exponentiating the real root spaces of gC. The group Z is contained in

the centre of Gsc. The surjection from Tsc to Tad induces a |Z|-to-1 covering map

c : Gsc −→ Gad.

We refer the reader to [Kum02, Section 7.4] for more details on Kac–Peterson groups.

Notation A.3. We will write 48 (?) instead of exp (?�8) and omit the argument p if ? = 1. Let T be

either Tsc or Tad. For a character _ of T and C ∈ T, we set C_ := _(C). For a cocharacter _∨ of T and

? ∈ G<, we set ?_
∨

:= _∨(?).

Let G be either Gsc or Gad. Let N be the normaliser of T in G. The Weyl group W := N/T is generated

by S := {B8}
A
8=1 with the relations B2

8 = 1 for all i together with the braid relations

B8B 9 . . .︸  ︷︷  ︸
<8 9

= B 9 B8 . . .︸  ︷︷  ︸
<8 9

∀8 ≠ 9 (A.4)

where <8 9 = 2, 3, 4, 6 or∞ according to whether C8 9C 98 is 0, 1, 2, 3 or ≥ 4. The elements

B8 := 4−1
8 4−84

−1
8 and B8 := 484

−1
−8 48 (A.5)

are both coset representatives of B8 ∈ N/T. They satisfy the braid relations and therefore determine two

natural representatives for every F ∈ N/T, which are denoted as F and F.

Let U+ (respectively U−) be the subgroup of G generated by U1, . . . ,UA (respectively U−1, . . . ,U−A ).

Define the Borel subgroups

B+ := U+T, B− := U−T.
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The transposition 6 ↦→ 6C is an involutive anti-automorphism of G such that

48 (?)
C := 4−8 (?) ∀8 ∈ ±1, . . . ,±A; ℎC = ℎ ∀ℎ ∈ T.

The transposition swaps B+ and B−.

Recall the definition of Tits system in [Kum02, Section 5.1]. The tuple (G,B+,B−,N,S) forms a twin
Tits system; that is,

◦ the quadruples (G,B+,N,S) and (G,B−,N,S) are Tits systems;

◦ if ; (FB8) < ; (F), then B−FB+B8B+ = B−FB8B+;

◦ B−B8 ∩ B+ = ∅ for 8 = 1, . . . , A .

From the twin Tits system we obtain two Borel decompositions and a Birkhoff decomposition

G =
⊔
D∈W

B+DB+ =
⊔
E ∈W

B−EB−, G =
⊔
F ∈W

B−FB+.

Recall the flag varieties B+ = G/B+ and B− = G/B−. As in Subsection 2.1, the above decompositions

induce Tits distance functions 3± : B± × B± → W and a Tits codistance function 3 : B+ × B− → W.

The quintuple (B±, 3±, 3) is an example of twin buildings.

Proof of Lemma 2.5. For the first case, without loss of generality, let us assume that B,B′,B′′ ∈ B+.

From the assumption DE = F and ; (D) + ; (E) = ; (F) we get

B+FB+ = B+DB+EB+.

Therefore, if B
D // B′

E // B′′ , then B
F // B′′ . Conversely, if B

F // B′′ , then there exists a

flag B
′ such that B

D // B′
E // B′′ . Itremains to show the uniqueness of B

′.

Assume E = B8 . Let B
′′′ satisfy B

D // B′′′
B8 // B′′ . Note that B+B8B+B8B+ = B+ ⊔ B+B8B+. If

B
′ ≠ B

′′′, then we get B
′ B8 // B′′′ . Putting all of the flags together, we get

B

B
′

B
′′

B
′′′

D

D

B8

B8

B8

Because ; (DB8) = ; (D) + 1, from the red arrows we get B
DB8 // B′′′ , which contradicts with the blue

arrow B
D // B′′′ . Therefore, B

′ = B
′′′. For general v, we first fix a reduced word E = B81 B82 . . . B8; .

By the above discussion, there is a unique B
′′′ such that B

FB8; // B′′′
B8; // B′′ . Then we focus

on B
FB8; // B′′′ . The uniqueness of B

′ follows by induction on the length of v.

For the third case, using the second condition of twin Tits system recursively, we get

B−DB+ = B−FB+E
−1

B+.

Therefore, if B0
F

B
−1 E−1

// B0 , then B0
D

B
0 . Conversely, if B0

D
B

0 , then there exists

a B
−1 such that B0

F
B
−1 E−1

// B0 . The uniqueness of B
−1 follows from the same inductive method

as in the proof of the first.

All other cases are analogous to the third case. �

Next let us investigate the space of flags that are of Tits distance B8 from a fixed flag.
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Lemma A.6. If B+
B8 // B , then B = 48 (@)B8B+ for some @ ∈ A1.

Proof. The space of flags of Tits distance B8 to B+ is the quotient (B+B8B+)/B+. By Lemma 6.1.3 of

[Kum02], we get B+ = U8Q8 , where the subgroup Q8 = B+ ∩ B8B+B8 . Therefore,

(B+B8B+)/B+ = (U8Q8B8B+)/B+ = (U8B8Q8B+)/B+ = (U8B8B+)/B+ = {48 (@)B8B+} . �

Corollary A.7. Let B be in either B+ or B−. The space of flags of Tits distance B8 away from B is
isomorphic to A1.

Proposition A.8. Let D, E ∈ W and let B8 be a simple reflection. Fix a pair B0
D

B
0 . Then the space

of flags B that fits into either of the triangles

B
0

B0 B

D E

B8

and

B0

B B
0

E D

B8

is isomorphic to




A1 if E = B8D and ; (B8D) < ; (D),

G< if E = D and ; (B8D) > ; (D),

{∗} if E = B8D and ; (B8D) > ; (D),

∅ otherwise.

Proof. By symmetry, we will only prove the first case. Without loss of generality, let B
0 = DB+ and

B0 = B−. The set of flags of Tits distance B8 to B− is

{B−48 (?) | ? ∈ G<} ⊔ {B−B8} . (A.9)

If ; (B8D) < ; (D), then we obtain the the first case by Lemma 2.5 and Corollary A.7.

If ; (B8D) > ; (D), then the root U := D−1 (U8) is positive. Therefore,

B−48 (?)DB+ = B−D4U (?
′)B+ = B−DB+.

Among all of the flags in (A.9), only B−B8 is of Tits codistance B8D away from B−D, from which we

arrive at the third case. The rest are of Tits codistance u, which proves the second case. �

Now let us focus on Gsc. Let+_ denote the irreducible representation of Gsc of highest weight _ ∈ P+.

Let O [Gsc] be the algebra generated by the matrix coefficients of +_, _ ∈ P+.

Theorem A.10 (Kac–Peterson, [KP83, Theorem 1]). Consider the Gsc × Gsc-action on O [Gsc] by

((61, 62) . 5 ) (6) := 5
(
6−1

1 662

)
.

Then as Gsc × Gsc-modules,

O [Gsc] �
⊕
_∈P+

+∗_ ⊗ +_.
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Let U−O [Gsc] be the subring of left U− invariant functions. By Theorem A.10, we get

U−O [Gsc] �
⊕
_∈P+

+_.

Let Δ_ ∈ +_ be the unique highest weight vector such that Δ_ (4) = 1. Given _, ` ∈ P+, the product

Δ_Δ` is a highest weight vector in +_+` and satisfies the normalisation condition. Therefore,

Δ_+` = Δ_Δ` .

Theorem A.11 (Geiss–Leclerc–Schröer [GLS11], 7.2). An element G ∈ Gsc is Gaussian decomposable
if and only if Δl8

(G) ≠ 0 for all fundamental weights l8 .

A.2. Basics about Cluster Algebras

We include here the basic facts about cluster algebras that will be needed.

Definition A.12. A seed is a quadruple s =
(
�, �uf , n01 , {30}0∈�

)
satisfying the following properties:

(1) I is a finite set and �uf ⊂ �;

(2) n01 is a Q-valued matrix with n01 ∈ Z unless (0, 1) ∈ �D 5 × �D 5 ;

(3) {30} is a collection of positive integers with gcd (30) = 1 such that the matrix n̂01 := n013
−1
1

is

skew-symmetric.

Elements of I are called vertices, elements of �uf are called unfrozen vertices and elements of � \ �uf are

called frozen vertices. The matrix n is called the exchange matrix and 30 are called multipliers.

Definition A.13. Given a seed s and an unfrozen vertex 2 ∈ �uf , a mutation at c produces a new seed

s′ = `2s =
(
� ′, � ′uf , n ′

01
, {3 ′0}

)
with � ′ = �, � ′uf = �uf , 3 ′0 = 30 and

n ′01 =

{
−n01 if 2 ∈ {0, 1},

n01 + [n02]+ [n21]+ − [−n02]+ [−n21]+ if 2 ∉ {0, 1},

where [G]+ := max{G, 0}. Seeds obtained by a sequence of mutations on s are said to be mutation
equivalent to s.

Let T be an
���uf

��-regular tree. The edges of T are labelled by elements of �uf such that the labelling of

edges connecting to the same vertex are distinct. Every mutation is involutive: `2
2s = s. Therefore, we

can associate the vertices of T with seeds from a mutation equivalent family, such that any two vertices

associated to a pair of seeds related by a mutation `2 are joined by an edge labelled by c. The decorated

tree T is called the mutation tree of s.

We assign to each vertex s of T two split |� |-dimensional algebraic tori: a K2 seed torus )�;s and a

Poisson seed torus )�;s. The tori )�;s and )�;s are equipped with coordinate systems
{
�0;s

}
0∈�

and{
-0;s

}
0∈�

, respectively. We often drop the subscript ; s if it is obvious or not important. The torus )�;s

admits a canonical 2-form

Ω =
∑
0,1

n̂01;s

3�0;s

�0;s

∧
3�1;s

�1;s

.

The torus )�;s admits a canonical Poisson structure determined by the bivector field

Π =
∑
0,1

n̂01;s-0;s-1;s

m

m-0;s

∧
m

m-1;s

.
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For every edge s
2

s′ in T, the associated seed tori are related by the transition maps

)�;s )�;s′
`2

and )�;s )�;s′
`2

In terms of the cluster coordinates, the transition maps are expressed as

`∗2
(
�0;s′

)
:=



�−1
2;s

(∏
1 �
[−n21;s]+
1;s

) (
1 +

∏
1 �

n21;s

1;s

)
if 0 = 2,

�0;s if 0 ≠ 2,

(A.14)

`∗2
(
-0;s′

)
:=

{
-−1
2;s if 0 = 2,

-0;s-
[n02;s]+
2;s

(
1 + -2;s

)−n02;s if 0 ≠ 2.
(A.15)

The maps `2 preserve the 2-form Ω and the bivector field Π.

Let s and s′ be any two not necessarily adjacent vertices onT. By composing the transition maps along

the unique path connecting them, we get birational maps `s→s′ : )�;s d )�;s′ and `s→s′ : )�;s d )�;s′ .

Fomin and Zelevinsky [FZ07] proved the following factorisation formulas for the pullbacks of cluster

coordinates:

`∗s→s′

(
�0;s′

)
=

(∏
1

�
601;s→s′

1;s

) (
�0;s→s′

��
-1;s=

∏
2 �

n12;s
2;s

)
, (A.16)

`∗s→s′

(
-0;s′

)
=

(∏
1

-
201;s→s′

1;s

) (∏
1

(
�1;s→s′

) n01;s′

)
, (A.17)

where 201;s→s′ and 601;s→s′ are � × � matrices with integer entries and �0;s→s′ are polynomials in

the initial cluster Poisson coordinates
{
-0;s

}
. They are called the c-matrix, the g-matrix and the F-

polynomials associated to the mutation map `s→s′ , respectively. We have the following properties:

(1) (matrix identities) n;s′6;s→s′ = 2;s→s′n;s;

(2) (sign coherence) row vectors of c-matrices and column vectors of g-matrices are sign coherent; that

is, their entries are either all nonnegative or all nonpositive;

(3) (constant term) F-polynomials all have a constant term 1;

(4) (positivity) F-polynomials all have positive integer coefficients.

In addition, the following properties are immediate consequences of the factorisation formulas:

(5) (Laurent phenomenon) `s→s′
(
�0;s′

)
is a Laurent polynomial;

(6) 201;s→s′ = ord-1;s
`∗s→s′

(
-0;s′

)
, where ordG 5 yields the lowest degree of x in f if f is a polynomial

and ordG

(
5

6

)
:= ordG 5 − ordG6.

Let us fix an initial seed s. The sign coherence of c-vectors allows us to assign a colour to each vertex

0 ∈ � in a seed s′: we say a is green if 201;s→s′ ≥ 0 for all b and red otherwise. Note that a mutation at

the vertex c changes its colour, but it may change the colours of other vertices as well.

From the above definition, all vertices of the initial seed s are green. A sequence of mutations that

turns all vertices red is called a reddening sequence and a reddening sequence consisting of mutations

only in the direction of green vertices is called a maximal green sequence.

There is a combinatorial way to compute the c-matrix using principal coefficients. Given a seed

s =
(
�, �uf , n;s, {30}

)
, we define the corresponding seed with principal coefficients as

sprin =

(
� ⊔ �, �uf ⊔ ∅,

(
n;s id

−id 0

)
, {30} ⊔ {30}

)
.
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By applying the sequence of mutations `s→s′ to sprin, we obtain a seed with exchange matrix

(
n;s′ 2;s→s′

∗ ∗

)
,

whose upper right-hand corner is precisely the c-matrix we need.

Definition A.18. Fix an initial seed s in T. We define the upper cluster algebra to be

up (�) :=
⋂
s′

`∗s→s′

(
O

(
)�;s′

) )
⊂ Frac

(
O

(
)�;s

) )

and define the cluster Poisson algebra to be

up (�) :=
⋂

s

`∗s→s′

(
O

(
)�;s′

) )
⊂ Frac

(
O

(
)�;s

) )
.

Note that O
(
)�;s′

)
is a Poisson algebra for each seed s′ and the mutation maps preserve the Poisson

structure. Therefore, up (�) is naturally a Poisson algebra.

The algebras up (�) and up (�) do not depend on the choice of an initial seed, because all mutation

maps are algebra isomorphisms on the fields of fractions and `2
2 = id.

Definition A.19. The geometric counterparts of up(�) and up(�) are the cluster K2 variety � and the

cluster Poisson variety8 �, obtained by gluing the seed tori via the transition maps `:

� =
⊔

s

)�;s

/
{`2} and � =

⊔
s

)�;s

/
{`2} .

In particular, O(�) = up(�) and O(�) = up(�).

Because the mutation maps between )�;s preserve the canonical 2-forms Ω, these 2-forms can be

glued into a canonical 2-form Ω on the cluster K2 variety �. Similarly, because the mutation maps

between )�;s are Poisson maps, the cluster Poisson variety � is naturally a Poisson variety.

Definition A.20. Let s and s′ be two seeds on T. A seed isomorphism f∗ : s → s′ is a bijection

f∗ : � → � such that f∗
(
�uf

)
= �uf , 30 = 3f∗ (0) and n01;s = nf∗ (0)f∗ (1);s′ .

Definition A.21. A seed isomorphism f∗ : s → s′ induces algebra automorphisms f∗ on up(�) and

up(�) defined by

f∗
(
�0;s

)
:= �f∗ (0);s′ and f∗

(
-0;s

)
:= -f∗ (0);s′ .

Abusing notation, we still denote by f the induced biregular automorphisms of the corresponding

cluster varieties. Such automorphisms are called cluster transformations.

A cluster transformation pulls back cluster variables to cluster variables according to the factorisation

formulas (A.16) and (A.17). Therefore. it makes sense to define the c-matrix, the g-matrix and the F-

polynomials of a cluster transformation f with respect to a choice of initial seed s; we denote them by

2;f;s, 6;f;s and �;f;s. respectively.

The following criteria determine when a cluster transformation is trivial.

Theorem A.22 ([GS18, GHKK18, CHL18]). Let f be a cluster transformation on � and �. The
following statements are equivalent:

◦ f acts trivially on �;
◦ f acts trivially on �;
◦ the c-matrix with respect to one (and equivalently any) seed is the identity matrix;
◦ the g-matrix with respect to one (and equivalently any) seed is the identity matrix.

8The cluster Poisson variety � is not a variety in the traditional sense because it often fails to be separated.
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By Theorem A.22, the group of cluster transformations on � coincides with the group of cluster

transformations on �. We call this group the cluster modular group and denote it by �.

Definition A.23. Fix a seed s =
(
�, �uf , n01 , {30}

)
. Let 3 = lcm {30}. We define the Langlands dual

seed s∨ :=
(
�, �uf ,−n10, {3/30}

)
and the chiral dual seed s◦ :=

(
�, �uf ,−n01 , {30}

)
.

The following facts are easy to check:

(a) s∨∨ = s and s◦◦ = s;

(b) `2s∨ = (`2s)∨ and `2s◦ = (`2s)◦;

(c) the following are equivalent for a bijection f∗ : � → �:

◦ f∗ : s→ s′ is a seed isomorphism;

◦ f∗ : s∨ → s′∨ is a seed isomorphism;

◦ f∗ : s◦ → s′◦ is a seed isomorphism.

Thanks to (b), the mutation trees of s, s∨ and s◦ are naturally isomorphic. We can define the Langlands

dual versions and chiral dual versions of cluster algebras and cluster varieties the same way as before and

we will denote them with superscripts ∨ and ◦, respectively. Nakanishi and Zelevinsky [NZ12] proved

the following tropical duality relating the c-matrix and g-matrix associated to the same sequence of

mutations when applied to Langlands dual seeds:

2C;s→s′ = 6−1
;s∨→s′∨ ; (A.24)

they also proved the following identity relating the c-matrices associated to the opposite sequence of

mutations when applied to chiral dual seeds:

2−1
;s→s′ = 2;s′◦→s◦ . (A.25)

It follows from (c) and the tropical duality that a cluster transformation is trivial if and only if the

corresponding cluster transformation on the Langlands dual (respectively chiral dual) is trivial. Thus, the

Langlands dual (respectively chiral dual) cluster modular groups are isomorphic; that is,� � �
∨
� �

◦.

Cluster varieties � and � are positive spaces; that is, they are equipped with a semifield of positive

rational functions Q+(�) and Q+ (�), respectively. Given a semifield S, we define the set of S-points

�(() := Homsemifield (Q+(�), () , �(() := Homsemifield (Q+ (�), () .

LetZC = (Z,min, +) be the semifield of tropical integers. Fock and Goncharov proposed the following

conjecture on Langlands dual cluster varieties.

Conjecture A.26 ([FG09a, Conj. 4.1]). The coordinate ring O(�) admits a basis �-equivariantly
parametrised by �∨ (ZC ) and O(�) admits a basis �-equivariantly parametrised by �∨ (ZC ).

Definition A.27. For a seed s =
(
�, �uf , n , {30}

)
with gcd {30}0∈� uf = 1, we define its associated

unfrozen seed to be suf =
(
�uf , �uf , n |� uf×� uf , {30}0∈� uf

)
.

Let �uf and �
uf be the cluster varieties constructed from an unfrozen seed associated to a seed that

defines � and �. Then among their seed tori we can define four maps

4 : )�uf ;suf → )�;s 5 : )�uf ;suf → )�;s

4∗
(
�0;s

)
:=

{
�0;suf if 0 ∈ �uf ,

1 if 0 ∉ �uf ,
5 ∗

(
-0;s

)
:=

∏
1∈� uf

�
n01;s

1;suf

? : )�;s → )�uf ;suf @ : )�;s → )�uf ;suf

?∗
(
-0;suf

)
:=

∏
1∈�

�
n01;s

1;s
@∗

(
-0;suf

)
:= -0;s.
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By direct computation one can verify that these four maps commute with the mutation maps `. Therefore,

we can glue them together and obtain four regular maps in the following commutative diagram:

�
uf 4 //

5   ❇
❇
❇
❇
❇
❇
❇
❇

�

?

  ❇
❇
❇
❇
❇
❇
❇
❇

�
@

// �uf

Let � be the cluster modular group associated to the cluster varieties � and � and let �uf be the

cluster modular group associated to the cluster varieties �uf and �
uf . It then follows from the above

formulas that � is a subgroup of �uf .

Proposition A.28. Let c : )�;s → )�;s be a group homomorphism of algebraic tori for some fixed seed
s such that 5 = c ◦ 4 and ? = @ ◦ c. Then c induces group homomorphisms of algebraic tori between
seed tori associated to any other seed in the mutation equivalent family. Moreover, they glue into a
well-defined regular map c : � → �.

Proof. The conditions ? = c ◦ 4 and 5 = @ ◦ c imply that the only freedom in defining c is the frozen

factor (the first factor) in

c∗
(
-0;s

)
:=

©«
∏

1∈� \� uf

� · · ·1;s

ª®¬
( ∏
2∈� uf

�
n02;s

2;s

)
=

©«
∏

1∈� \� uf

� · · ·1;s

ª®¬
5 ∗

(
-0;s

)

for each frozen vertex a. But such a factor need not change under mutation: we can just define c∗
(
-0;s′

)
:=(∏

1∈� \� uf � · · ·
1;s′

)
5 ∗

(
-0;s′

)
for any other seed s′ and such maps c automatically commute with the

mutation maps. �

Remark A.29. There is another way to describe the map c. Let M and N be the character lattices of

)�;s and )�;s, respectively. Then c induces a linear map of character lattices c∗ : # → " . The cluster

Poisson coordinates
{
-0;s

}
correspond to a basis

{
40;s

}
of N and the skew-symmetric matrix n̂01 defines

a skew-symmetric form {·, ·} on N. We can view a seed mutation s′ = `2s as a change of basis on the

lattice N given by

40;s′ =

{
−42;s if 0 = 2,

40;s +
[
n02;s

]
+
42;s if 0 ≠ 2.

By viewing the seed tori )�;s′ and )�;s′ as algebraic tori with character lattices M and N, we can redefine

the mutation map `2 between the corresponding seed tori by the following coordinate-free formula:

`∗2 (-
=) = -= (1 + -42;s )−{=,324:2;s} ,

`∗2 (�
<) = �<

(
1 + �?∗(42;s)

)−〈<,324:2;s〉

,

where -= is the character function corresponding to = ∈ # and �< is the character function corre-

sponding to < ∈ " . By using this description, it is not hard to verify by computation that the following

diagram commutes:

)�;s

`2 //❴❴❴

c

��

)�;s

c

��
)�;s `2

//❴❴❴ )�;s

where the two vertical maps c are induced by the same linear map c∗ : # → " .

https://doi.org/10.1017/fms.2021.59 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.59


Forum of Mathematics, Sigma 83

Proposition A.30. If in addition to the assumption of Proposition A.28 the map c : )�;s → )�;s is
surjective, then the resulting regular map c : � → � is also surjective (and equivalently the induced
algebra homomorphism c∗ : up(�) → up(�) is injective) and � ∈ Frac (up(�)) is in up(�) if and
only if c∗(�) is in up(�).

Proof. If c : )�;s → )�;s is surjective for one seed s, then c∗ : # → " is injective, which implies that

the induced maps c : )�;s′ → )�;s′ are surjective for any seed s′ in the mutation equivalent family by

the above observation. Then it follows that c : � → � is also surjective.

Lastly, because c∗ : )�,s → )�,s maps monomials to monomials for every s, F is a Laurent

polynomial on )�,s for all s if and only if c∗ (�) is a Laurent polynomial on )�,s for all s, which implies

that � ∈ up (�) if and only if c∗ (�) ∈ (�). �

Next we will make use of the alternative description of a seed in Remark A.29 to define quasi-cluster

transformations. A more detailed discussion can be found in [Fra16, GS19].

Definition A.31. Let s and s′ be two seeds on T. Let N be the lattice as described in Remark A.29, with

a skew-symmetric form {·, ·}. Let
{
40;s

}
and

{
40;s′

}
be the bases of N corresponding to the seeds s and

s′, respectively. Then a lattice isomorphism f∗ : # → # is said to be a seed quasi-isomorphism if

(1) there exists a seed isomorphism f∗ : suf → s′uf between the unfrozen seeds such that f∗
(
40;s

)
=

4f (0);s′ for all 0 ∈ �uf ;

(2) f preserves the skew-symmetric form {·, ·} on N.

Note that a seed quasi-isomorphism f∗ also induces a lattice isomorphism " → " because M is dual

to N up to a rescaling.9 We abuse notation and denote the induced automorphism on M by f∗.

Definition A.32. A seed quasi-isomorphism f∗ naturally induces an automorphism f∗ on up(�) and

up(�) defined by

f∗
(
�<

;s

)
:= �

f∗ (<)
;s′

and f∗
(
-=

;s

)
:= -

f∗ (=)
;s′

;

we call such automorphisms quasi-cluster transformations. In turn, such automorphisms also define

biregular automorphisms on the corresponding cluster varieties, which we also call quasi-cluster trans-
formations. Because a seed quasi-isomorphism preserves the skew-symmetric form {·, ·}, a quasi-cluster

transformation on up(�) is automatically a Poisson automorphism.

Lemma A.33. Let f be a quasi-cluster transformation corresponding to a lattice isomorphism f∗

between two seeds s and s′. Suppose that m and n are two integer matrices such that

f∗
(
�8;s

)
=

∏
9

�
<8 9

9;s′
and f∗

(
-8;s

)
=

∏
9

-
=8 9
9;s′

.

Then <3 ′ = 3 (=C )−1, where d and 3 ′ are the multiplier matrices associated with the seeds s and s′,
respectively, and t denotes the transposition of a matrix.

Proof. By definition, we have f∗ (48) =
∑

9 =8 94
′
9 for the linear isomorphism f∗ : # → # . On the other

hand, we know from [GHKK18, Appendix A] that the two f -bases of M are given by 58 = 4∗8 /38 and

5 ′9 = 4′∗9 /3
′
9 , respectively. It follows from linear algebra that the induced map f∗ : " → " is given by

f∗( 58) =
∑
9

3−1
8 (=

−1) 983
′
9 5
′
9 .

�

Because every cluster transformation is a quasi-cluster transformation, the quasi-cluster transforma-

tions form a group that contains the cluster modular group �.

9The rescaling is nontrivial only in the skew-symmetrisable cases; see [GHKK18, Appendix A] for more details.
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Example A.34. Below is a simple example that demonstrates the difference between a cluster transfor-

mation and a quasi-cluster transformation. Consider the following quivers, which differ by one single

mutation:

•

� �

1

2 3

`1
−→

•

� �

1

2 3

Note that these two quivers are not isomorphic, so they cannot possibly define a cluster transformation.

On the other hand, if we define

f∗ (41) := 4′1, f∗ (42) := 4′1 + 4
′
3, f∗ (43) := 4′2,

we see that f∗ defines a seed quasi-isomorphism. Therefore, f∗ induces a quasi-cluster transformation

on up(�) and up(�) that acts by

f∗ (-1) = - ′1 =
1

-1

f∗ (�1) =
�′

1

�′
3

=
�2 + �3

�1�3

f∗ (-2) = - ′1-
′
3 =

-3

1 + -3

f∗ (�2) = �′3 = �3

f∗ (-3) = - ′2 = -2 (1 + -1) f∗ (�3) = �′2 = �2.

The cluster Poisson algebra up
(
�

uf
)
admits a natural extension into a Poisson algebra of formal series.

Goncharov and Shen defined a unique Poisson automorphism on such extension called the Donaldson–
Thomas transformation. In all known cases the Donaldson–Thomas transformation preserves up

(
�

uf
)

and hence descends to a Poisson automorphism on up
(
�

uf
)
. In most known cases the Donaldson–

Thomas transformation is a central element in the cluster modular group �
uf , and when this happens

we say that the Donaldson–Thomas transformation is cluster.
In the reverse direction, there is an easy way to check whether a cluster transformation is the

Donaldson–Thomas transformation by using the c-matrix, and we will use it as the working definition

in this article.

Definition A.35. A cluster transformation in�uf is the cluster Donaldson–Thomas transformation if its

c-matrix (with respect to any choice of seed) is −id.

The following theorem justifies the omission of the phrase ‘with respect to any choice of seed’.

Theorem A.36 ([GS18, Theorem 3.6]). If f is a cluster transformation with 2;f;s = −id, then 2;f;s′ =

−id for any seed s′ mutation equivalent to s.

Recall that the c-matrix of a sequence of mutations can be computed using principal coefficients. It

follows by definition of the cluster Donaldson–Thomas transformation that any two isomorphic seeds

that give rise to the cluster transformation are related by a reddening sequence. On the the other hand,

it is known that a reddening sequence always produces a seed that is isomorphic to the original seed

and one can choose an isomorphism such that the associated c-matrix is −id. Therefore, we have the

following implications:

a maximal green

sequence exists

a reddening

sequence exists

Donaldson–Thomas

transformation is cluster

Donaldson–Thomas

transformation is rational

(A.37)
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Let us explain the importance of Donaldson–Thomas transformations. First, in the skew-symmetric

case (where all 30 = 1), the Donaldson–Thomas transformation encodes the Donaldson–Thomas

invariants of an associated 3D Calabi–Yau category of dg modules (see [GS18]). Second, by combining

results of Goncharov and Shen [GS18] and results of Gross et al. [GHKK18], one obtains the following

sufficient conditions for the cluster duality conjecture.

Theorem A.38 ([GHKK18, Prop.8.28]). Conjecture A.26 holds if the following two conditions hold:

(1) The Donaldson–Thomas transformation of �uf is a cluster.
(2) The algebra homomorphism ?∗ : up

(
�

uf
)
→ up (�) is injective.

A.3. Python Code for Computing 61
3
(@) for Positive Braid Closures

from sympy import *

q = symbols(’q’)

# The Weyl group associated to Dynkin type A_(n-1) is the symmetric

# group S_n. We denote elements of S_n by an n-tuple u consisting of

# integers from 0 to n. Below are left/right multiplication of u by

# a simple reflection s_k

def left_mult(k,u):

u[k-1],u[k] = u[k],u[k-1]

return(u)

def right_mult(k,u):

for i in range(len(u)):

if u[i] == k-1:

u[i] = k

elif u[i] == k:

u[i] = k-1

return(u)

# Below is an algorithm that converts an integer 0<=m<2^l into an l

# tuple of 0s and 1s corresponding to the binary expansion of m.

def binary(m,l):

output = []

while l != 0:

a = m//2**(l-1)

m = m-a*2**(l-1)

l -= 1

output.append(a)

return(output)

# Now we are ready to define the function g^b_d(q).

# The computation needs the input of a triangulation t. However,

# the output should not depend on t.

# Let l=l(b)+l(d)
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# The input of b and d will specify the choice of words. We then

# represent a triangulation t by an l-tuple of 0s and 1s, with 0

# representing a nabla-shaped triangle and 1 representing a Delta-

# shaped triangle.

def g(n,b,d,t):

# First we should test that t is actually a triangulation for (b,d).

if t.count(0) != len(b) or t.count(1) != len(d):

return("Error: Wrong Triangulation!")

# Next we combine b and d into a l-tuple "braid" of pairs (s,k),

# where s=0,1 indicates the orientation of the triangle

# and k indicates the simple reflection.

braid = []

for i in range(len(t)):

if t[i] == 0:

braid.append([t[i],b.pop(0)])

else:

braid.append([t[i],d.pop(0)])

# The variable "polynomial" will be the final output g^b_d(q)*(q-1)^(n-1)

polynomial=0

# When we go across the triangulation from left to right, at each

# step we can either multiply or not multiply s_k.

# Therefore at most we only need to consider 2^l number of cases.

# We go through all these cases using a parameter 0<=m<2^l

# By converting this parameter m into a binary expression of length l,

# we exhaust all possible cases.

# 1 means the multiplication takes place,

# and 0 means the multiplication does not take place.

for m in range(2**len(t)):

occurrence = binary(m,len(t))

# Start with the leftmost edge being of Tits codistance u=e.

u = [j for j in range(n)]

# The l-tuple "factors" collects the factors coming from each

# triangle in the triangulation.

factor = []

# We now go from left to right across the triangulation and

# impose Tits codistance conditions u according to the binary
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# expression of m.

# Note that letters of b correspond to right multiplications

# and letters of d correspond to left multiplications.

# The computation is governed by Lemma 6.1.

for i in range(len(t)):

if braid[i][0] == 1:

if occurrence[i] == 0:

if u[braid[i][1]-1] > u[braid[i][1]]:

break

elif occurrence[i] == 1:

if u[braid[i][1]-1] > u[braid[i][1]]:

factor.append(q)

else:

factor.append(1)

u = left_mult(braid[i][1],u)

else:

factor.append(q-1)

else:

if occurrence[i] == 0:

if u.index(braid[i][1]-1) > u.index(braid[i][1]):

break

elif occurrence[i] == 1:

if u.index(braid[i][1]-1) > u.index(braid[i][1]):

factor.append(q)

else:

factor.append(1)

u = right_mult(braid[i][1],u)

else:

factor.append(q-1)

if u == [j for j in range(n)]:

term = 1

for p in factor:

term *= p

polynomial += term

return(cancel(polynomial/(q-1)**(n-1)))
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