IRREDUGIBILITY OF BERNOULLI POLYNOMIALS OF HIGHER ORDER

P. J. McCARTHY

The Bernoulli polynomials of order k, where k is a positive integer, are defined by

$$
\left(\frac{t}{e^{t}-1}\right)^{k} e^{x t}=\sum_{m=0}^{\infty} B_{m}^{(k)}(x) \frac{t^{m}}{m!} .
$$

$B_{m}{ }^{(k)}(x)$ is a polynomial of degree m with rational coefficients, and the constant term of $B_{m}{ }^{(k)}(x)$ is the m th Bernoulli number of order $k, B_{m}{ }^{(k)}$. In a previous paper (3) we obtained some conditions, in terms of k and m, which imply that $B_{m}{ }^{(k)}(x)$ is irreducible (all references to irreducibility will be with respect to the field of rational numbers). In particular, we obtained the following two results.

Theorem A. Let p be an odd prime and let $k \leqslant p$ and $t>0$. Then $B_{m(p-1) p^{t(k)}}(x)$ is irreducible for $1 \leqslant m \leqslant p$.

Theorem B. For any integer $k \geqslant 1$ there is an integer $T(k)$ such that for all $t \geqslant T(k), B_{2^{t}}{ }^{(k)}(x)$ is irreducible.

In viewing Theorem A, one is led to wonder what the situation is when $k>p$. In this paper we shall give at least a partial answer to this question. We shall show that a result like Theorem B holds for all primes. Furthermore, we shall obtain an explicit bound for the $T(k)$ of Theorem B.

First, however, we must introduce some terminology and notation. Let p be any prime. A polynomial with rational coefficients will be called a p-Eisenstein polynomial if it satisfies the conditions of the Eisenstein irreducibility criterion with p as the prime involved in the conditions. Such a polynomial is irreducible.

If k is a positive integer and p is a prime, write

$$
\begin{array}{cl}
k=a_{1} p^{j_{1}}+a_{2} p^{j_{2}}+\ldots+a_{r} p^{j_{r}}, & 0 \leqslant j_{1}<j_{2}<\ldots<j_{r}, \\
0 \leqslant a_{i} \leqslant p-1, & i=1,2, \ldots, r,
\end{array}
$$

and set $j_{p}(k)=j_{1}$ and $r_{p}(k)=r$. We shall make use of the following result of Carlitz (2, Theorem A).

Theorem C. If k is a positive integer and p is a prime, then the denominator of $p^{r_{p}(k)} B_{m}{ }^{(k)}$ is prime to p for all m.

We shall now turn to the principal result of this paper.

[^0]Theorem 1. Let p be a prime, let $1 \leqslant m<p$, and let $n=m(p-1) p^{t}$. Further, let $T^{*}{ }_{p}(1)=0$ and for $k \geqslant 2$,

$$
T_{p}^{*}(k)=\max \left[T_{p}^{*}(k-1), r_{p}(k-1)\right]+j_{p}(k-1)
$$

Then, for all $t \geqslant T^{*}{ }_{p}(k), p B_{n}{ }^{(k)}(x)$ is a p-Eisenstein polynomial.
Proof. For $k=1$ the result follows from the work of Carlitz (1, §2). We now assume that $k>1$ and that $B_{n}{ }^{(k-1)}(x)$ is irreducible for all $t \geqslant T_{p}^{*}(k-1)$. Let $t \geqslant T^{*}{ }_{p}(k)$. We have (4, p. 145)

$$
B_{n}^{(k)}(x)=\left(1-\frac{n}{k-1}\right) B_{n}^{(k-1)}(x)+(x-k+1) \frac{n}{k-1} B_{n-1}^{(k-1)}(x)
$$

Since $t \geqslant r_{p}(k-1)+j_{p}(k-1)$, it follows from Theorem C that both

$$
\frac{n}{k-1} B_{n}^{(k-1)}(x) \text { and } \frac{n}{k-1} B_{n-1}^{(k-1)}(x)
$$

have coefficients whose denominators are prime to p. Hence

$$
p B_{n}^{(k)}(x) \equiv p B_{n}^{(k-1)}(x) \quad(\bmod p)
$$

Since $t \geqslant T^{*}{ }_{p}(k-1), p B_{n}{ }^{(k-1)}(x)$ is a p-Eisenstein polynomial. Since the leading coefficient of $p B_{n}^{(k)}(x)$ is p, this polynomial is also a p-Eisenstein polynomial.

If we now define $T^{* *}{ }_{p}(k)$ to be the smallest non-negative integer such that for all $t \geqslant T^{* *}{ }_{p}(k), p B_{n}{ }^{(k)}(x)$ is a p-Eisenstein polynomial, then it is clear that if we redefine $T^{*}{ }_{p}(k)$ by $T_{p}^{*}(1)=0$ and for $k>2$,

$$
T_{p}^{*}(k)=\max \left[T_{p}^{* *}(k-1), r_{p}(k-1)\right]+j_{p}(k-1)
$$

the result of Theorem 1 continues to hold.
Corollary. With p, m, and n as in Theorem 1, there is, for each positive integer k, a smallest non-negative integer $T_{p}(k)$ such that for all $t \geqslant T_{p}(k)$, $B_{n}{ }^{(k)}(x)$ is irreducible.

Suppose that $k<p$. Then $r_{p}(k-1)=1$ and $j_{p}(k-1)=0$. Hence $T_{p}(k)$ $=1$. Thus, Theorems A and B are corollaries of Theorem 1 . We now consider in more detail the case $p=2$.

Theorem 2. Let k be a positive integer. For all $t \geqslant k, B_{2^{t}}{ }^{(k)}(x)$ is irreducible.
Proof. Let $T^{\prime}(1)=1$ and for $k>1$,

$$
T^{\prime}(k)=T^{\prime}(k-1)+j_{2}(k-1)
$$

We shall show that $T^{\prime}(k) \geqslant T^{*}(k)$. This is true when $k=1$. Suppose that $k>1$ and that $T^{\prime}(k-1) \geqslant T_{2}^{*}(k-1)$.

We first show that $T^{\prime}(k) \geqslant r_{2}(k)$ for $k \geqslant 1$. This is true for $k=1$, and we assume that $k>1$ and that $T^{\prime}(k-1) \geqslant r_{2}(k-1)$. If k is odd, then $j_{2}(k-1)$ >0, and so $T^{\prime}(k) \geqslant r_{2}(k-1)+1=r_{2}(k)$. If k is even, then $j_{2}(k-1)=0$,
and so $T^{\prime}(k)=T^{\prime}(k-1) \geqslant r_{2}(k-1)$. But $r_{2}(k) \leqslant r_{2}(k-1)$, so $T^{\prime}(k)$ $\geqslant r_{2}(k)$ in this case also. Thus, for all $k>1, T^{\prime}(k)=T^{\prime}(k-1)+j_{2}(k-1)$ $\geqslant \max \left[T_{2}^{*}(k-1), r_{2}(k-1)\right]+j_{2}(k-1)=T_{2}(k)$.

We see, therefore, that $B_{2^{t}}{ }^{(k)}(x)$ is irreducible for all $t \geqslant T^{\prime}(k)$. But, $T^{\prime}(k)$ $=T^{\prime}(1)+j_{2}(1)+\ldots+j_{2}(k-1)=1+$ (the number of times 2 divides $(k-1)!) \leqslant k$. This completes the proof of Theorem 2 . This result is the best possible that this particular proof can yield, since for all $t \geqslant 1, T^{\prime}\left(2^{t}\right)=2^{t}$.

The estimate $T_{2}(k) \leqslant k$ given by Theorem 2 is a very rough one indeed. We have determined that $T_{2}(1)=T_{2}(2)=T_{2}(4)=0$ and $T_{2}(3)=2$. In determining $T_{2}(k)$, the following facts are helpful. First, $B_{k-1}{ }^{(k)}(x)$ is reducible (4, p. 147). Second, $B_{2}{ }^{(k)}(x)$ is irreducible if and only if $3 k$ is not a perfect square (3, p. 317). Third, consulting the table on (4, p. 459), we find that $240 B_{4}{ }^{(k)}(x)=240 x^{4}-480 k x^{3}+120 k(3 k-1) x^{2}-120 k^{2}(k-1) x+k\left(15 k^{3}\right.$ $\left.-30 k^{2}+5 k+2\right)$: this is a 5 -Eisenstein polynomial if k is not divisible by 5 , and a 3 -Eisenstein polynomial if $k \equiv 1(\bmod 3)$. It would not be surprising if $B_{2^{t}}{ }^{(k)}(x)$ is irreducible except when $k=2^{t}+1$ and $t>0$. This is in accord with the more general conjecture that $B_{2 m}{ }^{(k)}(x)$ is irreducible except when $k=2 m+1$.

References

1. L. Carlitz, Note on irreducibility of the Bernoulli and Euler polynomials, Duke Math. J., 19 (1952), 475-481.
2. - A note on Bernoulli numbers of higher order, Scripta Math., 22 (1956), 217-221.
3. P. J. McCarthy, Some irreducibility theorems for Bernoulli polynomials of higher order, Duke Math. J., 27 (1960), 313-318.
4. N. E. Nörlund, Vorlesungen über Differenzenrechnung, Berlin (1924).

University of Kansas

[^0]: Received January 15, 1962.

