CODES ASSOCIATED WITH $S p(4, q)$ AND EVEN-POWER MOMENTS OF KLOOSTERMAN SUMS

JI HYUN KIM

(Received 31 July 2008)

Abstract

Here we derive a recursive formula for even-power moments of Kloosterman sums or equivalently for power moments of two-dimensional Kloosterman sums. This is done by using the Pless power-moment identity and an explicit expression of the Gauss sum for $\operatorname{Sp}(4, q)$.

2000 Mathematics subject classification: primary 94A24, 11L05.
Keywords and phrases: linear code, symplectic group, Gauss sum, Kloosterman sum, Pless power moment identity, weight distribution.

1. Introduction

Let χ_{1} be the canonical additive character of the finite field \mathbb{F}_{q} with $q=2^{r}$, and let m be a positive integer.

The m-dimensional Kloosterman [7] sum $K_{m}(a)$ is given by

$$
K_{m}(a)=K_{m}\left(\chi_{1} ; a\right)=\sum_{x_{1}, \ldots, \chi_{m} \in \mathbb{F}_{q}^{*}} \chi_{1}\left(x_{1}+\cdots+x_{m}+a x_{1}^{-1} \cdots x_{m}^{-1}\right) \quad\left(a \in \mathbb{F}_{q}^{*}\right) .
$$

In particular, if $m=1$, then $K_{1}(a):=K(a)$ is called the Kloosterman sum. The Kloosterman [5] sum was introduced in 1926 to give an estimate for the Fourier coefficients of modular forms.

Let h be a nonnegative integer, and let

$$
M K_{m}^{h}:=\sum_{a \in \mathbb{F}_{q}^{*}} K_{m}(a)^{h}
$$

denote the h th moment of the m-dimensional Kloosterman sum $K_{m}(a)$. Furthermore, $M K_{1}^{h}$ is simply denoted by $M K^{h}$. The power moments of Kloosterman sums over

[^0](C) 2009 Australian Mathematical Society 0004-9727/2009 \$16.00
finite fields of characteristic 2 have been studied in an estimate for the Kloosterman sums and have been used in solving a variety of problems from coding theory.

Carlitz obtained $M K^{h}$ for $h \leq 4$ in [1], and Moisio computed $M K^{6}$ in [11]. Lately, Moisio [9] evaluated $M K^{h}$, for $\bar{h} \leq 10$, by connecting moments of Kloosterman sums and the frequencies of weights in the binary Zetterberg code of length $q+1$, which were known by the work of Schoof and Van der Vlugt in [12].

In this paper, we adopt Moisio's idea to show the following theorem giving a recursive formula for the even-power moments of Kloosterman sums. To do that, we construct the codes $C(S p(4, q))$ associated with finite symplectic groups $S p(4, q)$, and express the power moments in terms of the frequencies of weights in the code. We could construct the codes $C(S p(2, q))$ associated with $S p(2, q)=S L(2, q)$ and get a recursive formula producing power moments of Kloosterman sums. But this case has been treated already in [4].

Thanks to the previous result on the explicit expression of 'Gauss sum' for the symplectic groups (see [3]), we can represent the weight of each codeword in the dual $C^{\perp}(S p(4, q))$ of $C(S p(4, q))$ in terms of two-dimensional Kloosterman sums. Then we get the following recursive formula from the Pless power-moment identity.
THEOREM 1.1. For any positive integer h, the even-power moments $M K^{2 h}$ of the Kloosterman sum $K(a)$ are given by

$$
\begin{aligned}
q^{4 h} M K^{2 h}= & \sum_{i=0}^{h-1}(-1)^{i+h+1}\binom{h}{i}\left(N-q^{7}+q^{5}\right)^{h-i} q^{4 i} M K^{2 i} \\
& +q \sum_{i=0}^{\min \{N, h\}}(-1)^{i+h} C_{i} \sum_{t=i}^{h} t!S(h, t) 2^{h-t}\binom{N-i}{N-t}
\end{aligned}
$$

Here

$$
\begin{equation*}
N=|S p(4, q)|=q^{4}\left(q^{2}-1\right)\left(q^{4}-1\right) \tag{1.1}
\end{equation*}
$$

and $S(h, t)$ indicates the Stirling number of the second kind given by

$$
\begin{equation*}
S(h, t)=\frac{1}{t!} \sum_{j=0}^{t}(-1)^{t-j}\binom{t}{j} j^{h} \tag{1.2}
\end{equation*}
$$

In addition, $\left\{C_{i}\right\}_{i=0}^{N}$ denotes the weight distribution of the code $C=C(\operatorname{Sp}(4, q))$ given by

$$
\begin{equation*}
C_{i}=\sum\binom{q^{9}-q^{6}-q^{5}}{v_{0}} \prod_{\beta \in \mathbb{F}_{q}^{*}}\binom{n_{\beta}}{v_{\beta}} \tag{1.3}
\end{equation*}
$$

where $n_{\beta}=q^{4} K\left(\chi_{1} ; \beta^{-1}\right)+q^{9}-q^{7}-q^{6}-q^{5}$ and the sum runs over all the set of nonnegative integers $\left\{v_{\beta}\right\}_{\beta \in \mathbb{F}_{q}}$ satisfying $\sum_{\beta \in \mathbb{F}_{q}} v_{\beta}=i$ and $\sum_{\beta \in \mathbb{F}_{q}} \nu_{\beta} \beta=0$ (an identity in \mathbb{F}_{q}).

We obtain an alternative recursive formula from Carlitz [2, Theorem 2.6].

Corollary 1.2. For any positive integer h, we have the following recursive formula for the moments $M K_{2}^{h}$ of the two-dimensional Kloosterman sums,

$$
\begin{aligned}
q^{4 h} M K_{2}^{h}= & \sum_{i=0}^{h-1}(-1)^{i+h+1}\binom{h}{i}\left(N-q^{7}\right)^{h-i} q^{4 i} M K_{2}^{i} \\
& +q \sum_{i=0}^{\min \{N, h\}}(-1)^{i+h} C_{i} \sum_{t=i}^{h} t!S(h, t) 2^{h-t}\binom{N-i}{N-t}
\end{aligned}
$$

where C_{i} is the weight distribution of the code $C=C(S p(4, q))$ given by (1.3), and $S(h, t)$ indicates the Stirling number of the second kind given by (1.2).

2. Preliminaries

The following notation will be used throughout this paper:
(i) $\quad q=2^{r}\left(r \in \mathbb{Z}_{>0}\right)$;
(ii) $S p(2 n, q)=$ the symplectic group over \mathbb{F}_{q} defined by

$$
\left\{\left.g \in G L(2 n, q)\right|^{t} g J g=J\right\} \text {, with } J=\left[\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right] ;
$$

(iii) $N=q^{n^{2}} \prod_{j=1}^{n}\left(q^{2 j}-1\right)$ the order of $\operatorname{Sp}(2 n, q)$;
(iv) $\operatorname{Tr}(g)=$ the matrix trace for $g \in S p(2 n, q)$;
(v) $\operatorname{tr}(x)=x+x^{2}+\cdots+x^{2^{r-1}}$ the trace function $\mathbb{F}_{q} \rightarrow \mathbb{F}_{2}$;
(vi) $\quad \chi_{1}(x)=(-1)^{\operatorname{tr}(x)}$ the canonical additive character of \mathbb{F}_{q};
(vii) $\chi_{a}(x)=\chi_{1}(a x)$ an additive character of $\mathbb{F}_{q}\left(a \in \mathbb{F}_{q}\right)$.

Let $g_{1}, g_{2}, \ldots, g_{N}$ be a fixed ordering of the elements in $\operatorname{Sp}(4, q)$. Let $C=$ $C(S p(4, q))$ be the binary linear code of length N defined by

$$
C=\left\{u \in \mathbb{F}_{2}^{N} \mid u \cdot v=0\right\}
$$

where $v=\left(\operatorname{Tr}\left(g_{1}\right), \ldots, \operatorname{Tr}\left(g_{N}\right)\right) \in \mathbb{F}_{q}^{N}$.
THEOREM 2.1 (Delsarte [8]). Let B be a linear code over \mathbb{F}_{q}, then

$$
\left(\left.B\right|_{\mathbb{F}_{2}}\right)^{\perp}=\operatorname{tr}\left(B^{\perp}\right)
$$

From Delsarte's theorem, the next result follows immediately.
THEOREM 2.2. The dual $C^{\perp}=C^{\perp}(S p(4, q))$ of $C=C(S p(4, q))$ is given by

$$
C^{\perp}=\left\{c(a)=\left(\operatorname{tr}\left(a \operatorname{Tr}\left(g_{1}\right)\right), \ldots, \operatorname{tr}\left(a \operatorname{Tr}\left(g_{N}\right)\right)\right) \mid a \in \mathbb{F}_{q}\right\}
$$

We need the next theorem about the Gauss sum for $\operatorname{Sp}(2 n, q)$.
THEOREM 2.3 (Kim [3]). For any nontrivial additive character $\chi_{a}\left(a \in \mathbb{F}_{q}^{*}\right)$ of \mathbb{F}_{q}, the Gauss sum over $\operatorname{Sp}(2 n, q)$

$$
\sum_{g \in S p(2 n, q)} \chi_{a}(\operatorname{Tr}(g))
$$

is given by

$$
\begin{aligned}
& q^{n^{2}-1} \sum_{r=0}^{[n / 2]} q^{r(r+1)}\left[\begin{array}{l}
n \\
r
\end{array}\right]_{q} \prod_{i=1}^{r}\left(q^{2 i-1}-1\right) \sum_{l=1}^{[(n-2 r+2) / 2]} q^{l} K\left(\chi_{a} ; 1\right)^{n-2 r+2-2 l} \\
& \quad \times \sum \prod_{v=1}^{l-1}\left(q^{j_{v}}-1\right)
\end{aligned}
$$

where the innermost sum is over all integers j_{1}, \ldots, j_{l-1} satisfying $2 l-3 \leq j_{1} \leq$ $n-2 r-1,2 l-5 \leq j_{2} \leq j_{1}-2, \ldots, 1 \leq j_{l-1} \leq j_{l-2}-2$.

Here, for integers n, r with $0 \leq r \leq n$, the q-binomial coefficients are given by

$$
\left[\begin{array}{l}
n \\
r
\end{array}\right]_{q}=\prod_{j=0}^{r-1}\left(q^{n-j}-1\right) /\left(q^{r-j}-1\right)
$$

We need the case, $n=2$, of Theorem 2.3.
Corollary 2.4. For any $a \in \mathbb{F}_{q}^{*}$,

$$
\begin{equation*}
\sum_{g \in S p(4, q)} \chi_{a}(\operatorname{Tr}(g))=q^{4}\left\{K\left(\chi_{a} ; 1\right)^{2}+q^{3}-q\right\} \tag{2.1}
\end{equation*}
$$

The following result is easy to verify.
Lemma 2.5. For any $a \in \mathbb{F}_{q}^{*}$, the Kloosterman sum $K\left(\chi_{a} ; 1\right)$ is equal to $K\left(\chi_{1} ; a\right)$.
THEOREM 2.6 (Carlitz [2]).

$$
K_{2}\left(\chi_{1} ; a\right)=K\left(\chi_{1} ; a\right)^{2}-q
$$

So, from Lemma 2.5 and Theorem 2.6, we have the following alternative description of (2.1).
Corollary 2.7. For any $a \in \mathbb{F}_{q}^{*}$,

$$
\begin{align*}
\sum_{g \in S p(4, q)} \chi_{a}(\operatorname{Tr}(g)) & =q^{4}\left\{K\left(\chi_{1} ; a\right)^{2}+q^{3}-q\right\} \tag{2.2}\\
& =q^{4}\left\{K_{2}\left(\chi_{1} ; a\right)+q^{3}\right\} \tag{2.3}
\end{align*}
$$

Proposition 2.8. For $\beta \in \mathbb{F}_{q}^{*}$,

$$
\begin{align*}
& \sum_{a \in \mathbb{F}_{q}^{*}} \chi_{1}(-a \beta) \sum_{g \in S p(4, q)} \chi_{1}(a \operatorname{Tr} g) \tag{2.4}\\
& \quad= \begin{cases}q^{8}-q^{7}-q^{4} & \text { if } \beta=0 \\
q^{5} K\left(\chi_{1} ; \beta^{-1}\right)-q^{7}-q^{4} & \text { if } \beta \neq 0\end{cases} \tag{2.5}
\end{align*}
$$

Proof. Using (2.3), (2.4) is equal to

$$
\begin{aligned}
q^{4} & \sum_{a \in \mathbb{F}_{q}^{*}} \chi_{1}(-a \beta)\left\{K_{2}\left(\chi_{1} ; a\right)+q^{3}\right\} \\
= & q^{4} \sum_{a \in \mathbb{F}_{q}^{*}} \chi_{1}(-a \beta) K_{2}\left(\chi_{1} ; a\right)+q^{7} \sum_{a \in \mathbb{F}_{q}^{*}} \chi_{1}(-a \beta) \\
= & q^{4}\left\{\sum_{a \in \mathbb{F}_{q}^{*}} \chi_{1}(-a \beta) \sum_{x_{1}, x_{2} \in \mathbb{F}_{q}^{*}} \chi_{1}\left(x_{1}+x_{2}+a x_{1}^{-1} x_{2}^{-1}\right)\right\}+q^{7}\left\{\sum_{a \in \mathbb{F}_{q}} \chi_{1}(-a \beta)-1\right\} \\
= & q^{4}\left\{\sum_{x_{1}, x_{2} \in \mathbb{F}_{q}^{*}} \chi_{1}\left(x_{1}+x_{2}\right) \sum_{a \in \mathbb{F}_{q}^{*}} \chi_{1}\left(a\left(x_{1}^{-1} x_{2}^{-1}-\beta\right)\right)\right\}+q^{7} \sum_{a \in \mathbb{F}_{q}} \chi_{1}(-a \beta)-q^{7} \\
= & q^{4}\left\{\sum_{x_{1}, x_{2} \in \mathbb{F}_{q}^{*}} \chi_{1}\left(x_{1}+x_{2}\right) \sum_{a \in \mathbb{F}_{q}} \chi_{1}\left(a\left(x_{1}^{-1} x_{2}^{-1}-\beta\right)\right)-\sum_{x_{1}, x_{2} \in \mathbb{F}_{q}^{*}} \chi_{1}\left(x_{1}+x_{2}\right)\right\} \\
& +q^{7} \sum_{a \in \mathbb{F}_{q}} \chi_{1}(-a \beta)-q^{7} \\
= & q^{4} \begin{cases}\left.\sum_{x_{1}, x_{2} \in \mathbb{F}_{q}^{*}} \chi_{1}\left(x_{1}+x_{2}\right)+(-1)^{3}\right\}+q^{7} \sum_{a \in \mathbb{F}_{q}} \chi_{1}(-a \beta)-q^{7} \\
= & \text { if } \beta=0, \\
x_{1}^{-1} x_{2}^{-1}=\beta & \text { q } \beta \neq 0 . \\
q^{5} K\left(q_{1} ; \beta^{-1}\right)-q^{7}-q^{4} & \text { if } \beta \neq 0 .\end{cases}
\end{aligned}
$$

Proposition 2.9. Let $n_{\beta}=|\{g \in \operatorname{Sp}(4, q) \mid \operatorname{Tr}(g)=\beta\}|$, for each $\beta \in \mathbb{F}_{q}$. Then

$$
n_{\beta}= \begin{cases}q^{9}-q^{6}-q^{5} & \text { if } \beta=0 \\ q^{4}\left\{K\left(\chi_{1} ; \beta^{-1}\right)+q^{5}-q^{3}-q^{2}-q\right\} & \text { if } \beta \neq 0\end{cases}
$$

Proof.

$$
\begin{aligned}
q n_{\beta} & =\sum_{g \in S p(4, q)} \sum_{a \in \mathbb{F}_{q}} \chi_{a}(\operatorname{Tr} g) \bar{\chi}_{a}(\beta) \\
& =\sum_{a \in \mathbb{F}_{q}} \bar{\chi}_{a}(\beta) \sum_{g \in S p(4, q)} \chi_{a}(\operatorname{Tr} g) \\
& =|S p(4, q)|+\sum_{a \in \mathbb{F}_{q}^{*}} \bar{\chi}_{a}(\beta) \sum_{g \in S p(4, q)} \chi_{a}(\operatorname{Tr} g) .
\end{aligned}
$$

Our results now follow from (1.1) and (2.5).
The following corollary is immediate from the above proposition.
Corollary 2.10. $\operatorname{Tr}: \operatorname{Sp}(4, q) \rightarrow \mathbb{F}_{q}$ is surjective.

Proof. From Proposition 2.9 and using the Weil bound $\left|K\left(\chi_{1} ; a\right)\right| \leq 2 \sqrt{q}\left(a \in \mathbb{F}_{q}^{*}\right)$, we see that

$$
n_{\beta}=|\{g \in \operatorname{Sp}(4, q) \mid \operatorname{Tr}(g)=\beta\}|>0 \quad \text { for all } \beta \in \mathbb{F}_{q}
$$

THEOREM 2.11. $\Psi: \mathbb{F}_{q} \rightarrow C^{\perp}(S p(4, q))$ with $\Psi(a)=c(a)$ is an \mathbb{F}_{2}-linear isomorphism.

Proof. It is \mathbb{F}_{2}-linear and surjective. Let a be in $\operatorname{Ker} \Psi$. Then $\operatorname{tr}(a \operatorname{Tr}(g))=0$, for all $g \in \operatorname{Sp}(4, q)$. In view of Corollary $2.10, \operatorname{tr}(a \beta)=0$, for all $\beta \in \mathbb{F}_{q}$. Since the trace map $\operatorname{tr}: \mathbb{F}_{q} \rightarrow \mathbb{F}_{2}$ is surjective, $a=0$.

Proposition 2.12. For $a \in \mathbb{F}_{q}^{*}$, the Hamming weight of the codeword

$$
c(a)=\left(\operatorname{tr}\left(a \operatorname{Tr}\left(g_{1}\right)\right), \ldots, \operatorname{tr}\left(a \operatorname{Tr}\left(g_{N}\right)\right)\right)
$$

is given by

$$
\begin{align*}
w(c(a)) & =\frac{1}{2}\left(N-q^{4}\left\{K\left(\chi_{1} ; a\right)^{2}+q^{3}-q\right\}\right) \tag{2.6}\\
& =\frac{1}{2}\left(N-q^{4}\left\{K_{2}\left(\chi_{1} ; a\right)+q^{3}\right\}\right) . \tag{2.7}
\end{align*}
$$

Proof.

$$
\begin{aligned}
w(c(a)) & =\frac{1}{2} \sum_{i=1}^{N}\left(1-(-1)^{\operatorname{tr}\left(a \operatorname{Tr}\left(g_{i}\right)\right)}\right) \\
& =\frac{1}{2}\left(N-\sum_{i=1}^{N} \chi_{1}\left(a \operatorname{Tr}\left(g_{i}\right)\right)\right) .
\end{aligned}
$$

Our results now follow from (1.1) and (2.2)-(2.3).

3. Proof of main results

Theorem 3.1 (Pless Power Moment Identity [8]). Let B be a q-ary [n,k] code, and let B_{i} (respectively B_{i}^{\perp}) denote the number of codewords of weight i in B (respectively in B^{\perp}). Then, for $h=0,1, \ldots$,

$$
\sum_{i=0}^{n} i^{h} B_{i}=\sum_{i=0}^{\min \{n, h\}}(-1)^{i} B_{i}^{\perp} \sum_{t=i}^{h} t!S(h, t) q^{k-t}(q-1)^{t-i}\binom{n-i}{n-t}
$$

where $S(h, t)$ denotes the Stirling number of the second kind defined by

$$
S(h, t)=\frac{1}{t!} \sum_{j=0}^{t}(-1)^{t-j}\binom{t}{j} j^{h}
$$

THEOREM 3.2 (Lachaud and Wolfman [6]). Let $q=2^{r}$, with $r \geq 2$. Then the range R of $K\left(\chi_{1} ;\right.$ a $)$, as a varies over \mathbb{F}_{q}^{*}, is given by

$$
R=\{t \in \mathbb{Z}| | t \mid<2 \sqrt{q}, t \equiv-1(\bmod 4)\} .
$$

In addition, each value $t \in R$ is attained exactly $H\left(t^{2}-q\right)$ times, where $H(d)$ is the Kronecker class number of d.

Let $u=\left(u_{1}, \ldots, u_{N}\right) \in \mathbb{F}_{q}^{N}$, with ν_{β} 1s in the coordinate places where $\operatorname{Tr}\left(g_{j}\right)=\beta$, for each $\beta \in \mathbb{F}_{q}$. Then we see from the definition of the code $C=C(S p(4, q))$ that u is a codeword with weight i if and only if $\sum_{\beta \in \mathbb{F}_{q}} \nu_{\beta}=i$ and $\sum_{\beta \in \mathbb{F}_{q}} \nu_{\beta} \beta=0$ (an identity in \mathbb{F}_{q}). As there are $\prod_{\beta \in \mathbb{F}_{q}}\binom{n_{\beta}}{\nu_{\beta}}$ many such codewords with weight i, we obtain the following theorem.

THEOREM 3.3. Let $\left\{C_{i}\right\}_{i=0}^{N}$ be the weight distribution of the code $C=C(S p(4, q))$. Then, for $0 \leq i \leq N$,

$$
\begin{equation*}
C_{i}=\sum\binom{q^{9}-q^{6}-q^{5}}{v_{0}} \prod_{\beta \in \mathbb{F}_{q}^{*}}\binom{n_{\beta}}{v_{\beta}} \tag{3.1}
\end{equation*}
$$

where $n_{\beta}=q^{4}\left\{K\left(\chi_{1} ; \beta^{-1}\right)+q^{5}-q^{3}-q^{2}-q\right\}$ and the sum runs over all the sets of nonnegative integers $\left\{\nu_{\beta}\right\}_{\beta \in \mathbb{F}_{q}}$ satisfying $\sum_{\beta \in \mathbb{F}_{q}} \nu_{\beta}=i$ and $\sum_{\beta \in \mathbb{F}_{q}} \nu_{\beta} \beta=0$.

Corollary 3.4. Assume that $r \geq 2$, and that $\left\{C_{i}\right\}_{i=0}^{N}$ is the weight distribution of the code $C=C(\operatorname{Sp}(4, q))$. Then, for $0 \leq i \leq N$,

$$
C_{i}=\sum\binom{m_{0}}{v_{0}} \prod_{\substack{|t|<2 \sqrt{q} \\ \text { with } t \equiv-1(\bmod 4)}} \prod_{K\left(\chi_{1} ; \beta^{-1}\right)=t}\binom{m_{t}}{v_{\beta}}
$$

where

$$
m_{0}=n_{0}=q^{9}-q^{6}-q^{5}
$$

and

$$
m_{t}=q^{4}\left(q^{5}-q^{3}-q^{2}-q+t\right)
$$

for all $t \in \mathbb{Z}$ satisfying $|t|<2 \sqrt{q}$, and $t \equiv-1(\bmod 4)$.
We are now ready to prove Theorem 1.1, which is the main result of this paper.
Proof of Theorem 1.1. We apply the Pless power moment identity with $B=$ $C^{\perp}(S p(4, q))$. Then, with $\left\{C_{i}^{\perp}\right\}_{i=0}^{N}$ the weight distribution of $C^{\perp}(S p(4, q))$, we have

$$
\begin{equation*}
\sum_{i=0}^{N} i^{h} C_{i}^{\perp}=\sum_{i=0}^{\min \{N, h\}}(-1)^{i} C_{i} \sum_{t=i}^{h} t!S(h, t) 2^{r-t}\binom{N-i}{N-t} \tag{3.2}
\end{equation*}
$$

The left-hand side of (3.2) is given by

$$
\begin{aligned}
\sum_{i=0}^{N} i^{h} C_{i}^{\perp} & =\sum_{a \in \mathbb{F}_{q}^{*}} w(c(a))^{h} \quad(\text { By Theorem 2.11) } \\
& =\frac{1}{2^{h}} \sum_{a \in \mathbb{F}_{q}^{*}}\left(N-q^{4}\left\{K\left(\chi_{1} ; a\right)^{2}+q^{3}-q\right\}\right)^{h} \quad(\text { By (9)) } \\
& =\frac{1}{2^{h}} \sum_{i=0}^{h}(-1)^{i}\binom{h}{i}\left(N-q^{7}+q^{5}\right)^{h-i} q^{4 i} M K^{2 i} \\
& =\frac{1}{2^{h}}(-1)^{h} q^{4 h} M K^{2 h}+\frac{1}{2^{h}} \sum_{i=0}^{h-1}(-1)^{i}\binom{h}{i}\left(N-q^{7}+q^{5}\right)^{h-i} q^{4 i} M K^{2 i}
\end{aligned}
$$

On the other hand, the right-hand side of (3.2) is given by

$$
\frac{q}{2^{h}} \sum_{i=0}^{\min \{N, h\}}(-1)^{i} C_{i} \sum_{t=i}^{h} t!S(h, t) 2^{h-t}\binom{N-i}{N-t}
$$

Here the frequencies C_{i} of codewords with weight i in $C=C(S p(4, q))$ are given by (3.1).

Now, Corollary 1.2 follows from (2.7).

References

[1] L. Carlitz, 'Gauss sums over finite fields of order 2^{n} ', Acta Arith. 15 (1969), 247-265.
[2] ——, 'A note on exponential sums', Pacific J. Math. 30 (1969), 35-37.
[3] D. S. Kim, 'Gauss sums for symplectic groups over a finite field', J. Monatsh. Math. 126 (1998), 55-71.
[4] ——, 'Codes associated with special linear groups and power moments of multi-dimensional Kloosterman sums', submitted.
[5] H. D. Kloosterman, 'On the representation of numbers in the form $a x^{2}+b y^{2}+c z^{2}+d t^{2}$, Acta Math. 49 (1926), 407-464.
[6] G. Lachaud and J. Wolfmann, 'The weights of the orthogonals of the extended quadratic binary Goppa codes', IEEE Trans. Inform. Theory 36 (1990), 686-692.
[7] R. Lidl and H. Niederreiter, Finite Fields, 2nd edn, Encyclopedia of Mathematics and its Applications, 20 (Cambridge University Press, Cambridge, UK, 1997).
[8] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error Correcting Codes (North-Holland, Amsterdam, The Netherlands, 1998).
[9] M. J. Moisio, 'The moments of a Kloosterman sum and the weight distribution of a Zetterberg-type binary cyclic code', IEEE Trans. Inform. Theory 53(2) (2007), 843-847.
[10] - 'Kloosterman sums, elliptic curves, and irreducible polynomials with prescribed trace and norm', Acta Arith. 132(4) (2008), 329-350.
[11] M. Moisio and K. Ranto, 'Kloosterman sum identities and low-weight codewords in a cyclic code with two zeros', Finite Fields Appl. 13 (2007), 922-935.
[12] R. Schoof and M. van der Vlugt, 'Hecke operators and the weight distributions of certain codes', J. Combin. Theory Ser. A 57 (1991), 163-186.

JI HYUN KIM, Department of Mathematics, Sogang University, Seoul 121-742, South Korea
e-mail: mip97@hanmail.net

[^0]: This work was supported by grant No. R01-2006-000-11176-0 from the Basic Research Program of the Korea Science and Engineering Foundation.

