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Abstract. Motivated by a classical theorem of Schoenberg, we prove that an n + 1
point finite metric space has strict 2-negative type if and only if it can be isometrically
embedded in the Euclidean space �n of dimension n but it cannot be isometrically
embedded in any Euclidean space �r of dimension r < n. We use this result as a
technical tool to study ‘roundness’ properties of additive metrics with a particular
focus on ultrametrics and leaf metrics. The following conditions are shown to be
equivalent for a metric space (X, d): (1) X is ultrametric, (2) X has infinite roundness,
(3) X has infinite generalized roundness, (4) X has strict p-negative type for all p ≥ 0
and (5) X admits no p-polygonal equality for any p ≥ 0. As all ultrametric spaces have
strict 2-negative type by (4) we thus obtain a short new proof of Lemin’s theorem:
Every finite ultrametric space is isometrically embeddable into some Euclidean space
as an affinely independent set. Motivated by a question of Lemin, Shkarin introduced
the class M of all finite metric spaces that may be isometrically embedded into �2 as an
affinely independent set. The results of this paper show that Shkarin’s class M consists
of all finite metric spaces of strict 2-negative type. We also note that it is possible to
construct an additive metric space whose generalized roundness is exactly ℘ for each
℘ ∈ [1,∞].
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1. Introduction. The purpose of this paper is to study roundness properties of
additive metrics with a particular focus on ultrametrics and leaf metrics. All preliminary
material will be presented in Section 2. Section 3 examines the precise relationship
between strict 2-negative type and isometric Euclidean embeddings in the context of
finite metric spaces. A number of applications to discrete and distance geometry are
then derived from this relationship. Section 4 examines the range of possible values
of the generalized roundness of additive metric spaces. In the case of finite additive
metrics that are not ultrametrics, this range is seen to be (1,∞). Examples of finite leaf
metrics are given to show that all values in this range are in fact attained. The main
results in Section 5 show that the following conditions are equivalent for a metric space
(X, d):

(1) X is ultrametric.
(2) X has infinite roundness.
(3) X has infinite generalized roundness.
(4) X has strict p-negative type for all p ≥ 0.
(5) X admits no p-polygonal equality for any p ≥ 0.

It is possible to draw a large number of corollaries from these equivalences. For example,
on the basis of the equivalence of (1) and (4), it is possible to both recover and
generalize well-known theorems concerning the isometric embedding of ultrametric
spaces into Hilbert spaces. We do this by showing that if n > 1 is an integer and if
(X, d) is an n + 1 point metric space, then (X, d) has strict 2-negative type if and only
if (X, d) can be isometrically embedded in the Euclidean space �n of dimension n but
it cannot be isometrically embedded in any Euclidean space �r of dimension r < n.
As all ultrametric spaces have strict 2-negative type by (4), this generalizes Lemin
[29, Theorem 1.1]. More generally, we note that if an infinite metric space (X, d) of
cardinality ψ has p-negative type for some p > 2, then (X, d) can be isometrically
embedded as a closed subset in a Euclidean space of algebraic dimension ψ but it
cannot be isometrically embedded in any Euclidean space of algebraic dimension
σ < ψ . This generalizes Lemin [29, Theorem 1.2].

2. Ultrametrics, additive metrics, leaf metrics and roundness. We begin by
recalling the definition of an ultrametric space.

DEFINITION 2.1. A metric d on a set X is said to be ultrametric if for all x, y, z ∈ X ,
we have

d(x, y) ≤ max{d(x, z), d(y, z)}.

An important basic property of ultrametrics is expressed by the following well-
known lemma.

LEMMA 2.2. If (X, d) is an ultrametric space, then (X, dp) is an ultrametric space for
all p ≥ 0.

Proof. Let p ≥ 0 and points x, y, z ∈ X be given. By assumption, d(x, z) ≤
max{d(x, y), d(y, z)}. Clearly, d(x, z)p ≤ {max{d(x, y), d(y, z)}}p = max{d(x, y)p,

d(y, z)p}. Thus, dp is an ultrametric on X . �
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Interesting examples of ultrametric spaces include the rings Zp of p-adic integers,
the Baire space Bℵ0 , non-Archimedean normed fields and rings of meromorphic
functions on open regions of the complex plane. There is an immense body of literature
surrounding ultrametrics as they have been intensively studied by topologists, analysts,
number theorists and theoretical biologists for the best part of the last 100 years. For
example, de Groot [7] characterized ultrametric spaces up to homeomorphism as the
strongly zero-dimensional metric spaces. In numerical taxonomy, on the other hand,
every finite ultrametric space is known to admit a natural hierarchical description
called a dendrogram. This has significant ramifications in theoretical biology. See, for
instance, [18]. More recently, ultrametrics have figured prominently in the study of
embeddings of finite metric spaces into various ambient spaces such as �1 and �2.
There are many interesting papers along these lines, including [1, 2, 16]. Finally, as
noted in [44], ultrametric spaces play a significant role in other fields such as statistical
mechanics, neural networks and combinatorial optimization.

In fact, ultrametrics are special instances of a more general class of metrics which
are termed additive. As we have noted in Definition 2.1, ultrametrics are defined by
a stringent three-point criterion. The class of additive metrics satisfies a more relaxed
four-point criterion. The formal definition is as follows.

DEFINITION 2.3. A metric d on a set X is said to be additive if for all x, y, z, w in
X , we have

d(x, y) + d(z, w) ≤ max{d(x, z) + d(y, w), d(x, w) + d(y, z)}.

Recall that a metric tree is a connected graph (T, E) without cycles or loops in
which each edge e ∈ E is assigned a positive length |e|. The distance dT (x, y) between
any two vertices x, y ∈ T is then defined to be the sum of the lengths of the edges that
make up the unique minimal geodesic from x to y. The tree is said to be discrete if
there is a positive constant c such that |e| > c for all e ∈ E. It is an easy exercise to
verify that every metric tree is additive. Theorem 2 in [5], which is known as Buneman’s
criterion, shows that a finite metric space is additive if and only if it is a tree metric in
the sense of the following definition.

DEFINITION 2.4. A metric d on a set X is said to be a tree metric if there exists a
finite metric tree (T, E, dT ) such that:

(1) X is contained in the vertex set T of the tree and
(2) d(x, y) = dT (x, y) for all x, y ∈ X .

In other words, d is a tree metric if (X, d) is isometric to a metric subspace of some
finite metric tree.

The notions of finite metric tree and tree metric are distinct. The natural graph
metric on a finite tree is a tree metric but a tree metric d on a finite set X does not
necessarily imply the existence of an edge set that makes (X, d) into a finite metric tree.

Ultrametrics form a very special sub-class of the collection of all additive metrics.
Indeed, there is a close relationship between ultrametric spaces and the leaf sets or
end spaces of certain trees. This type of identification is discussed more formally in
[17, 22, 35]. However, metrics that arise by restricting the (possibly weighted) graph
metric of a tree to the leaf set of the tree are more general than ultrametrics, yet still
form an interesting sub-class of the collection of all additive metrics. It is helpful to
extract the following definition.
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DEFINITION 2.5. A metric d on a set X is a leaf metric if there exists a discrete
metric tree (T, E, dT ) such that:

(1) X is contained in the set LT of all leaves of T and
(2) d(x, y) = dT (x, y) for all x, y ∈ X .

In the case of finite metrics the following proper inclusions are easily seen to hold:

{ultrametrics} ⊂ {leaf metrics} ⊂ {additive metrics}.
It is possible to extend this hierarchy to the infinite case in certain ways but we will

not go into the specifics here, deferring instead to [18, 22−24].
The focus of this paper will be on roundness properties of ultrametrics, leaf metrics

and additive metrics. The notion of the roundness of a metric space was introduced by
Enflo [12, 14, 15] in order to study the uniform structure of Lp-spaces (0 < p ≤ 2).

DEFINITION 2.6. Let p ≥ 1 and let (X, d) be a metric space. We say that p is a
roundness exponent of (X, d), denoted by p ∈ r(X) or p ∈ r(X, d), if and only if for all
quadruples of points x00, x01, x11, x10 ∈ X , we have:

d(x00, x11)p + d(x01, x10)p ≤ d(x00, x01)p + d(x01, x11)p + d(x11, x10)p + d(x10, x00)p.

(2.1)

The roundness of (X, d), denoted by p(X) or p(X, d), is then defined to be the supremum
of the set of all roundness exponents of (X, d): p(X, d) = sup{p : p ∈ r(X, d)}.

The restriction p ≥ 1 in the statement of Definition 2.6 is not necessary. However,
p = 1 is a roundness exponent of any given metric space (X, d) by the triangle inequality.
Thus p(X, d) ≥ 1. The following simple proposition points out that every ultrametric
space has infinite roundness.

PROPOSITION 2.7. The set of roundness exponents of an ultrametric space is the
interval [1,∞).

Proof. Let (X, d) be an ultrametric space and let p ≥ 1 be given. By Lemma 2.2,
(X, dp) is a metric space. Thus, 1 ∈ R(X, dp), and so p is a roundness exponent of
(X, d). �

Notions of negative type and generalized roundness were formally introduced
and studied by Menger [33], Schoenberg [39−41] and Enflo [13] respectively. Rather
surprisingly, the notions of negative type and generalized roundness are actually
equivalent. This equivalence is recalled in Theorem 2.11. More recently, there has
been interest in the notion of strict p-negative type, particularly as it pertains to the
geometry of finite metric spaces. Papers which have been instrumental in developing a
basic theory of strict p-negative type metrics include [11, 20, 21, 31, 37, 38, 47].

DEFINITION 2.8. Let p ≥ 0 and let (X, d) be a metric space.
(1) (X, d) has p-negative type if and only if for all finite subsets {x1, . . . , xn} ⊆ X

and all choices of real numbers η1, . . . , ηn with η1 + · · · + ηn = 0, we have
∑

1≤i,j≤n

d(xi, xj)pηiηj ≤ 0. (2.2)

(2) (X, d) has strict p-negative type if and only if it has p-negative type and the
inequality (2.2) is strict whenever the scalar n-tuple (η1, . . . , ηn) 
= (0, . . . , 0).
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(3) We say that p is a generalized roundness exponent for (X, d), denoted by p ∈ gr(X)
or p ∈ gr(X, d), if and only if for all integers n > 0, and all choices of points
a1, . . . , an, b1, . . . , bn ∈ X , we have

∑
1≤k<l≤n

{
d(ak, al)p + d(bk, bl)p} ≤

∑
1≤j,i≤n

d(aj, bi)p. (2.3)

(4) The generalized roundness of (X, d), denoted by q(X) or q(X, d), is defined to
be the supremum of the set of all generalized roundness exponents of (X, d):
q(X, d) = sup{p : p ∈ gr(X, d)}.

REMARK 2.9. The set of all roundness exponents of a general metric space (X, d)
need not form an interval. Indeed, Enflo [15] constructed a four-point metric space
(X, d) such that 2 /∈ r(X, d) but q ∈ r(X, d) for some q > 2. However, in the case of a
Banach space (X, ‖ · ‖), r(X) is a (possibly degenerate) closed interval of the form [1, ℘]
for some ℘ ∈ [1, 2]. This result is Proposition 4.1.2 in [15]. By way of comparison, the
set of generalized roundness exponents of a general metric space (X, d) always forms
either a (possibly degenerate) closed interval of the form [0, ℘] for some ℘ ∈ [0,∞) or
a closed interval of the form [0,∞). This follows from Theorem 2 in [40] and Theorem
2.11 (see also Corollary 2.5 in Lennard et al. [30]).

It is plainly evident that every roundness inequality (2.1) can be expressed in
the form of a generalized roundness inequality (2.3) with the same exponent. Hence,
for any given metric space (X, d), generalized roundness cannot exceed roundness:
q(X, d) ≤ p(X, d). This fact together with two other basic properties of generalized
roundness is recorded in the following lemma. These results are well known and easily
verified on the basis of the definitions.

LEMMA 2.10. Let (X, d) be a metric space. Then the following statements hold:
(1) q(X, d) ≤ p(X, d).
(2) If q(X, d) < ∞, then q(X, d) ∈ gr(X, d).
(3) If p > 0 is such that dp is a metric on X and if β ∈ gr(X, dp), then βp ∈ gr(X, d).

As noted earlier, a surprising fact is that conditions (1) and (3) of Definition 2.8
are actually equivalent.

THEOREM 2.11. Let p ≥ 0 and let (X, d) be a metric space. Then the following
conditions are equivalent:

(1) (X, d) has p-negative type.
(2) For all s, t ∈ �, all choices of pairwise distinct points a1, . . . , as, b1, . . . , bt ∈ X

and all choices of real numbers m1, . . . , ms, n1, . . . , nt > 0 such that m1 + · · · +
ms = n1 + · · · + nt, we have:

∑
1≤j1<j2≤s

mj1 mj2 d(aj1 , aj2 )p +
∑

1≤i1<i2≤t

ni1 ni2 d(bi1 , bi2 )p ≤
s,t∑

j,i=1

mjnid(aj, bi)p.

(2.4)

(3) p is a generalized roundness exponent for (X, d).
Moreover, (X, d) has strict p-negative type if and only if the inequality (2.4) is strict for
all choices of pairwise distinct points a1, . . . , as, b1, . . . , bt ∈ X and all choices of real
numbers m1, . . . , ms, n1, . . . , nt > 0 such that m1 + · · · + ms = n1 + · · · + nt.
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The equivalence of conditions (1)–(3) in Theorem 2.11 is due to Lennard et al.
[30, Theorem 2.4]. The statement concerning strict p-negative type is due to Doust
and Weston [11, Remark 2.5]. An inequality of the form (2.4) that holds at equality
will be called a p-polygonal equality. The importance of p-polygonal equalities is that
they correspond in a very precise way to the non-trivial instances of equality in (2.2).
Non-trivial in this context means that not all η1, . . . , ηn are 0 in (2.2). The transition
between the two types of equality is described in several places, including Kelleher et
al. [25]. In the case of a finite metric space (X, d), if ℘ = q(X, d) < ∞, then X admits
a ℘-polygonal equality. This follows directly from Corollary 4.4 and Theorem 5.4 in
Li and Weston [31].

3. Euclidean embeddings and strict negative type. In this section, we examine
the interplay between strict p-negative type and isometric Euclidean embeddings in
the context of finite metric spaces. This leads to interesting variants of results of
Schoenberg [39], Deza and Maehara [9], Nickolas and Wolf [37], Lemin [29] and
Shkarin [42].

Given a finite metric space (X, d) = ({x0, x1, . . . , xn}, d) and a non-negative real
number p we let Dp denote the associated (n + 1) × (n + 1) p-distance matrix (dp(xj, xk))
(0 ≤ j, k ≤ n) and we let Ap = (ajk) denote the symmetric n × n matrix with entries

ajk = 1
2

(dp(x0, xj) + dp(x0, xk) − dp(xj, xk)), 1 ≤ j, k ≤ n.

The following fundamental result of Schoenberg (which appears as Theorem 1 in
[39]) shows that properties of the matrix A2 determine if (X, d) can be isometrically
embedded in a Euclidean space of finite dimension.

THEOREM 3.1 (Schoenberg [39]). Let n > 1 and m ≤ n be natural numbers. An
n + 1 point metric space (X, d) = ({x0, x1, . . . , xn}, d) can be isometrically embedded in
the Euclidean space �m of dimension m and no smaller dimension if and only if the matrix
A2 is positive semi-definite and of rank m.

With these ideas in mind, we now recast the notion of strict p-negative type for
finite metric spaces.

LEMMA 3.2. Let n > 1 be an integer and let (X, d) = ({x0, x1, . . . , xn}, d) be an n + 1
point metric space. For each real number p > 0 the following conditions are equivalent:

(1) (X, d) has strict p-negative type.
(2) The matrix Ap is positive definite.

Proof. Let p > 0 be given.
(1) ⇒ (2) Suppose (X, d) has strict p-negative type. If for each vector η =

(η1, . . . , ηn)T ∈ �n we set η0 = −(η1 + · · · + ηn) and define η∗ = (η0, η1, . . . , ηn)T ∈
�n+1, then it is not difficult to verify that 2(ηT · Ap · η) = −ηT

∗ · Dp · η∗. By definition
of strict p-negative type, ηT

∗ · Dp · η∗ < 0 for all non-trivial vectors η∗ ∈ �n+1 whose
coordinates sum to 0. This implies that ηT · Ap · η = − 1

2ηT
∗ · Dp · η∗) > 0 for all non-

trivial vectors η ∈ �n. In other words, the matrix Ap is positive definite.
(2) ⇒ (1) Suppose that Ap is positive definite. Consider a non-trivial vector η∗ =

(η0, η1, . . . , ηn)T in �n+1 whose coordinates sum to 0. Then it follows that the vector
η = (η1, . . . , ηn)T ∈ �n is also non-trivial and that η0 = −(η1 + · · · + ηn). As before, we

https://doi.org/10.1017/S0017089513000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089513000438


ROUNDNESS PROPERTIES OF ULTRAMETRIC SPACES 525

see that −ηT
∗ · Dp · η∗ = 2(ηT · Ap · η) > 0, which shows that (X, d) has strict p-negative

type. �

Results of Li and Weston [31] show that a finite metric space has strict p-negative
type if and only if it has q-negative type for some q > p. An important consequence of
Lemma 3.2 is that it provides for a version of Theorem 3.1 that is predicated in terms
of strict 2-negative type.

THEOREM 3.3. Let n > 1 be an integer. For an n + 1 point metric space (X, d) =
({x0, x1, . . . , xn}, d), the following conditions are equivalent:

(1) (X, d) has strict 2-negative type.
(2) (X, d) can be isometrically embedded in the Euclidean space �n of dimension n

but it cannot be isometrically embedded in any Euclidean space �r of dimension
r < n.

(3) There exists an isometry φ : (X, d) → �n such that the set

{φ(x1) − φ(x0), φ(x2) − φ(x0), . . . , φ(xn) − φ(x0)}

is linearly independent.

Proof. Let n > 1 be an integer and let (X, d) = ({x0, x1, . . . , xn}, d) be an n + 1
point metric space. We will use the same notation that was employed in the statement
and proof of Lemma 3.2.

(1) ⇒ (2) Suppose that (X, d) has strict 2-negative type. By Lemma 3.2, the matrix
A2 is positive definite, and so it must be of rank n. Therefore (X, d) can be isometrically
embedded in the Euclidean space �n of dimension n but it cannot be isometrically
embedded in any Euclidean space �r of dimension r < n by Theorem 3.1. (See also
Theorem 2.1, Corollary 2.2 and Theorem 2.4 in Wells and Williams [45].)

(2) ⇒ (1) Suppose (X, d) can be isometrically embedded in the Euclidean space
�n of dimension n but it cannot be isometrically embedded in any Euclidean space
�r of dimension r < n. By Theorem 3.1, the matrix A2 is positive semi-definite and of
full rank. So, in fact, A2 is positive definite. Thus, (X, d) has strict 2-negative type by
Lemma 3.2.

The equivalence of (2) and (3) is plain. �

The condition (3) in the statement of Theorem 3.3 may be restated in the following
more elegant way: (X, d) is isometrically embeddable into some Euclidean space as an
affinely independent set. Thus, bearing in mind that the transform dp/2 is a metric on
X provided 0 ≤ p ≤ 2, we obtain the following immediate corollary of Theorem 3.3.

COROLLARY 3.4. Let 0 ≤ p ≤ 2. A finite metric space (X, d) has strict p-negative
type if and only if (X, dp/2) is isometrically embeddable into some Euclidean space as an
affinely independent set.

It is possible to use Corollary 3.4 in conjunction with existing theory to identify
large classes of finite metric spaces that have strict p-negative type for a given p, 0 <

p ≤ 2. For example, the next corollary says that almost equilateral simplices necessarily
have strict 2-negative type.
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COROLLARY 3.5. Let n > 1 be an integer. If (X, d) = ({x0, x1, . . . , xn}, d) is an n + 1
point metric space with all non-zero distances satisfying 1 ≤ d(xj, xi) ≤ γn where

γn =
⎧⎨
⎩

√
1 + 2n+1

n2−2 if n is even√
1 + 2

n−1 if n is odd,

then (X, d) has strict 2-negative type.

Proof. Dekster and Wilker [8] have shown that any such finite metric space may
isometrically embedded into �

(n)
2 as an affinely independent set. The result now follows

from Corollary 3.4 in the case p = 2. �
Every finite metric space has p-negative type for some p > 0. In fact, if (X, d) is

an n + 1 point metric space for some integer n > 1, then there is a positive constant
℘ = ℘(n) > 0, depending only on n, such that (X, d) has ℘-negative type. This result
was obtained independently by Deza and Maehara [9] (Theorem 3) and Weston [46]
(Theorem 4.3). Indeed, it can be inferred from [9] that we may take ℘ = log2(1 + 1/n).
Moreover, as strict negative type holds on intervals by Theorem 5.4 in Li and Weston
[31], we may thus deduce the following theorem from Theorem 3.3 and Corollary 3.4.

THEOREM 3.6. Let n > 1 be an integer and let ℘ = log2(1 + 1/n). If (X, d) is an n + 1
point metric space and if 0 ≤ p < ℘, then the metric space (X, dp/2) can be isometrically
embedded in the Euclidean space �n of dimension n but it cannot be isometrically
embedded in any Euclidean space �r of dimension r < n.

REMARK 3.7. Theorem 3.6 is a version of Corollary 3 in Deza and Maehara [9] but
with additional control over the nature of the isometry. For technical reasons which
we shall not elaborate here, there is no expectation that the value ℘(n) = log2(1 + 1/n)
used in the statement of Theorem 3.6 is optimal. It is a challenging open problem
to compute sup ℘ where the supremum is taken over all ℘ = ℘(n) > 0 for which
Theorem 3.6 holds. This relates to the conjecture in Section 5 of [9]. In the restricted
case of an n + 1 point metric tree endowed with the usual graph metric, Theorem 3.6
will necessarily hold for a value of ℘ = ℘(n) > 1 that only depends on n. This follows
from Corollary 3.4 and Corollary 5.5 in Doust and Weston [11]. The best known value
of ℘(n) for unweighted n + 1 point metric trees is provided by Corollary 3.4 in [31].
Another important aspect of Corollary 3.4 and Theorem 3.6 arises in situations where
p = 1. This is the case of strict 1-negative type. For example, we obtain a version of
Theorem 3.4(3) in Nickolas and Wolf [37] by setting p = 1 in Corollary 3.4. However,
Theorem 3.4(3) in [37] provides additional measure theoretic information.

There is a neat way to apply Theorem 3.6 to one of the fundamental problems
of distance geometry; namely, the problem of realizing graphs in Euclidean spaces.
Let G = (V, E) be a finite simple connected graph whose edges are weighted by some
function d : E → (0,∞) and let k > 1 be an integer. Recall that, by definition, a
realization of the graph G in �

(k)
2 is a map κ : V → �

(k)
2 such that

∀ {u, v} ∈ E, d({u, v}) = ‖κ(u) − κ(v)‖2. (3.1)

It is worth stressing that such a function κ is not an embedding in any strict topological
sense. The notion of graph realization is only predicated upon the lengths of the
edges {u, v} ∈ E. Now assume that n = |G| > 2 and suppose that d({u, v}) = 1 for each
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{u, v} ∈ E. By Theorem 3.6, there is a p > 0 such that (G, dp/2) can be isometrically
embedded into �

(n−1)
2 as an affinely independent set. In particular, as 1p/2 = 1, we

see immediately that G may be realized in �
(n−1)
2 . In summary, we have obtained the

following result.

COROLLARY 3.8. Let G be a finite simple connected graph endowed with the ordinary
graph metric and suppose that n = |G| > 2. Then the graph G may be realized as an
affinely independent set in �

(n−1)
2 .

It is interesting to apply the theory discussed in this section to certain Cayley
graphs. The coarse Baum–Connes conjecture postulates an algorithm for computing
the higher indices of generalized elliptic operators on non-compact spaces [19]. Any
finitely generated group that admits a Cayley graph of positive generalized roundness
satisfies the coarse Baum–Connes conjecture (and thus the strong Novikov conjecture)
by a result of Lafont and Prassidis [28]. And any finite or additive Cayley graph has
positive generalized roundness by [9, 46] or by Proposition 4.1 (in the next section).
These considerations lead to the following corollary.

COROLLARY 3.9. Every finitely generated group 
 that admits a finite or additive
Cayley graph satisfies the coarse Baum–Connes conjecture.

We complete this section with one final observation about affinely independent
Euclidean embeddings. In the case of finite metric spaces there is another way to
think about strict 2-negative type. According to Theorem 3.3, an n + 1 point metric
space (X, d) = ({x0, x1, . . . , xn}, d) has strict 2-negative type if and only if it can be
isometrically embedded into �

(n)
2 as an affinely independent set. The latter condition

has been studied classically and may be characterized in terms of Cayley–Menger
determinants. The theory of Cayley–Menger determinants is due to Menger [34] (see
also Blumenthal [3]). Given that D2 = (d2(xi, xj)) denotes the 2-distance matrix of
(X, d), the Cayley–Menger determinant of (X, d) is defined as follows:

CM det({x0, . . . , xn}, d) =

∣∣∣∣∣∣∣∣∣

1

D2
...
1

1 · · · 1 0

∣∣∣∣∣∣∣∣∣
.

Menger [34] used these determinants to characterize condition (3) of Theorem 3.3
as follows.

THEOREM 3.10 Menger [34]. Let (X, d) = ({x0, x1, . . . , xn}, d) be an n + 1 point
metric space (n > 1). Then the following conditions are equivalent:

(1) (X, d) can be isometrically embedded into �
(n)
2 as an affinely independent set.

(2) (−1)k+1CM det({x0, . . . , xk}, d) > 0 for all k = 1, . . . , n.

As noted, condition (1) in Theorem 3.10 merely says that (X, d) has strict 2-negative
type. It is also clear that we may alter the definition of the Cayley–Menger determinant
by replacing the 2-distance matrix D2 with the p-distance matrix Dp (0 ≤ p ≤ 2). This
is the same thing as replacing d with dp/2 in the statement of Theorem 3.10. It follows
that we may use Corollary 3.4 to formulate a characterization of finite metric spaces of
strict p-negative type in terms of Cayley–Menger determinants (0 ≤ p ≤ 2). We omit
the details.
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4. Roundness properties of additive and non-ultrametric leaf metric spaces. In this
section, we examine roundness properties of additive metric spaces with a particular
emphasis on certain leaf metric spaces which are not ultrametric. The starting point is
an elementary statement about the roundness and generalized roundness of additive
metric spaces. This result is essentially folklore at this time but we include a short proof
for completeness.

PROPOSITION 4.1. Every additive metric space has generalized roundness ≥ 1 and
roundness ≥ 2. Moreover, there exist additive metric spaces of generalized roundness
exactly 1 and roundness exactly 2.

Proof. Let (X, d) be an additive metric space. Every finite metric subspace of (X, d)
is additive and therefore embeds isometrically into a finite metric tree by Buneman’s
criterion ([5, Theorem 2]). However, it well known that all finite metric trees have
1-negative type and hence generalized roundness at least 1. Thus, the finite subspaces
of (X, d) are all of generalized roundness at least 1. This implies that (X, d) is of
generalized roundness at least 1. Similarly, every quadruple of points x00, x01, x11, x10 ∈
X embeds isometrically into a finite metric tree by Buneman’s criterion and, moreover,
it is an observation of Linial and Naor that 2 is a roundness exponent of every metric
tree. (The proof is given in Naor and Schechtman [36, Proposition 2].) Thus, (X, d) is
of roundness at least 2.

The complete binary tree B∞ of depth ∞ endowed with the usual path metric
has roundness at least 2 by Proposition 2 in [36] but it also contains segments with
metric midpoints. Thus, B∞ has roundness exactly 2. Moreover, B∞ has generalized
roundness exactly 1 by Theorem 2.2 in Caffarelli et al. [6]. �

COROLLARY 4.2. Every finite additive metric space has generalized roundness > 1.

Proof. Each finite metric tree (T, d) has strict q-negative type for some q > 1 that
depends on |T | only. (See Theorem 5.4 in Doust and Weston [11] or Corollary 4.5 (b)
in Li and Weston [31].) The result now follows from Buneman’s criterion and Theorem
2.4 in Lennard et al. [30]. �

Proposition 4.1 shows that the generalized roundness of an additive metric space
must belong to [1,∞]. We will see in the next section (Theorem 5.1) that an additive
metric space that is not ultrametric must have finite generalized roundness. So it follows
from Corollary 4.2 that the generalized roundness of a finite additive metric space that
is not ultrametric must belong to the interval (1,∞). Our first theorem in this section
shows that given any ℘ ∈ (1,∞) it is possible to construct a finite leaf metric space
whose generalized roundness is exactly ℘. The class of metric spaces that we introduce
for this purpose is defined as follows.

DEFINITION 4.3. Let b > 1 be a real number and let k ≥ 2 be an integer. The
complete bipartite graph K1,k+1 is a star with k + 1 leaves. We define a weighted graph
metric d on K1,k+1 by allowing k edges in the star to have length b/(b + 1) while the
remaining edge in the star is taken to have length 1/(b + 1). We then let (Lb,k, d) denote
the metric subspace of (K1,k+1, d) that consists of the k + 1 leaves of K1,k+1 only. The
non-zero distances in this leaf metric space are 1 and z = 2b/(b + 1).

The following proposition computes the generalized roundness of the leaf metric
space (Lb,k, d).
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PROPOSITION 4.4. Let b > 1 be a real number and let k ≥ 2 be an integer. Then the
leaf metric space (Lb,k, d) has generalized roundness

q(Lb,k, d) = logz

(
2k

k − 1

)
,

where z = 2b
b+1 .

Proof. We use a technique of Sánchez [38] (Corollary 2.4) to compute generalized
roundness of (Lb,k, d). Let p ≥ 0 be given. An associated p-distance matrix for the
metric space (Lb,k, d) is given by

Dp =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 · · · · · · 1

1
. . . zp · · · zp

... zp . . .
. . .

...
...

...
. . .

. . . zp

1 zp · · · zp 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

We first show that the matrix Dp is invertible. Let a vector a = (a1, . . . , ak+1)T ∈ �k+1

such that Dpa = 0 be given. By matrix multiplication we obtain the following system
of linear equations:

a2 + a3 + · · · + ak+1 = 0,

a1 + zp(0 · a2 + a3 + · · · + ak+1) = 0,

a1 + zp(a2 + 0 · a3 + · · · + ak+1) = 0,

...

a1 + zp(a2 + a3 + · · · + 0 · ak+1) = 0.

From all but the first equation we see that a2 = · · · = ak+1. The first equation then gives
ka2 = 0. As a result, a2 = · · · = ak+1 = 0. Then the second equation (for example)
implies that a1 = 0 too. Thus, a = 0 and so it follows that the matrix Dp is invertible.

We now compute 〈D−1
p 1, 1〉 = 1T D−1

p 1, where 1 denotes the vector whose entries
are all 1, as a function of p. By setting b = D−1

p 1 = (b1, . . . , bk+1)T , or equivalently
Dpb = 1, we may solve for b in the same manner as for a above. We obtain b2 = · · · =
bk+1 = 1

k and b1 = 1 − zp
( k−1

k

)
. Hence

〈D−1
p 1, 1〉 = 1T b = 1 −

(
k − 1

k

)
zp + k · 1

k
= 2 −

(
k − 1

k

)
zp.

Therefore, 〈D−1
p 1, 1〉 = 0 if and only if zp = 2k

k−1 . It is now follows from Corollary 2.4
in [38] that

q(Lb,k, d) = logz

(
2k

k − 1

)
.

�
THEOREM 4.5. For each ℘ ∈ (1,∞) there exists a finite leaf metric space (L, d) of

generalized roundness ℘.
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Proof. Let ℘ ∈ (1,∞) be given. Let b and k be as in the statement of Definition 4.3.
As b ∈ (1,∞), the continuous variable z = 2b/(b + 1) has range (1, 2). Now consider
the corresponding continuous function

fk(z) = logz

(
2k

k − 1

)
= log

( 2k
k−1

)
log z

, z ∈ (1, 2).

It is easy to verify that Rangefk = (
log2

( 2k
k−1

)
,∞)

. So, provided k is sufficiently
large, ℘ ∈ Rangefk. This means that we may choose a z ∈ (1, 2) such that z℘ = 2k

k−1 .
Moreover, we may express z in the form 2b/(b + 1) for an appropriately chosen value
of b ∈ (1,∞). The resulting finite leaf metric space (Lb,k, d) has generalized roundness
℘ by Proposition 4.4. �

5. Classifications of ultrametric spaces according to roundness. We begin this
section with an unpublished theorem that is due to Mathav Murugan. On the basis of
Theorems 3.3 and 5.1, we then show how to recover and generalize certain well-known
isometric embedding theorems due to Kelly [26, 27], Timan and Vestfrid [43], Lemin
[29] and Shkarin [42].

THEOREM 5.1. For a metric space (X, d), the following statements are equivalent:
(1) X is ultrametric.
(2) X has infinite generalized roundness.
(3) X has infinite roundness.

Proof. (1) ⇒ (2) Let (X, d) be an ultrametric space and suppose p > 0. By Lemma
2.2, (X, dp) is an ultrametric space. In particular, (X, dp) is an additive metric space.
So, by Proposition 4.1 and the interval property of generalized roundness exponents
noted in Remark 2.9, it follows that 1 ∈ gr(X, dp). Thus p ∈ gr(X, d) by Lemma 2.10
(3). As p > 0 was arbitrary, (2) holds.

(2) ⇒ (3) By Lemma 2.10 (1), we have q(X, d) ≤ p(X, d), so if q(X, d) = ∞, we
must have p(X, d) = ∞.

(3) ⇒ (1) We prove the contrapositive. Suppose that (X, d) is not an ultrametric
space. Then there must exist points x, y, z ∈ X such that d(x, z) > max{d(x, y), d(y, z)}.
Let α = d(x, z), β = d(x, y) and γ = d(y, z). By scaling the metric d by d(x, z)−1, if
necessary, we may assume that α = 1. This forces 0 ≤ β, γ < 1. We now define a
quadruple of points {xij} in X : x00 = x, x11 = z and x01 = x10 = y. If p is a roundness
exponent of (X, d) then, by considering the indicated quadruple {xij}, it follows that

1 ≤ 2 · (βp + γ p). (5.1)

However, the right-hand side of (5.1) decreases to 0 as p → ∞, so we conclude that p
is bounded away from +∞. This shows that (X, d) has finite roundness. �

On the basis of Theorems 2.11, 3.3 and 5.1, it is possible to draw a number of very
intriguing corollaries. We conclude this paper by discussing several such corollaries.

COROLLARY 5.2. For each ℘ ∈ [1,∞] there exists an additive metric space whose
generalized roundness is ℘.

Proof. This is plainly evident from Proposition 4.1, Theorem 4.5 and
Theorem 5.1. �
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Theorem 5.1 also provides for the following additional characterizations of
ultrametric spaces.

COROLLARY 5.3. For a metric space (X, d), the following statements are equivalent:
(1) X is ultrametric.
(2) X has strict p-negative type for all p ≥ 0.
(3) X admits no p-polygonal equality for any p ≥ 0.

Proof. (1) ⇒ (2) Let (X, d) be ultrametric. By Theorem 5.1, we have that gr(X, d) =
[0,∞). So by Theorem 5.4 in Li and Weston [31] it follows that (X, d) has strict p-
negative type for all p ≥ 0.

(2) ⇒ (1) If (X, d) has strict p-negative type for all p ≥ 0, then q(X, d) = ∞ by
Theorem 2.11. This implies that (X, d) is ultrametric by Theorem 5.1.

(2) ⇒ (3) Let p ≥ 0. If (X, d) has strict p-negative type, then the same is true of
every finite metric subspace of X . This entails that no p-polygonal equality can hold
in X .

(3) ⇒ (2) Suppose that for all p ≥ 0, no p-polygonal equality holds in (X, d). This
implies that no p-polygonal equality holds in any finite metric subspace of X . Therefore
no finite metric subspace of X has finite supremal p-negative type by Corollary 4.4 in
[31]. As a result, for all p > 0, each finite metric subspace of X has strict p-negative
type. This implies (2). (The case p = 0 is trivial.) �

It is a deep result of metric geometry that every ultrametric space is isometric
to a subset of some Hilbert space. This result was developed independently by Kelly
[26, 27], Timan and Vestfrid [43] and Lemin [29]. We will now indicate an alternate
proof of this result by using Corollary 5.3 in conjunction with a classical embedding
theorem of Schoenberg [41, Theorem 1].

COROLLARY 5.4. Every ultrametric space is isometric to a subset of some Hilbert
space.

Proof. For a separable ultrametric space this corollary follows from Corollary 5.3
(2) with p = 2 and Theorem 1 in Schoenberg [41]. In fact, Theorem 1 in [41] holds for
a general metric space. (The transition to the non-separable case is explained clearly
in the proofs of Lemma 2.3 and Theorem 2.4 in Wells and Williams [45].) Therefore,
the corollary holds in full generality. �

It is also the case that Corollary 5.3 and Theorem 3.3 imply the following isometric
embedding theorem that is originally due to Lemin [29, Theorem 1.1].

COROLLARY 5.5. Let n > 1 be an integer. An n + 1 point ultrametric space
({x0, x1, . . . , xn}, d) can be isometrically embedded in the Euclidean space �n of
dimension n but it cannot be isometrically embedded in any Euclidean space �r of
dimension r < n.

Proof. All ultrametric spaces have strict 2-negative type by Corollary 5.3 (2) with
p = 2. The result now follows directly from Theorem 3.3. �

Lemin’s proof of Corollary 5.5 proceeds in terms of a series of ingenious geometric
lemmas and it is quite different to the approach taken in this paper. It is worth noting
that Theorem 3.3 is more general than Corollary 5.5. For example, Proposition 4.4
shows how to construct finite metric spaces (Lb,k, d) that have strict 2-negative type
(for suitably chosen b and k) but which are not ultrametric. Theorem 3.3 may also be
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used to generalize Lemin [29, Theorem 1.2]. The idea is to consider metric spaces of
infinite cardinality ψ that have p-negative type for some p > 2. For brevity, we will call
such infinite metric spaces ψ-hard. The class of all ψ-hard metric spaces includes all
ultrametric spaces of cardinality ψ by Corollary 5.3. On the other hand, if we modify
Definition 4.3 by letting k = ψ , then we obtain a non-ultrametric ψ-hard metric space
(Lb,ψ , d). The supremal p-negative type of (Lb,ψ , d) is logz(2) where z = 2b/(b + 1).

THEOREM 5.6. Every ψ-hard metric space (X, d) is isometric to a closed subset of
some algebraically ψ-dimensional Euclidean space E. However, no ψ-hard metric space
may be isometrically embedded into any algebraically σ -dimensional Euclidean space F
for any σ < ψ .

The proof of Theorem 5.6 is nearly identical to that of Theorem 1.2 in [29]. The
only changes are that Theorem 3.3 is used in the place of Theorem 1.1 in [29] and
the ultrametric condition on the metric space is replaced with p-negative type for
some p > 2. It is then the case that the metric space has strict q-negative type for
all q < p including, notably, q = 2. Moreover, by completing E, orthogonalizing the
basis in it and taking densities into account, we further see that: Every ψ-hard metric
space of weight ω may be isometrically embedded into a Hilbert space of weight
ω. The argument follows the exact same arc as that of Lemin [29, Theorem 1.3]. In
particular, every separable metric space that has p-negative type for some p > 2 may
be isometrically embedded into �2. For separable ultrametric spaces, this result is due
to Lemin [29] and Timan and Vestfrid [43].

It is worth noting that there is a Banach space generalization of Lemin [29,
Theorem 1.1]. Shkarin [42] considers the class M of all finite metric spaces (X, d),
X = {x0, x1, . . . , xn} (n > 1), which admit an isometric embedding φ : X → �2 such
that the vectors {φ(xj) − φ(x0) : 1 ≤ j ≤ n} are linearly independent. Theorem 1 in [42]
shows that for any (X, d) ∈ M, there exists a natural number m = m(X, d) such that
for any Banach space B with dim B ≥ m, there exists an isometric embedding of (X, d)
into B. The class M is not explicitly described in [42], except to say that it contains all
finite ultrametric spaces. However, Theorem 3.3 readily implies that M consists of all
finite metric spaces of strict 2-negative type.

COROLLARY 5.7. Shkarin’s class M consists of all finite metric spaces of strict
2-negative type.

Corollary 5.7 has been obtained independently (using different techniques) by
Kelleher et al. [25]. Theorem 1 in [42] and Corollary 5.7 imply that any finite metric
space of strict 2-negative type may be isometrically embedded into any infinite-
dimensional Banach space. This result is essentially due to Shkarin [42].

COROLLARY 5.8. Any finite metric space of strict 2-negative type may be isometrically
embedded into any infinite-dimensional Banach space.

In the case of finite metric spaces, there is an additional way to characterize
ultrametricity.

COROLLARY 5.9. Let n ≥ 1. Let (X, d) = ({x0, x1, . . . , xn}, d) be a finite metric space
with associated p-distance matrices Dp = (dp(xi, xj)), p ≥ 0. Then, (X, d) is ultrametric
if and only if det Dp 
= 0 and 〈D−1

p 1, 1〉 
= 0 for all p ≥ 0. (As before, 1 denotes the vector
whose entries are all 1 and 〈· , ·〉 is the standard inner-product.)
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Proof. By Theorem 2.3 in [38], the condition on the p-distance matrices in the
statement of the corollary is equivalent to the metric space (X, d) having strict p-
negative type for all p ≥ 0. We may then apply Corollary 5.3 to obtain the desired
conclusion. �

It is entirely possible to view roundness as a precursor of the Banach space notion
of Rademacher type. There is a vast body of literature on Rademacher type and we refer
the reader to the monograph Diestel et al. [10]. Indeed, if p is a roundness exponent
of a Banach space, then Theorem 2.1 in Enflo [12] implies that the Banach space has
Rademacher type p. Bourgain, Milman and Wolfson [4] introduced a notion of metric
type for a general metric space and showed that it is consistent with the notion of
Rademacher type for Banach spaces. Recently, Mendel and Naor [32] introduced a
notion of scaled Enflo type and showed that a Banach space has scaled Enflo type p if
and only if it has Rademacher type p. Once again, if p is a roundness exponent of a
metric space, then Theorem 2.1 in [12] implies that the metric space has both metric
type p and scaled Enflo type p. In the light of these comments and Proposition 2.7, we
obtain the following corollary.

COROLLARY 5.10. Let (X, d) be an ultrametric space. Then (X, d) has metric type p
and scaled Enflo type p for every p ∈ [1,∞).
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