
EFFECT OF COSSERATS' COUPLE-STRESSES
ON THE STRESS DISTRIBUTION

IN A SEMI-INFINITE MEDIUM
WITH VARYING MODULUS OF ELASTICITY

GUNADHAR PARIA

(Received 24 June 1965)

Summary

The theory of Cosserats' couple-stresses is briefly described in a
cartesian system of coordinates, and is applied to the problem of stress
distribution in a semi-infinite medium which possesses a non-homogeneous
elastic property of an exponential type. Effects of couple-stresses on the
stress concentration factors are determined both in homogeneous and non-
homogeneous materials.

1. Introduction

The classical theory of deformation of an elastic solid body has been
developed on the understanding that the stress tensor is symmetric. This
is because of the fact that only in special types of media, for example, granu-
lar soils [1], the stress tensor is found to be non-symmetric. But, under cer-
tain circumstances, the common materials in which stresses are believed
to be symmetric may behave as those having non-symmetric properties for
the stresses. These are the cases where moments, for example magnetic
moments, are acting at each point of the medium. A theory which takes into
account these moments, called the couple-stresses, and which introduces
as a consequence the non-symmetric properties of the stress tensor, was
developed by Cosserats [2] long ago. It is only in recent years [3—14]
that the theory is being revived. The development and applications of this
theory will no doubt open up a new branch in the theory of deformations of
solid bodies.

The present paper is concerned with the application of the Cosserats'
theory of couple-stresses to the problem of stress distribution in a semi-
infinite solid which possesses the non-homogeneous elastic properties [15]
of a specified nature, and is stressed by surface tractions. A method of suc-
cessive approximations is adopted for the solution of the problem. The ef-
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fects of couple stresses on the anti-symmetric part of the stress components
are shown graphically in both the cases when the material is homogeneous
and also when it is non-homogeneous to an approximation of the first order.

2. Cosserats' equations of equilibrium

We write the equations of equilibrium in cartesian coordinates that
hold in a stressed body when the couple stresses are taken into account, be-
sides the usual normal and shearing stresses [8]. In two dimensional problems,
let (am, Oxy) denote as usual the normal and shearing stresses on a plane
perpendicular to the a;-axis, while [ix denotes the couple-stress per unit area
on this plane. Similarly, we denote by (ayy, ayx) the normal and shearing
stresses on a plane perpendicular to the y-axis, and the couple-stress on
this plane by [iy. The consideration of the equilibrium of forces, as done by
Mindlin [8], parallel to the x and y axes gives the equations

if the body forces are neglected. The consideration of the equilibrium
of moments implies

.„ _. d/im d(iy
(2.2) - ^ A—— 4- <r_—o*m = 0,v ' dx ^ By " m

if the body-couples are omitted. Equations (2.1) and (2.2) are called Cosse-
rats' equations of equilibrium for the stressed body. Equation (2.2) shows
that the usual assumptions of the symmetric property aM = om need not be
necessarily true if the couple stresses are taken into consideration. The so-
lutions of these equations in terms of stress functions may be obtained as
follows.

Equations (2.1) are satisfied if

dy
(2.3) y

d<pz

and then the equation (2.2) is satisfied if

d<p d<p
Ty ^

Hence all the components of stresses and stress-couples may be expressed
in terms of three stress functions q>, 9?x and <pt.
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3. Kinematics of deformations

In a state of plane strain parallel to the xy-plane, the non-vanishing
components (u, v) of the displacement vector are functions of x and y. The
strain components

du dv dv du
+

are associated with the stress components au, while the local rotation com-
ponent

j. /dv du\
2\dx~"dy)

will be associated with the couple-stresses fia and /iy. The couple-stresses
/ix and /iy will produce a curvature KX of the material fibre parallel to the
x-axis. Similarly, /xv will give rise to the curvature KV of a fibre parallel to
the y-axis. From geometry, it has been shown by Mindlin [8] that

do> dco

The compatibility condition between the strains is

fl2« fft/, fflp

y ' ' dy*
4

dy* dx% dxdy'

while that between the curvatures is obtained from (3.1) as

dy dx

A compatibility condition between KX (or KV) and the strain components
may be found by eliminating to, so that

{3-4) * = *!?-IT
It may be noted that other compatibility relations may be deduced from
the three relations (3.1), (3.2), (3.3), and may be used if required.

4. Constitutive relations

We assume that the curvatures are proportional to the couple-stresses so
that [8]

1 1
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where B is a modulus of curvature characteristic of the material. By putting
B = 0 we can recover the results for the corresponding cases when couple-
stresses are neglected, that is, when the stresses are symmetric.

In the case of plane strain the normal strains (exx, eyv) are related to the
normal stresses (a^, oyy) as

1+v

(4-2)
1+v

where E is Young's modulus and v is the Poisson ratio. The symmetric part

of the shear stresses (axy, ayx) produces the shear strain exv and hence

1 1+v
(4-3) exy = —as = - ^ - (axv+ayx),

where G = %E/(l+v) is the shear modulus. The anti-symmetric part

(4-4) aA = \{oxy-ayx)

of the shear stresses produce the rotation co, and the relation between aA

and co may be obtained with the help of equations (2.2), (4.1), and (3.1).

5. Fundamental equations in non-homogeneous material

The material coefficients E, v and B are in general functions of coor-
dinates in a non-homogeneous material [16]. In the present discussion we
shall consider v and B as constants while E (x, y) will be taken as a function
of position coordinates (x, y) and later of y only. Equations (3.3) and (4.1)
then show that we may take

a w „ -dxp „ -dy>

\ / r'X — ~r\— ' r*v — *

ox cy
so that ip is the potential function for the couple stresses. The functions
<Pi, 9?2 i n equations (2.3) can be eliminated with the help of (2.4) and (5.1) as

By dxdy vy 8x* ' dxdy
(5.2)
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Thus the stresses and stress-couples can be expressed in terms of two func-
tions <p and y>. If relations (4.2), (4.3) and (5.2) are utilised the compatibility
equations (3.2) and (3.4) yield respectively

\ )

(-) + ̂  - i1-) + ̂  - (-)
\E) ^ Bx* 8x* \E) ^ dy* dy* \E}

Shp_ t&_ _ _a«\ n\ ,L&v_ _ ^1 , ^ ) J ! _ ( L \
dxdy\dx* dyV\E) \ dxdy 8x* dy2) dxdy\E/

2B(l+v) dx E dx x r> E dy

+ dxly + dx^ "" dy^J Yx \E)

W2 ax^ v ay U /

Equations (5.3) and (5.4) determine <p and y> if the boundary conditions are
prescribed.

6. Non-homogeneous semi-infinite media with surface loads

In order to illustrate the foregoing theory and the effect of couple-
stresses on the non-homogeneity of the material, we consider the problem
of a semi-infinite elastic medium with a surface load. Let y = 0 be the bound-
ing plane and suppose the medium occupies the space y ^ 0. Let the sur-
face load on y = 0 be equal to (—Ao cos mx), and the shearing force and
the couple-stress on it be zero. Thus the boundary conditions on y = 0 are

dx2 dx dy

(6-1)

mx,

Moreover, all physical quantities must tend to zero as y tends to infinity.
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(6-3) 
{ dy2 

(6.4) 

- (1- j -ouH*) ( V « V ) - 2 ( 1 - ^ ) | - (V»y)J = 0, 

where 

2 ( i + r ) £ a2 a2 

( 6 . 5 )

 i t L . " - S i + v" 
It can be shown that I is of the dimension of length [8]. Let us take 

(6.6) <p = F(y) cos tnx, rp = f{y) sin mx. 

Then the equations (6.3) and (6.4) yield 
(6.7) (D2-m2)*F = J p i ( D ) . F + P , ( D ) / ] . 

(D2-m\)f - - D(D2-m*)F 
m 

(6.8) 

= - <ur»{2{\-v)Pt{D)F-mPAD)f], 
m 

where 

m\ = W 2 _j_ 2. > D = ~ , 
I2 dy 

and we have introduced the operater functions 

Let the law of variation for Young's modulus be assumed as 

(6.2) 1 = i- ( 1 + « - * ) 

where /3 is positive, but a may be positive or negative, so that E varies from 
the value EJ(l-\- a) at y = 0 to E0 at y oo, Such assumptions are very 
frequent in the literature on non-homogeneous materials [16]. B y putting 
a — 0, the results for homogeneous materials may be deduced. 

Now if the relation (6.2) is used in equations (5.3) and (5.4) we obtain 
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= (D2-tn2)2-2pD(D2—m2)+p2(D2—m2)

P2(D) = D(D2-m2)-p ( ^ j
•(6.9)
V 7 P(D) = D2-pD-m2,

= D2-2pD-m2.

The boundary conditions (6.1) now imply

(6.10) F(0) = ^ 2 , DF(0)-mf(0) = 0, Z>/(0) = 0.

It is important to note that »»! ->• oo as / -> 0 and hence the results in the
following sections are to be taken when / ^ 0, that is, when mx is finite.

7. Solution of the problem

Equations (6.7) and (6.8) will be solved by a method of successive ap-
proximations. Assuming that the parameter a characterising the non-homo-
geneity of the material is small, we take

(7.1) F(y) = 2 «TFr(y), f(y) = £ <*•%&)•

Substituting these values in equations (6.7) and (6.8) and equating like
powers of a, we obtain the approximations of the zero-th order as

2(1 — v)
(7.2) (D2-m2)*F0 = 0, {D2~m\)f0 - - i '- D(D2-m2)F0 = 0,

tn

while the approximations of the first order are as follows.

(7-3)

1 1 tn 1 tn
-tnPt(D)f0].

Similarly, the rth order approximations are

(D2-tn2)2Fr = ~-e->

(7.4)

{D2-m\)fT- 2(l~v"> D{D2-m2)Fr = -
tn tn
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The boundary conditions (6.10) now imply

(7.5) F o ( 0 ) = ^ , DF0(0) -m/0(0) = 0, D/0(0) = 0
m

and,

(7.6) FK(0) = 0, DFK(0)-mfK(0) = 0, DfK(O) = 0

/c= 1,2, 2,
Solutions for Fo and /0 are obtained from (7.2) as

(7-7) ^° =

/o —

if the vanishing conditions for y ->• oo are used. The boundary conditions
(7.5) yield

(7.8) «0 = ^ , b0

where

A =

so that

(7-9) F 0 = ^ ( l + ^

Using these values in the first of the equations (7.3) and then integrating
we obtain

(7.10)

Now, the second of equations (7.3) gives

—v (1—r
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To evaluate the second term in the right hand side of this equation, we use
the expression for Fx as given by (7.10). It is seen after a little lengthy cal-
culation that

X
\ 1 1—v / 1—v j

, — Q-" v i f—i )vni-rPi _(mi+^)V
1 /̂ o i n t c\ \ A ^

where

l
Also, we have the identity

BA

^ l-v

Substituting these values in (7.11) we obtain

m((}+2m)(l —

X \pm2y \- 4(1—v)/?:

(7.12)
'itil*H.-uti\m.*l.* I

+
t(l-v)A0m(l+2pmil*) ^ )v

P(p+2m)A

To evaluate the constants of integration alt blt cx involved in (7.10) and
(7.12) we use the conditions (7.6) for the case k = 1. These yield the follow-
ing equations.
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a1+1+(p+2m)2A

4A0mH2(l+pm1l
2) _

pm1{l+2pm1l
2+pH*)A

(7.14) ma1—{l+4:(l—v)mHs}b1+mc1+aa = 0,

(7.15) 4(l-j>)m2/2&1-w1c1+c2 = 0,

where a2 and c2 are defined by

(7.16) H ?-5 \4:(l-v)Ptn2l2i
(P+2m)(l—2mpi2—P2l2)A |_ I

8(1—1
H

[ ( )P [m

2ws

4(l-r)^0w2(l+2/?w1i2)

and

c, =
m(P+2m)(l-2mpi2-pH2)A

(7-17)

(/

H

Equation (7.13) determines a1( and then equations (7.14) and (7.15) give
bt and cx. Thus the problemris formally solved. Detailed discussion of the
effects of couple-stresses is given in the subsequent sections.

Since the value of cx will be required afterwards, we determine it from
(7.14) and (7.15) as
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8. Effect of couple-stresses on the stresses
in a homogeneous material

The functions Fo and f0 given by (7.9) correspond to the solution of the
problem for the homogeneous material. To obtain an estimate of the effect
of couple-stresses in the homogeneous material we consider the anti-symme-
tric part of the stress tensor, which is most important from the standpoint
of the present discussion. This is given by the equation (4.4) together with
the last two equations in (5.2), that is,

(8-1) OA = \lpn-oj = -£VV

Recalling that / = /0 in the homogeneous case, we obtain, after substitution
from (6.6) and (7.9),

, , 2(1— v)Aom
(8.2 aA = —^— e~m^ sm mx.

Since avx = 0 on y = 0, this gives

(8-3) (<*A-o = (O*=o = ~2(l-v)A0my sin mx,

where

(8.4) - = mxA = mx f l + 4 ( l - v ) J 2 w 2 ( l - —VI .
y L \ « V J

Thus y is the influence factor for couple-stresses. It depends upon the Pois-
son ratio v and the load distribution factor m as well as the parameter I.
It is easily seen that y -> 0 when l-> 0, while y -> l/w(3—2v) when I -*• oo,
so that y varies from the value zero to the asymptotic value l/w(3—2v).
In fact, y ci I for small values of I, while

l-(l/2/2m2)

for large /. Table I gives the values of y for different values of / and v, where
we have taken m — 1 in the non-dimensional coordinates. Figure 1 gives their
graphical representations. It is however to be noted that I is generally small,
so that the graph in the neighbourhood of the origin is most representative.

TABLE I

Values of y for various values of J and v (m = 1.0)

0.0
0.3
0.5

0.0

0.0
0.0
0.0

0.2

0.173
0.180
0.185

0.4

0.251
0.294
0.315

0.6

0.304
0.347
0.383

0.8

0.319
0.375
0.422

1.0

0.326
0.389
0.446

6.0

0.333
0.416
0.498
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0.5

0.4 -

0.3 -

0.2-

0.1 -

0.0

Figure 1

9. Effect of couple-stresses on the stresses
in a non-homogeneous material

Equation (7.1) shows that the functions Ft and /x characterize the ef-
fect of the couple-stresses on the stress distribution in a non-homogeneous
material to a first approximation. As in the previous section, we consider
the anti-symmetric part of the stress tensor, that is,

°A = z(axv~avx) = — 2 V V

Since / = a.fx in the present case, the substitution from (6.6) in the above
relation gives

(9.1) aA = -1*[D

Since ayx = 0 on y = 0, we have

sin tnx.
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(9.2) {<JA)V-O = ( O v - 0 = -k*N s i n m x

where

(9.3) N = (D«/i-w«/i),-o

represents the effect of the non-homogeneity to the first approximation as
seen from (7.1), and also contain the effect of couple-stresses. Substituting
the value of fx from (7.12) we obtain

+ \*{l,)fimw(4m+2fi
V- m(l-2mpP-pHi)A L \ ^ H m

p+2m
(9.4)

80)A

where cx is determined by (7.18).
The influence stress N is thus a function of I and other parameters such

as the load factor m and the exponential factor /3. In non-dimensional coor-
dinates we can always take m = 1. Moreover, there will not be much loss of
generality by taking $ = 1 for detailed discussion of the value of N. The
parameter Z is generally small and hence we may neglect I3 and higher powers
of / in comparison with unity. Then we obtain

VT+p I

»h = — p - , d = 1+4(1 -v)P, — = l -4 ( l -v ) / 2 ,

and relations (7.13), (7.16) and (7.17) simplify to

( 19 112 ~ 3(II^)J {1-4(1^)^-

Hence from (7.18)

(9.6) - 1 = ±(I-v)Aol* ( | ) + f?
V ' J2 l ' ° I 21(1—v)f I
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Moreover, (9.4) now simplifies to 

N 
(9.7) 

L ( l - * w { f 4- — + 2 
27( l -v)J I 

( l _ v ) , 4 0 [ i + 4 + / - 4 ( l - v ) / 

| P - 4 ( l - r ) / » | [l-f2/Vl-W2+^]-

By the statement in Section 6, the value of N given by (9.7) is valid if I 
is a finite non-zero (small) quantity. As / tends to zero, it may be seen that 
N tends to a finite value. In fact, [iV/{4(l — v)A0}] -> 1. But putting I = 0 
in earlier equations (6.4) or (7.12), it is found that the function y> and hence 
the functions fT are all identically zero. That is, the non-homogeneity alone 
cannot produce non-symmetric stresses, as is also well known. The discon
tinuity of N at / = 0 shows that, if the material is assumed to be even slightly 
non-homogeneous, the effect of couple-stresses becomes immediately pro
nounced. 

The values of Nj2-8A0 for different values of I are given in Table II and 
the graphical representation in Figure 2, where we have taken v = 0-3 for 
definiteness. As seen from the figure, the non-symmetric surface stress in
creases with the increase of the parameter of the couple-stresses. 

TABLE II 
(v - 0.3) 

I 0.001 0.01 0.05 0.1 0.2 0.5 

NI2-&A0 1.000 1.025 1.125 1.336 1.535 1.637 

2.0 

l.oH 

Figure 2 
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