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Positive Solutions of Impulsive Dynamic
System on Time Scales

Da-Bin Wang

Abstract. In this paper, some criteria for the existence of positive solutions of a class of systems of

impulsive dynamic equations on time scales are obtained by using a fixed point theorem in cones.

1 Introduction

Let T be a time scale, i.e., T is a nonempty closed subset of R. Let T > 0 be fixed and

0, T be points in T. An interval (0, T)T denote time scales interval, that is, (0, T)T :=

(0, T) ∩ T. Other types of intervals are defined similarly.

The theory of impulsive differential equations is emerging as an important area

of investigation, since it is a lot richer than the corresponding theory of differen-

tial equations without impulse effects. Moreover, such equations may exhibit sev-

eral real world phenomena in physics, biology, engineering, etc., (see [11, 20, 24, 31–

33, 37, 38]). At the same time, the boundary value problems for impulsive differ-

ential equations and impulsive difference equations have received much attention

[2, 18, 19, 25, 26, 29–31, 39]. Recently, the theory of dynamic equations on time scales

has become important (see, for example, [1, 7, 8, 17, 21]). There are also some papers

([3–6, 22]) about dynamic equations on time scales that should be cited here. In [3],

R. P. Agarwal et al. considered a class of singular second-order dynamic equations

with homogeneous Dirichlet boundary conditions that includes those problems re-

lated to the negative exponent Emden–Fowler equation. Some sufficient conditions

for the existence of multiple positive solutions were obtained by using perturbation

and variational techniques. In [22], a monotone sequence of solutions of linear prob-

lems converging uniformly and quadratically to a solution of a class of second order,

nonlinear, three-point, time scale boundary value problems was obtained by means

of the method of upper and lower solutions and the generalized quasilinearization

technique. To enlarge the field of applications of the dynamic equations on time

scales and to have more theoretical opportunities M. U. Akhmet and M. Turan ([5,6])

proposed to generalize the transition operator and to investigate differential equa-

tions on time scales with transition condition and differential equations on variable

time scales with transition condition. In [4], Agarwal et al. studied the Wirtinger-

type inequalities for the Lebesgue △-integral on an arbitrary time scale.
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Naturally, some authors have focused their attention on the BVPs of impulsive

dynamic equations on time scales [9, 10, 12, 14–16, 27, 28, 36]. In particular, for the

first order impulsive dynamic equations on time scales

(1.1)











y△(t) + p(t)y(σ(t)) = f (t, y(t)), t ∈ J := [a, b], t 6= tk, k = 1, 2, . . . , m,

y(t+
k ) = Ik(y(t−k )), k = 1, 2, . . . , m,

y(a) = η,

where T is a time scale that has at least finitely-many right-dense points, [a, b] ⊂ T,

p is regressive and right-dense continuous, f : T × R → R is a given function, Ik ∈
C(R, R). The paper [9] obtained the existence of one solution to the problem (1.1)

by using the nonlinear alternative of Leray-Schauder type.

In [15], Geng et al. considered the following impulsive periodic boundary value

problem on time scales T:

(1.2)











y△(t) = f (t, y(t)), t ∈ J := [0, T]T, t 6= tk, k = 1, 2, . . . , m,

Imp(y)(tk) := Ik(y(t−k )), k = 1, 2, . . . , m,

y(0) = y(σ(T)),

where f : J × (−∞,∞) → (−∞,∞) is continuous in the second variable,

Ik : (−∞,∞) → (−∞,∞) is continuous, tk ∈ (0, T)T and 0 < t1 < · · · < tm < T,

Imp(y)(tk) = y(t+
k ) − y(t−k ). The existence of extremal solutions to the problem

(1.2) was obtained by virtue of the method of lower and upper solutions coupled

with monotone iterative technique.

In [36], the author considered the following first-order impulsive periodic bound-

ary value problem on time scales T:

(1.3)










x△(t) + p(t)x(σ(t)) = f (t, x(σ(t))), t ∈ J := [0, T]T, t 6= tk, k = 1, 2, . . . , m,

x(t+
k ) − x(t−k ) = Ik(x(t−k )), k = 1, 2, . . . , m,

x(0) = x(σ(T)).

The existence of positive solutions to the problem (1.3) was obtained by means of

the well-known Guo–Krasnoselskii fixed point theorem [13].

However, to the best of our knowledge, there is little work concerning the system

of impulsive dynamic equations on time scales.

In this paper, we are concerned with the existence of positive solutions for the

following system of impulsive dynamic equations on time scale:

(1.4)










x△(t) + P(t)x(σ(t)) = F(t, x(σ(t))), t ∈ J := [0, T]T, t 6= tk, k = 1, 2, . . . , m,

x(t+
k ) − x(t−k ) = Ik(x(t−k )), k = 1, 2, . . . , m,

x(0) = x(σ(T)),

where (T stands for the transpose)

x = (x1, x2, . . . , xn)T, P(t) = diag[p1(t), p2(t), . . . , pn(t)],

F = ( f1, f2, . . . , fn)T, Ik = (I1
k , I2

k , . . . , In
k )T.
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For i ∈ {1, 2, . . . , n}, pi : [0, T]T → (0,∞) is right-dense continuous (that is pi ∈
R+, where R+ will be defined in section 2), fi : J × [0,∞)n → [0,∞) is continuous,

Ii
k : [0,∞)n → [0,∞) is continuous; tk ∈ (0, T)T, 0 < t1 < · · · < tm < T, and

for each k = 1, 2, . . . , m, x(t+
k ) = limh→0+ x(tk + h) and x(t−k ) = limh→0− x(tk + h)

represent the right and left limits of x(t) at t = tk. For each x = (x1, x2, . . . , xn)T ∈
Rn, the norm of x is defined as |x| =

∑n
i=1 |xi |.

The main results in this paper are proved by means of a fixed point theorem [23]

that is different from those used in [9, 15, 36]. Note that papers [34, 35] discussed

problem (1.4) and obtained some results about the existence of solution or positive

solution to problem (1.4) when n = 1 and Ik = 0, k = 1, 2, . . . , m. Moreover, for the

case of n = 1, problem (1.4) reduces to the problem (1.3).

In the remainder of this section, we state a fixed point theorem [23].

Theorem 1.1 ([23]) Let X be a Banach space with a cone K. Assume Ω1,Ω2 are open

subsets of X with 0 ∈ Ω1, Ω1 ⊂ Ω2. Let Φ : K ∩ (Ω2 \ Ω1) → K be a completely

continuous operator such that

(i) ‖Φx‖ ≤ ‖x‖ for x ∈ K ∩ ∂Ω1 (or x ∈ K ∩ ∂Ω2), and

(ii) there exists ψ ∈ K\{0} such that x 6= Φx +λψ for x ∈ K ∩∂Ω2 (or x ∈ K ∩∂Ω1)

and λ > 0.

Then Φ has a fixed point in K ∩ (Ω2 \ Ω1).

Remark 1.2 In Theorem 1.1, the use of (ii) gives better results than using the com-

mon assumption ‖Φx‖ ≥ ‖x‖ for x ∈ K ∩ ∂Ω2(or x ∈ K ∩ ∂Ω1).

2 Some Results on Time Scales

In this section, we state some fundamental definitions and results concerning time

scales, so that the paper is self-contained. For more details, one can refer to [1, 7, 8,

17, 21].

Definition 2.1 Assume that x : T →R and fix t ∈ T (if t = sup T, we assume t is

not left-scattered). Then x is called delta differentiable at t ∈ T if there exists a θ ∈ R

such that for any given ε > 0, there is an open neighborhood U of t such that

∣

∣x(σ(t)) − x(s) − θ|σ(t) − s|
∣

∣ ≤ ε|σ(t) − s|, s ∈ U .

In this case, θ is called the delta derivative of x at t ∈ T and is denoted by θ =

x△(t).

If F△(t) = f (t), then we define the delta integral by

∫ t

a

f (s)△s = F(t) − F(a).

Definition 2.2 A function f : T →R is called rd-continuous provided it is contin-

uous at right-dense points in T, and its left-sided limits exist at left-dense points in

T. The set of rd-continuous f : T →R will be denoted by Crd.
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Lemma 2.3 If f ∈ Crd and t ∈ T
k, then

∫ σ(t)

t
f (s)△s = µ(t) f (t), where µ(t) =

σ(t) − t is the graininess function.

Lemma 2.4 If f △ ≥ 0, then f is increasing.

Lemma 2.5 Assume that f , g : T →R are delta differentiable at t, then

( f g)△(t) = f △(t)g(t) + f (σ(t))g△(t) = f (t)g△(t) + f △(t)g(σ(t)).

Definition 2.6 A function p : T →R is regressive provided

1 + µ(t)p(t) 6= 0 for all t ∈ T
k.

The set of all regressive and rd-continuous functions will be denoted by R.

Definition 2.7 We define the set R+ of all positively regressive elements of R by

R
+

= {p ∈ R : 1 + µ(t)p(t) > 0 for all t ∈ T}.

Definition 2.8 If p ∈ R, then the delta exponential function is given by ep(t, s) =

exp(
∫ t

s
g(τ )△τ ), where

g(τ ) =

{

p(τ ), if µ(τ ) = 0,
1

µ(τ )
Log(1 + p(τ )µ(τ )), if µ(τ ) 6= 0,

where Log is the principal logarithm.

Lemma 2.9 If p ∈ R, then

(i) ep(t, t) ≡ 1;

(ii) ep(t, s) =
1

ep(s,t)
;

(iii) ep(t, u)ep(u, s) = ep(t, s);

(iv) e
△
p (t, t0) = p(t)ep(t, t0), for t ∈ T

k and t0 ∈ T.

Lemma 2.10 If p ∈ R+ and t0 ∈ T, then ep(t, t0) > 0 for all t ∈ T.

3 Main Results

Throughout the rest of this paper, we will always assume that the points of impulse

tk are right-dense for each k = 1, 2, . . . , m.

We define

PC = {x ∈ [0, σ(T)]T → Rn : xk ∈ C( Jk, Rn), k = 1, 2, . . . , m, and there exist

x(t+
k ) and x(t−k ) with x(t−k ) = x(tk), k = 1, 2, . . . , m},

where xk is the restriction of x to Jk = (tk, tk+1]T ⊂ (0, σ(T)]T, k = 1, 2, . . . , m and

J0 = [0, t1]T, Jm+1 = σ(T).
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Let

X =

{

x(t) : x(t) =
(

x1(t), x2(t), . . . , xn(t)
)T

∈ PC, x(0) = x
(

σ(T)
)

}

with the norm ‖x‖ =
∑n

i=1 |xi |0, where |xi |0 = supt∈[0,σ(T)]T
|xi(t)|. Then X is a

Banach space.

Definition 3.1 A function y ∈ PC∩C1( J\{t1, t2, . . . , tm}, R) is said to be a solution

of PBVP (1.4) when n = 1 if and only if y satisfies the dynamic equation

y△(t) + p(t)y(σ(t)) = f (t, y(σ(t))) everywhere on J\{t1, t2, . . . , tm},

the impulsive conditions

y(t+
k ) − y(t−k ) = Ik(y(t−k )), k = 1, 2, . . . , m,

and the periodic boundary condition y(0) = y(σ(T)).

Lemma 3.2 ([36]) Suppose h : [0, T]T → R is rd-continuous, then y is a solution of

y(t) =

∫ σ(T)

0

G(t, s)h(s)△s +

m
∑

k=1

G(t, tk)Ik(y(tk)), t ∈ [0, σ(T)]T,

where

G(t, s) =















ep(s, t)ep(σ(T), 0)

ep(σ(T), 0) − 1
, 0 ≤ s ≤ t ≤ σ(T),

ep(s, t)

ep(σ(T), 0) − 1
, 0 ≤ t < s ≤ σ(T),

if and only if y is a solution of the boundary value problem











y△(t) + p(t)y(σ(t)) = h(t), t ∈ J := [0, T]T, t 6= tk, k = 1, 2, . . . , m,

y(t+
k ) − y(t−k ) = Ik(y(t−k )), k = 1, 2, . . . , m,

y(0) = y(σ(T)).

Remark 3.3 When T = R, Lemma 3.2 is reduced to [25, Lemma 2.1].

Lemma 3.4 For i ∈ {1, 2, . . . , n}, let Gi(t, s) be defined by

Gi(t, s) =















epi
(s, t)epi

(σ(T), 0)

epi
(σ(T), 0) − 1

, 0 ≤ s ≤ t ≤ σ(T),

epi
(s, t)

epi
(σ(T), 0) − 1

, 0 ≤ t < s ≤ σ(T),

then

Ai ,
1

epi
(σ(T), 0) − 1

≤ Gi(t, s) ≤
epi

(σ(T), 0)

epi
(σ(T), 0) − 1

, Bi .
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Define A , min1≤i≤n Ai , B , max1≤i≤n Ai , and let

K =
{

x(t) : x(t) = (x1(t), x2(t), . . . , xn(t))T ∈ X : xi(t) ≥ δ|xi |0, i = 1, 2, . . . , n
}

,

where δ =
A
B
∈ (0, 1). Obviously, K is a cone in X.

We define an operator Φ : K → X as follows:

(Φx)(t) =
(

(Φ1x)(t), (Φ2x)(t), . . . , (Φnx)(t)
)T

,

where

(Φix)(t) =

∫ σ(T)

0

Gi(t, s) fi(s, x(σ(s)))△s +

m
∑

k=1

Gi(t, tk)Ii
k(x(tk)), t ∈ [0, σ(T)]T.

By Lemma 3.2, it is easy to see that fixed points of Φ are the solutions to the system

(1.4).

Lemma 3.5 Φ : K → K is completely continuous.

Proof Suppose x ∈ K; it is easy to see that Φx ∈ X. Then for all x ∈ K, by Lemma 3.4

we get

|Φix|0 ≤ Bi

∫ σ(T)

0

fi

(

s, x(σ(s))
)

△s + Bi

m
∑

k=1

Ii
k

(

x(tk)
)

.

So,

(Φix)(t) =

∫ σ(T)

0

Gi(t, s) fi

(

s, x(σ(s))
)

△s +

m
∑

k=1

Gi(t, tk)Ii
k

(

x(tk)
)

≥ Ai

∫ σ(T)

0

fi

(

s, x(σ(s))
)

△s + Ai

m
∑

k=1

Ii
k(x(tk))

=
Ai

Bi

[

Bi

∫ σ(T)

0

fi

(

s, x(σ(s))
)

△s + Bi

m
∑

k=1

Ii
k

(

x(tk)
)

]

≥ δ|Φix|0.

This shows that Φ : K → K. Furthermore, with similar arguments as in [36], we

can prove that Φ : K → K is completely continuous.

Notation Let

Fa
= lim

x∈K, ‖x‖→a
sup

∫ σ(T)

0
F(s, x)△s

‖x‖
, Fa = lim

x∈K, ‖x‖→a
inf

∫ σ(T)

0
F(s, x)△s

‖x‖

and

Ia
= lim

x∈K, ‖x‖→a
sup

∑m
j=1 I j(x)

‖x‖
, Ia = lim

x∈K, ‖x‖→a
inf

∑m
j=1 I j(x)

‖x‖
,

where a denotes either 0 or ∞.

Now we state our main results.
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Theorem 3.6 Assume that the following conditions are satisfied:

(H1) 0 < F0, I0 < 1
2B

;

(H2) 1
2A

< F∞, I∞ < ∞.

Then system (1.4) has at least one positive solution.

Proof Since 0 < F0, I0 < 1
2B

, we may choose ρ1 > 0 such that

(3.1)

∫ σ(T)

0

F(s, x)△s ≤
ρ1

2B
,

m
∑

j=1

I j(x) ≤
ρ1

2B
for 0 ≤ ‖x‖ ≤ ρ1.

Set Ω1 = {x ∈ X : ‖x‖ < ρ1}, then Ω1is a bounded open subset of X and 0 ∈ Ω1.

Thus, if x ∈ K ∩ ∂Ω1, then from (3.1), we have

‖Φx‖ =

n
∑

i=1

|Φix|0 ≤ B

n
∑

i=1

∫ σ(T)

0

| fi(s, x(σ(s)))|△s + B

n
∑

i=1

m
∑

k=1

|Ii
k(x(tk))|

= B

∫ σ(T)

0

F(s, x(σ(s)))△s + B

m
∑

k=1

Ik(x(tk)) ≤ B ·
ρ1

2B
+ B ·

ρ1

2B
= ρ1 = ‖x‖.

This implies

(3.2) ‖Φx‖ ≤ ‖x‖ for x ∈ K ∩ ∂Ω1.

On the other hand, in view of 1
2A

< F∞, I∞ < ∞, there exists η > ρ1 such that

for ‖x‖ ≥ η

∫ σ(T)

0

F(s, x)△s ≥ (F∞ − ε)‖x‖,

m
∑

j=1

I j(x) ≥ (I∞ − ε)‖x‖,

where ε is chosen so that 0 < ε < 1
2

(

F∞ + I∞ − 1
A

)

. Let ρ2 =
η
δ

and Ω2 =

{x ∈ X : ‖x‖ < ρ2}. Obviously, Ω2 is an open subset of X with Ω1 ⊂ Ω2. Choose

ψ = (1, 1, . . . , 1)T ∈ K\{0}, then we can claim that for any x ∈ K ∩∂Ω2 and λ > 0,

(3.3) x 6= Φx + λψ.

In fact, if not, there exist x ∈ K ∩ ∂Ω2 and λ > 0 such that x = Φx + λψ.

Then ‖x‖ = ‖Φx + λψ‖, that is

ρ2 = ‖x‖ =

n
∑

i=1

|Φix + λ|0

≥ A

n
∑

i=1

∫ σ(T)

0

| fi(s, x(σ(s)))|△s + A

n
∑

i=1

m
∑

k=1

|Ii
k(x(tk))| + nλ

= A

∫ σ(T)

0

F(s, x(σ(s)))△s + A

m
∑

k=1

Ik(x(tk)) + nλ

≥ Aρ2(F∞ + I∞ − 2ε) + nλ > ρ2 + nλ.
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This is a contradiction.

Therefore, by Theorem 1.1, it follows from Lemma 3.5, (3.2), and (3.3) that Φ has

a fixed point x∗ ∈ K ∩ (Ω2 \Ω1) with ρ1 ≤ ‖x∗‖ ≤ ρ2 which is a positive solution of

system (1.4).

Remark 3.7 Using the following (h∗
1 ) instead of (H1) and (H2), the conclusion of

Theorem 3.6 is true.

(h∗
1 ) F0 + I0 < 1

B
and F∞ + I∞ < 1

A
.

Theorem 3.8 Assume that the following conditions are satisfied:

(H3) F0
= I0

= 0;

(H4) F∞ = I∞ = ∞.

Then system (1.4) has at least one positive solution.

Since the proof similar to that of Theorem 3.6, we omit it here.

Theorem 3.9 Assume that the following conditions are satisfied:

(H5) 0 < F∞, I∞ < 1
2B

;

(H6) 1
2A

< F0, I0 < ∞.

Then system (1.4) has at least one positive solution.

Proof Since 0 < F∞, I∞ < 1
2B

, we may choose ρ3 > 0 such that

(3.4)

∫ σ(T)

0

F(s, x)△s ≤
‖x‖

2B
,

m
∑

j=1

I j(x) ≤
‖x‖

2B
for ‖x‖ ≥ ρ3.

Set Ω3 = {x ∈ X : ‖x‖ < ρ3}, then Ω3 is a bounded open subset of X and

0 ∈ Ω3.Thus, if x ∈ K ∩ ∂Ω3, then from (3.4), we have

‖Φx‖ =

n
∑

i=1

|Φix|0 ≤ B

n
∑

i=1

∫ σ(T)

0

| fi(s, x(σ(s)))|△s + B

n
∑

i=1

m
∑

k=1

|Ii
k(x(tk))|

= B

∫ σ(T)

0

F(s, x(σ(s)))△s + B

m
∑

k=1

Ik(x(tk)) ≤ B ·
‖x‖

2B
+ B ·

‖x‖

2B
= ‖x‖.

This implies

(3.5) ‖Φx‖ ≤ ‖x‖ for x ∈ K ∩ ∂Ω3.

On the other hand, in view of 1
2A

< F0, I0 < ∞, there exists 0 < ρ4 < ρ3 such

that for 0 ≤ ‖x‖ ≤ ρ4,

∫ σ(T)

0

F(s, x)△s ≥ (F0 − ε0)‖x‖,
m

∑

j=1

I j(x) ≥ (I0 − ε0)‖x‖,
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where ε0 is chosen so that 0 < ε0 < 1
2
(F0 + I0 −

1
A

).

Let Ω4 = {x ∈ X : ‖x‖ < ρ4}. Obviously, Ω4 is an open subset of X with

Ω4 ⊂ Ω3. Choose ψ = (1, 1, . . . , 1)T ∈ K\{0}, then we can claim that for any

x ∈ K ∩ ∂Ω4 and µ > 0

(3.6) x 6= Φx + µψ.

In fact, if not, there exist x ∈ K ∩ ∂Ω4 and µ > 0 such that x = Φx + µψ. Then

‖x‖ = ‖Φx + µψ‖, that is,

‖x‖ =

n
∑

i=1

|Φix + µ|0

≥ A

n
∑

i=1

∫ σ(T)

0

| fi(s, x(σ(s)))|△s + A

n
∑

i=1

m
∑

k=1

|Ii
k(x(tk))| + nµ

= A

∫ σ(T)

0

F(s, x(σ(s)))△s + A

m
∑

k=1

Ik(x(tk)) + nµ

≥ A(F0 − ε0)‖x‖ + A(I0 − ε0)‖x‖ + nµ > ‖x‖ + nµ.

This leads to a contradiction.

Therefore, by Theorem 1.1 it follows from Lemma 3.5, (3.5), and (3.6) that Φ has

a fixed point x∗ ∈ K ∩ (Ω3 \Ω4) with ρ4 ≤ ‖x∗‖ ≤ ρ3 which is a positive solution of

system (1.4).

Remark 3.10 Using the following (h∗
2 ) instead of (H5) and (H6), the conclusion of

Theorem 3.9 is true.

(h∗
2 ) F∞ + I∞ < 1

B
and F0 + I0 < 1

A
.

Theorem 3.11 Assume that the following conditions are satisfied:

(H7) F∞
= I∞ = 0;

(H8) F0 = I0 = ∞.

Then system (1.4) has at least one positive solution.

Since the proof similar to that of Theorem 3.9, we omit it here.

4 Example

Example 4.1 Let T = [0, 1] ∪ [2, 3]. We consider the following PBVP on T

(4.1)











x△(t) + x
(

σ(t)
)

= F
(

t, x(σ(t))
)

, t ∈ [0, 3]T, t 6= 1
2
,

x
(

1
2

+)

− x
(

1
2

−)

= I
(

x
(

1
2

))

,

x(0) = x(3),

where n = 2, P(t) = diag[p1(t), p2(t)] ≡ diag[1, 1], T = 3, and

f1(t, x) = (1 + t)x2
1, f2(t, x) = (1 + t)x3

2, I1(x) = x2
1, I2(x) = x3

2.
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Then it is easy to see that F0
= I0

= 0, F∞ = I∞ = ∞. Therefore, together with

Theorem 3.8, it follows that system (4.1) has at least one positive solution.
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