PERTURBATION OF BANACH SPACE OPERATORS WITH A COMPLEMENTED RANGE

B. P. DUGGAL

8 Redwood Grove, Northfield Avenue, Ealing, London W5 4SZ, United Kingdom e-mail: bpduggal@yahoo.co.uk

and C. S. KUBRUSLY

Catholic University of Rio de Janeiro, 22453-900, Rio de Janeiro, RJ, Brazil E-mail: carlos@ele.puc-rio.br

(Received 14 February 2016; revised 24 July 2016; accepted 20 October 2016; first published online 21 March 2017)

Abstract. Let $C[\mathcal{X}]$ be any class of operators on a Banach space \mathcal{X} , and let $Holo^{-1}(\mathcal{C})$ denote the class of operators A for which there exists a holomorphic function f on a neighbourhood \mathcal{N} of the spectrum $\sigma(A)$ of A such that f is nonconstant on connected components of \mathcal{N} and f(A) lies in \mathcal{C} . Let $\mathcal{R}[\mathcal{X}]$ denote the class of Riesz operators in $\mathcal{B}[\mathcal{X}]$. This paper considers perturbation of operators $A \in \Phi_+(\mathcal{X}) \cup \Phi_-(\mathcal{X})$ (the class of all upper or lower [semi] Fredholm operators) by commuting operators in $\mathcal{B} \in Holo^{-1}(\mathcal{R}[\mathcal{X}])$. We prove (amongst other results) that if $\pi_B(B) = \prod_{i=1}^m (B - \mu_i)$ is Riesz, then there exist decompositions $\mathcal{X} = \bigoplus_{i=1}^m \mathcal{X}_i$ and $B = \bigoplus_{i=1}^m \mathcal{B}|_{\mathcal{X}_i} = \bigoplus_{i=1}^m \mathcal{B}_i$ such that: (i) If $\lambda \neq 0$, then $\pi_B(A, \lambda) = \prod_{i=1}^m (A - \lambda \mu_i)^{\alpha_i} \in \Phi_+(\mathcal{X})$ (resp., $\in \Phi_-(\mathcal{X})$) if and only if $A - \lambda B_0 - \lambda \mu_i \in \Phi_+(\mathcal{X})$ (resp., $\in \Phi_-(\mathcal{X})$), and (ii) (case $\lambda = 0$) $A \in \Phi_+(\mathcal{X})$ (resp., $\in \Phi_-(\mathcal{X})$) if and only if $A - B_0 \in \Phi_+(\mathcal{X})$ (resp., $\in \Phi_-(\mathcal{X})$), where $B_0 = \bigoplus_{i=1}^m (\mathcal{B}_i - \mu_i)$; (iii) if $\pi_B(A, \lambda) \in \Phi_+(\mathcal{X})$ (resp., $\in \Phi_-(\mathcal{X})$), for some $\lambda \neq 0$, then $A - \lambda B \in \Phi_+(\mathcal{X})$ (resp., $\in \Phi_-(\mathcal{X})$).

1991 Mathematics Subject Classification. Primary 47A53, Secondary 47A10.

1. Introduction. Given an infinite-dimensional complex Banach space \mathcal{X} , let $\mathcal{B}[\mathcal{X}]$ denote the algebra of operators (equivalently, bounded linear transformations) of \mathcal{X} into itself. Let $A^{-1}(0)$ and $A(\mathcal{X})$ denote, respectively, the null space and the range of an operator $A \in \mathcal{B}[\mathcal{X}]$. The operator A has an *inner generalized inverse* if there exists an operator $B \in \mathcal{B}[\mathcal{X}]$ such that ABA = A. It is easily seen that if B is an inner generalized inverse of A, then AB is a projection from \mathcal{X} onto $A(\mathcal{X})$ and $I_{\mathcal{X}} - BA$ is a projection from \mathcal{X} onto $A^{-1}(0)$: Indeed, A is *inner regular* (i.e., A has an inner generalized inverse) if and only if $A(\mathcal{X})$ and $A^{-1}(0)$ are complemented (in \mathcal{X}). The study of inner regular operators has a long and rich history, and there is a large body of information available on inner regular operators in the extant literature(see, for example, [7]). An important class of inner regular Banach space operators is that of operators $A \in \mathcal{B}[\mathcal{X}]$ which are either *left or right Fredholm*. Here, we say that $A \in \mathcal{B}[\mathcal{X}]$ is left Fredholm, $A \in \Phi_{\ell}(\mathcal{X})$ (resp, right Fredholm, $A \in \Phi_r(\mathcal{X})$), if $A \in \Phi_+(\mathcal{X})$ and $\mathcal{R}(A)$ is complemented (resp., $A \in \Phi_-(\mathcal{X})$ and $A^{-1}(0)$ is complemented), $\Phi_+(\mathcal{X}) = \{A \in \mathcal{B}[\mathcal{X}] : A(\mathcal{X})$ is closed and dim $(A^{-1}(0)) < \infty\}$ is the class of upper semi-Fredholm operators and

 $\Phi_{-}(\mathcal{X}) = \{A \in \mathcal{B}[\mathcal{X}] : \dim(\mathcal{X}/A(\mathcal{X})) < \infty\}$ is the class of lower semi-Fredholm operators (see, e.g., [12]).

The problem of the perturbation of inner regular operators by compact operators is of some interest, and has been considered in the not too distant past. Thus, if an $A \in \mathcal{B}[\mathcal{X}]$ is left Fredholm (or right Fredholm), and $S \in \mathcal{B}[\mathcal{X}]$ is a compact operator, then A + S is left Fredholm (resp., right Fredholm) [5,10]. This result is in a way the best possible: If $A \in \mathcal{B}[\mathcal{X}, \mathcal{Y}]$ for Banach spaces \mathcal{X} and $\mathcal{Y}, A^{-1}(0)$ is infinite-dimensional and complemented in $\mathcal{X}, A(\mathcal{X})$ is closed, complemented and of infinite co-dimension in \mathcal{Y} , then the closure of $(A + S)(\mathcal{X})$ is complemented in \mathcal{Y} for every compact $S \in$ $\mathcal{B}[\mathcal{X}, \mathcal{Y}]$ only if $A(\mathcal{X})$ has a complementary subspace isomorphic to a Hilbert space [10, Theorem 3].

For an operator $A \in \mathcal{B}[\mathcal{X}]$, let $\mathcal{H}(\sigma(A))$ denote the set of functions f which are holomorphic on a neighbourhood \mathcal{N} of the spectrum $\sigma(A)$ of A, and let $\mathcal{H}_c(\sigma(A) = \{f \in \mathcal{H}(\sigma(A)) : f \text{ is non-constant on the connected components of } \mathcal{N}\}$. Let $\mathcal{K}[\mathcal{X}]$ denote the ideal of compact operators, and let $\mathcal{R}[\mathcal{X}]$ denote the class of Riesz operators (i.e., operators whose non-zero translates are Fredholm). The operator A is holomorphically compact (resp., Riesz), $A \in Holo^{-1}(\mathcal{K}[\mathcal{X}])$ (resp., $A \in Holo^{-1}(\mathcal{R}[\mathcal{X}])$), if there exists an $f \in \mathcal{H}_c(\sigma(A))$ such that f(A) is compact (resp., Riesz).

This paper considers perturbation of operators in $\Phi_{\pm}(\mathcal{X}) = \Phi_{+}(\mathcal{X}) \cup \Phi_{-}(\mathcal{X})$ by commuting operators in $(Holo^{-1}(\mathcal{K}[\mathcal{X}]))$, more generally) $Holo^{-1}(\mathcal{R}[\mathcal{X}])$. It is known that if $B \in Holo^{-1}(\mathcal{K}[\mathcal{X}])$ (resp., $B \in Holo^{-1}(\mathcal{R}[\mathcal{X}]))$, then there exists a polynomial $\pi_{B}(z) = \prod_{i=1}^{m} (z - \mu_{i})^{\alpha_{i}}$ for some complex numbers μ_{i} and positive integers α_{i} (resp., $\pi_{B}(z) = \prod_{i=1}^{m} (z_{i} - \mu_{i}))$, which is the minimal polynomial $\pi_{B}(.)$ of B, such that $\pi_{B}(B)$ is compact (resp., Riesz).

Let $\Phi_{\times}(\mathcal{X})$ denote either of $\Phi_{+}(\mathcal{X})$ and $\Phi_{-}(\mathcal{X})$. We prove (a more general version of the result) that if $\pi_{B}(A) \in \Phi_{\times}(\mathcal{X})$, if [A, B] = AB - BA = 0 (or, more generally, [A, B] is in the "perturbation class" Ptrb($\Phi_{\times}(\mathcal{X})$) of $\Phi_{\times}(\mathcal{X})$) and $\pi_{B}(B)$ is Riesz, then $A - B \in \Phi_{\times}(\mathcal{X})$. The hypothesis $B \in Holo^{-1}(\mathcal{K}[\mathcal{X}])$ (or, $B \in Holo^{-1}(\mathcal{R}[\mathcal{X}])$) enforces a decomposition $\mathcal{X} = \bigoplus_{i=1}^{m} \mathcal{X}_{i}$ of \mathcal{X} such that $B = \bigoplus_{i=1}^{m} B_{i} = \bigoplus_{i=1}^{m} B_{|\mathcal{X}_{i}}$ with $\bigoplus_{i=1}^{m} (B_{i} - \mu_{i})^{\alpha_{i}}$ compact (resp., $\bigoplus_{i=1}^{m} (B_{i} - \mu_{i})$ Riesz). Let $B_{0} = \bigoplus_{i=1}^{m} (B_{i} - \mu_{i})$, where *m* and μ_{i} are as above. It is proved that if [A, B] = 0 and $B \in Holo^{-1}(\mathcal{R}[\mathcal{X}])$, then (a) $\pi_{B}(A, \lambda) = \prod_{i=1}^{m} (A - \lambda\mu_{i}) \in \Phi_{\times}(\mathcal{X})$ for a complex number $\lambda \neq 0$ if and only if $A - \lambda(B_{0} - \mu_{i}) \in \Phi_{\times}(\mathcal{X})$, and $A \in \Phi_{\times}(\mathcal{X})$ if and only if $A - B_{0} \in \Phi_{\times}(\mathcal{X})$; (b) $\pi_{B}(A, \lambda) \in \Phi_{\times}(\mathcal{X})$ for some $\lambda \neq 0$ implies $A - \lambda B \in \Phi_{\times}(\mathcal{X})$. The case of operator Asuch $\pi_{B}(A, \lambda)$ has SVEP, the single-valued extension property, or essential SVEP, at 0 is also considered.

2. Auxiliary results. Let $\operatorname{Inv}_{\ell}(\mathcal{X})(\operatorname{Inv}_{r}(\mathcal{X}))$ denote the class of operators $A \in \mathcal{B}[\mathcal{X}]$ which are left invertible (resp., right invertible). Let \mathcal{T} denote the *Calkin homomorphism* $\mathcal{T} : \mathcal{B}[\mathcal{X}] \to \mathcal{B}[\mathcal{X}]/\mathcal{K}[\mathcal{X}]$. Then, $A \in \mathcal{K}[\mathcal{X}]$ if and only if $\mathcal{T}(A) = 0, A \in \mathcal{R}[\mathcal{X}]$ if and only if $\mathcal{T}(A)$ is a quasinilpotent operator, and an $A \in \mathcal{B}[\mathcal{X}]$ is in $\Phi_{\ell}(\mathcal{X})$ (resp., $\Phi_r(\mathcal{X})$) if and only if $\mathcal{T}(A) \in \operatorname{Inv}_{\ell}(\mathcal{X})$ (resp., $\mathcal{T}(A) \in \operatorname{Inv}_{r}(\mathcal{X})$). Let $B \in Holo^{-1}(\mathcal{K}[\mathcal{X}])$. Then, there exists a function $f \in \mathcal{H}_{c}(\sigma(B))$ such that $f(B) \in \mathcal{K}[\mathcal{X}]$, and hence such that $\mathcal{T}(f(B)) = f(\mathcal{T}(B)) = 0$. Since f(z) has at best a finite number of zeros, there exists a polynomial p(.) such that $f(\mathcal{T}(B)) = p(\mathcal{T}(B))g(\mathcal{T}(B)) = 0$, where the (holomorphic on $\sigma(B)$) function g satisfies the property that $g(z) \neq 0$ on $\sigma(B)$. But then $p(\mathcal{T}(B)) = 0$, and hence there exists a monic irreducible polynomial, *the minimal polynomial of B*, which divides every other polynomial q(z) such that $q(\mathcal{T}(B)) = 0$. If we let $\pi_B(z) = \prod_{i=1}^m (z - \mu_i)^{\alpha_i}$ denote the

minimal polynomial of *B*, then $\pi_B(B) \in \mathcal{K}[\mathcal{X}]$. In the case in which $B \in Holo^{-1}(\mathcal{R}[\mathcal{X}])$, so that $f(B) \in \mathcal{R}[\mathcal{X}]$ for some $f \in \mathcal{H}_c(\sigma(B))$, $f(\mathcal{T}(B))$ is a quasinilpotent such that $f(\mathcal{T}(B)) = p(\mathcal{T}(B))g(\mathcal{T}(B))$ for some polynomial p(.) such that $p(\mathcal{T}(B))$ is quasinilpotent and the function g(.) is invertible. Once again there exists a minimal polynomial $\pi_B(.)$ of *B* such that $\pi_B(B) \in \mathcal{R}[\mathcal{X}]$. We have ([11,13,16]):

PROPOSITION 2.1. The following conditions are equivalent for operators $B \in \mathcal{B}[\mathcal{X}]$:

- (i) $B \in Holo^{-1}(\mathcal{K}[\mathcal{X}])$ (resp., $B \in Holo^{-1}(\mathcal{R}[\mathcal{X}])$).
- (ii) *B* is polynomially compact (resp., polynomially Riesz).
- (iii) There exists a monic irreducible polynomial $\pi_B(z) = \prod_{i=1}^m (z \mu_i)^{\alpha_i}$ (resp., $\pi_B(z) = \prod_{i=1}^m (z \mu_i)$), the minimal polynomial of *B*, such that $\pi_B(B)$ is compact (resp., Riesz).

If $f(B) \in \mathcal{K}[\mathcal{X}] \cup \mathcal{R}[\mathcal{X}]$ is such that (the Fredholm essential spectrum) $\sigma_e(f(B)) \neq \emptyset$, then (it follows from the considerations above that) there exists a finite subset $\{\mu_1, \mu_2, \ldots, \mu_m\}$ of the set of complex numbers \mathbb{C} such that $f(\mu_i) = 0$ for all $1 \leq i \leq m$, and there exist disjoint countable subsets $S_i = \{\mu_{i_n}\} \subset \mathbb{C}$ such that μ_{i_n} converges to $\mu_i \in S_i$ and $S_1 \cup S_2 \cup \cdots \cup S_m = \sigma(B)$. (Here, either of the sets S_i may consist just of the singleton μ_i , and then *the quasinilpotent part* $H_0(B - \mu_i) = \{x \in \mathcal{X} :$ $\lim_{n\to\infty} ||(B - \mu_i)^n x||^{\frac{1}{n}} = 0\}$ of $B - \mu_i$ is infinite dimensional.) Letting P_i denote the spectral projection associated with the spectral set S_i , we then obtain spectral subspaces \mathcal{X}_i of \mathcal{X} and operators $B_i = B|_{\mathcal{X}_i}$ such that $\mathcal{X} = \bigoplus_{i=1}^m \mathcal{X}_i, B = \bigoplus_{i=1}^m B_i$ and $\sigma_e(B_i) = \{\mu_i\}$. Furthermore, each $(B_i - \mu_i)^{\alpha_i}$ is compact in the case in which $B \in Holo^{-1}(\mathcal{K}[\mathcal{X}])$, and (since, for an operator $E \in \mathcal{B}[\mathcal{X}], E^{\alpha_i} \in \mathcal{R}[\mathcal{X}]$ if and only if $E \in \mathcal{R}[\mathcal{X}]$ each $B_i - \mu_i$ is Riesz in the case in which $B \in Holo^{-1}(\mathcal{R}[\mathcal{X}])$. We have the following:

PROPOSITION 2.2 ([8,16]). If $B \in Holo^{-1}(\mathcal{K}[\mathcal{X}])$ (resp., $B \in Holo^{-1}(\mathcal{R}[\mathcal{X}])$), then there exists a finite subset $\{\mu_1, \mu_2, \dots, \mu_m\} \subset \mathbb{C}$, a subset $\{\alpha_1, \alpha_2, \dots, \alpha_m\}$ of positive integers, a decomposition $\mathcal{X} = \bigoplus_{i=1}^m \mathcal{X}_i$ of \mathcal{X} into closed B-invariant subspaces and a decomposition $B = \bigoplus_{i=1}^m B_i$ of B such that each $(B_i - \mu_i)^{\alpha_i}$ is compact (resp., each $B_i - \mu_i$ is Riesz).

3. Riesz perturbations. Given operators $A, B \in \mathcal{B}[\mathcal{X}]$, let $\delta_{A,B} \in \mathcal{B}[\mathcal{B}[\mathcal{X}]]$ denote the generalized derivation $\delta_{A,B}(X) = AX - XB$, and let $\delta_{A,B}^n(X) = \delta_{A,B}^{n-1}(\delta_{A,B}(X))$. The operators A, B are said to be *quasinilpotent equivalent* if

$$\lim_{n \to \infty} ||\delta_{A,B}^{n}(I)||^{\frac{1}{n}} = \lim_{n \to \infty} ||\delta_{B,A}^{n}(I)||^{\frac{1}{n}} = 0.$$

The following proposition is well known (see [14, Proposition 3.4.11], [6, Theorem 3.1]).

PROPOSITION 3.1. If A, B are quasinilpotent equivalent operators, then $\sigma_{\times}(A) = \sigma_{\times}(B)$, where σ_{\times} stands for either of the left spectrum, the right spectrum, the approximate point spectrum σ_a , the surjectivity spectrum σ_s and the spectrum σ .

We assume in the following that if an operator $B \in \mathcal{B}[\mathcal{X}]$ is such that $B \in Holo^{-1}(\mathcal{K}[\mathcal{X}])$ or $Holo^{-1}(\mathcal{R}[\mathcal{X}])$, then it has the minimal polynomial function of Proposition 2.1, the Banach space \mathcal{X} and the operator B have the decompositions $X = \bigoplus_{i=1}^{m} \mathcal{X}_i$ and $B = \bigoplus_{i=1}^{m} B_i$ of Proposition 2.2. The operator $B_0 \in \mathcal{B}[\mathcal{X}]$ shall henceforth be

defined by $B_0 = \bigoplus_{i=1}^m (B_i - \mu_i)$, where the scalars μ_i are as defined in Proposition 2.1. Let $Inv_{\times}(\mathcal{X})$ denote operators $A \in \mathcal{B}[\mathcal{X}]$ which are either bounded below or surjective.

Given operators $A, B \in \mathcal{B}[\mathcal{X}]$, let [A, B] denote the commutator [A, B] = AB - BAof A and B. If $\Phi_{\times}(\mathcal{X})$ denotes either of $\Phi_{\ell}(\mathcal{X})$ or $\Phi_{r}(\mathcal{X})$ or $\Phi_{\pm}(\mathcal{X}) = \Phi_{+}(\mathcal{X}) \cup \Phi_{-}(\mathcal{X})$, then the perturbation class of $\Phi_{\times}(\mathcal{X})$, Ptrb($\Phi_{\times}(\mathcal{X})$), is the closed two-sided ideal.

$$Ptrb(\Phi_{\times}(\mathcal{X})) = \{ A \in \mathcal{B}[\mathcal{X}] : A + B \in \Phi_{\times}(\mathcal{X}) \text{ for every } B \in \Phi_{\times}(\mathcal{X}) \}.$$

It is seen that

$$\operatorname{Ptrb}(\Phi_{\ell}(\mathcal{X})) = \operatorname{Ptrb}(\Phi_{r}(\mathcal{X})) = \operatorname{Ptrb}(\Phi(\mathcal{X})) \supseteq \operatorname{Ptrb}(\Phi_{+}(\mathcal{X})) \cup \operatorname{Ptrb}(\Phi_{-}(\mathcal{X})).$$

Let T_p denote the homomorphism

$$\mathcal{T}_p: \mathcal{B}[\mathcal{X}] \to \mathcal{B}[\mathcal{X}]/\mathrm{Ptrb}(\Phi_{\times}(\mathcal{X})),$$

which is effected by the natural projection of the algebra $\mathcal{B}[\mathcal{X}]$ into the quotient algebra $\mathcal{B}[\mathcal{X}]/\text{Ptrb}(\Phi_{\times}(\mathcal{X}))$. It is then clear that $[A, B] = AB - BA \in \text{Ptrb}(\Phi_{\times}(\mathcal{X}))$ if and only if $\mathcal{T}_p(AB - BA) = \mathcal{T}_p(A)\mathcal{T}_p(B) - \mathcal{T}_p(B)\mathcal{T}_p(A) = 0$; furthermore, if the function $f \in \text{Holo}^{-1}(\sigma(A) \cup \sigma(B))$, in particular if f is a polynomial, then $[A, B] \in \text{Ptrb}(\Phi_{\times}(\mathcal{X}))$ implies $f(A)f(B) - f(B)f(A) \in \text{Ptrb}(\Phi_{\times}(\mathcal{X}))$, and hence $\mathcal{T}_p(f(A)f(B) - f(B)f(A)) = 0$.

THEOREM 3.1. Let $A, B \in \mathcal{B}[\mathcal{X}]$ be such that $B \in Holo^{-1}(\mathcal{R}[\mathcal{X}])$.

- (a) If $\pi_B(A, \lambda) = \prod_{i=1}^m (A \lambda \mu_i) \in \Phi_{\times}(\mathcal{X})$ for some complex number λ and $[A, B] \in \text{Ptrb}(\Phi_{\times}(\mathcal{X}))$, then $A \lambda B \in \Phi_{\times}(\mathcal{X})$ if $\lambda \neq 0$, and $A B_0 \in \Phi_{\times}(\mathcal{X})$ whenever $\lambda = 0$.
- (b) Suppose that [A, B] = 0. (i) If $\lambda \neq 0$, then $\pi_B(A, \lambda) = \prod_{i=1}^m (A - \lambda \mu_i)^{\alpha_i} \in \Phi_{\times}(\mathcal{X})$ if and only if $A - \lambda B_0 - \lambda \mu_i \in \Phi_{\times}(\mathcal{X})$.
 - (ii) (Case $\lambda = 0$) $A \in \Phi_{\times}(\mathcal{X})$ if and only if $A B_0 \in \Phi_{\times}(\mathcal{X})$.
- (c) If $\lambda \neq 0$, [A, B] = 0 and $\pi_B(A, \lambda) \in \Phi_{\times}(\mathcal{X})$, then $A \lambda B \in \Phi_{\times}(\mathcal{X})$.

Proof.

(a) Define the operators D, E and F by

$$D = E - F$$
, $E = \pi_B(A, \lambda)$ if $\lambda \neq 0$ and $E = A^m$ if $\lambda = 0$,
 $F = \lambda^m \pi_B(B)$ if $\lambda \neq 0$ and $F = B_0^m$ if $\lambda = 0$.

Then, $F \in \mathcal{R}[\mathcal{X}]$, and the hypothesis that $[A, B] \in \text{Ptrb}\Phi_{\times}(\mathcal{X})$ implies

$$\mathcal{T}_p[E, F] = \mathcal{T}_p(E)\mathcal{T}_p(F) - \mathcal{T}_p(F)\mathcal{T}_p(E) = 0.$$

The operator $\mathcal{T}_p(F)$ being quasinilpotent, we have

$$\begin{split} \delta^n_{\mathcal{T}_p(D),\mathcal{T}_p(E)}(I) &= \delta^{n-1}_{\mathcal{T}_p(D),\mathcal{T}_p(E)}((-1)\mathcal{T}_p(F)) \\ &= \cdots = (-1)^n \mathcal{T}_p(F)^n = \cdots = (-1)^n \delta^n_{\mathcal{T}_p(E),\mathcal{T}_p(D)}(I), \end{split}$$

and hence $\mathcal{T}_p(D)$ and $\mathcal{T}_p(E)$ are quasinilpotent equivalent. Since $E \in \Phi_{\times}(\mathcal{X})$,

$$\mathcal{T}_p(E) \in \operatorname{Inv}_{\times}(\mathcal{X}) \iff \mathcal{T}_p(D) \in \operatorname{Inv}_{\times}(\mathcal{X}).$$

Again, since

$$\begin{aligned} \mathcal{T}_p(D) &= (\mathcal{T}_p(A) - \mathcal{T}_p(B))g(\mathcal{T}_p(A), \mathcal{T}_p(B), \lambda) \\ &= g(\mathcal{T}_p(A), \mathcal{T}_p(B), \lambda)(\mathcal{T}_p(A) - \lambda \mathcal{T}_p(B)) \ \text{if} \ \lambda \neq 0 \end{aligned}$$

and

$$\begin{aligned} \mathcal{T}_p(D) &= \mathcal{T}_p(A)^m - \mathcal{T}_p(B_0)^m = (\mathcal{T}_p(A) - \mathcal{T}_p(B_0))g_1(\mathcal{T}_p(A), \mathcal{T}_p(B), \lambda) \\ &= g_1(\mathcal{T}_p(A), \mathcal{T}_p(B), \lambda)(\mathcal{T}_p(A) - \mathcal{T}_p(B_0)) \ \text{if} \ \lambda = 0, \end{aligned}$$

it follows that

$$\mathcal{T}_p(A) - \lambda \mathcal{T}_p(B) \in \operatorname{Inv}_{\times}(\mathcal{X}) \text{ if } \lambda \neq 0 \text{ and}$$

$$\mathcal{T}_p(A) - \mathcal{T}_p(B_0) \in \operatorname{Inv}_{\times}(\mathcal{X}) \text{ if } \lambda = 0.$$

Since

$$A - \lambda B$$
 (resp., $A - B_0 \in \Phi_+(\mathcal{X})$, if and only if
 $\mathcal{T}_p(A) - \lambda \mathcal{T}_p(B)$ (resp., $\mathcal{T}_p(A) - \mathcal{T}_p(B_0)$) is bounded below and
 $A - \lambda B$ (resp., $A - B_0 \in \Phi_-(\mathcal{X})$, if and only if
 $\mathcal{T}_p(A) - \lambda \mathcal{T}_p(B)$ (resp., $\mathcal{T}_p(A) - \mathcal{T}_p(B_0)$) is surjective,

the proof follows.

(b) The proof at places is similar to the one above, so we shall at points be brief. Let T : B[X] → B[X]/K[X] denote the *Calkin homomorphism*. Suppose that [A, B] = 0. Letting B = ⊕_{i=1}^m B_i with respect to the decomposition X = ⊕_{i=1}^m X_i of X, it is seen that A has a matrix representation A = (A_{ij})_{i,i=1}^m such that

$$A_{ij}B_j = B_i A_{ij} \text{ for all } 1 \le i, j \le m$$
$$\iff A_{ij}(B_j - \mu_i) = (B_i - \mu_i)A_{ij} \text{ for all } 1 \le i, j \le m.$$

Here, the complex numbers μ_i , $1 \le i \le m$, are distinct, the operators $B_i - \mu_i$ being Riesz for all $1 \le i \le m$ and (since $\mu_i \notin \sigma(B_j)$ for all $1 \le i \ne j \le m$), the operator $\mathcal{T}(B_j - \mu_i)$ is invertible for all $1 \le i \ne j \le m$. Consequently,

$$\mathcal{T}(A_{ij})\mathcal{T}(B_j - \mu_i)^n = \mathcal{T}(B_i - \mu_i)^n \mathcal{T}(A_{ij})$$
$$\iff \mathcal{T}(A_{ij}) = \mathcal{T}(B_j - \mu_i)^{-n} \mathcal{T}(B_i - \mu_i)^n \mathcal{T}(A_{ij}).$$

We have two possibilities: Either $\mathcal{T}(A_{ij}) \neq 0$ or $\mathcal{T}(A_{ij}) = 0$. If $\mathcal{T}(A_{ij}) \neq 0$, then (since $\mathcal{T}(B_i - \mu_i)$ is quasinilpotent):

$$||\mathcal{T}(A_{ij})|| \le ||\mathcal{T}(A_{ij})|| ||\mathcal{T}(B_j - \mu_i)^{-1}||^n ||\mathcal{T}(B_i - \mu_i)^n||$$

$$\implies 1 \le ||\mathcal{T}(B_j - \mu_i)^{-1}|| \lim_{n \to \infty} ||\mathcal{T}(B_i - \mu_i)^n||^{\frac{1}{n}} = 0.$$

This being a contradiction, we must have

$$\mathcal{T}(A) = \bigoplus_{i=1}^{m} \mathcal{T}(A_{ii}), \mathcal{T}(A_{ij}) = 0 \text{ and } [A_{ii}, B_i] = 0 \text{ for all } 1 \le i \ne j \le m.$$

Define the operators M_j , $N_j \in B[\mathcal{X}_j]$, $1 \leq j \leq m$, by

$$M_j = (A_{jj} - \lambda B_j) - \lambda(\mu_i - \mu_j), \quad N_j = A_{jj} - \lambda \mu_i \text{ for all } 1 \le i, j \le m \text{ if } \lambda \ne 0,$$

and

$$M_j = A_{jj} - B_j + \mu_j$$
, $N_j = A_{jj}$ for all $1 \le j \le m$ if $\lambda = 0$.

Then, the equivalences

$$\pi_{B}(B) \in \mathcal{R}[\mathcal{X}] \iff \prod_{i=1}^{m} (B - \mu_{i}) = \prod_{i=1}^{m} \{\bigoplus_{j=1}^{m} (B_{j} - \mu_{i})\} \in \mathcal{R}[\mathcal{X}]$$
$$\iff \prod_{i=1}^{m} (B_{j} - \mu_{i}) \in \mathcal{R}[\mathcal{X}_{j}] \text{ for all } 1 \leq j \leq m$$
$$\iff B_{j} - \mu_{j} \in \mathcal{R}[\mathcal{X}_{j}] \text{ for all } 1 \leq j \leq m$$

and

$$\pi_{B}(A,\lambda) \in \Phi_{\times}(\mathcal{X}) \iff \prod_{i=1}^{m} \mathcal{T}(A - \lambda\mu_{i}) = \prod_{i=1}^{m} \{ \bigoplus_{j=1}^{m} \mathcal{T}(A_{jj} - \lambda\mu_{i}) \} \in \operatorname{Inv}_{\times}(\mathcal{X})$$
$$\iff \prod_{i=1}^{m} \mathcal{T}(A_{jj} - \lambda\mu_{i}) = \mathcal{T}\{\prod_{i=1}^{m} (A_{jj} - \lambda\mu_{i})\} \in \operatorname{Inv}_{\times}(\mathcal{X}_{j})$$
for all $1 \le i, j \le m$
$$\iff \prod_{i=1}^{m} (A_{jj} - \lambda\mu_{i}) \in \Phi_{\times}(\mathcal{X}_{j}) \text{ for all } 1 \le i, j \le m$$
$$\iff A_{jj} - \lambda\mu_{i} \in \Phi_{\times}(\mathcal{X}_{j}) \text{ for all } 1 \le i, j \le m$$

imply that

$$\delta^n_{\mathcal{T}(M_j),\mathcal{T}(N_j)}(I_j) = (-\lambda)\delta^{n-1}_{\mathcal{T}(M_j),\mathcal{T}(N_j)}\mathcal{T}(B_j - \mu_j) = \dots = (-\lambda)^n \mathcal{T}(B_j - \mu_j)^n$$
$$= \dots = \delta^n_{\mathcal{T}(N_j),\mathcal{T}(M_j)}(I_j).$$

This implies that the operators $\mathcal{T}(M_j)$ and $\mathcal{T}(N_j)$ are quasinilpotent equivalent, and hence

$$M_j \in \Phi_{\times}(\mathcal{X}_j) \Longleftrightarrow N_j \in \Phi_{\times}(\mathcal{X}), \ 1 \le j \le m.$$

664

Now, if we define $B_0 \in \mathcal{B}[\mathcal{X}]$ (as above) by $B_0 = \bigoplus_{i=1}^m (B_j - \mu_i)$, then

$$\begin{aligned} \mathcal{T}(A - \lambda B_0 - \lambda \mu_i) &= \bigoplus_{j=1}^m \{\mathcal{T}((A_{jj} - \lambda B_j) - \lambda(\mu_i - \mu_j))\} \in \operatorname{Inv}_{\times}(\mathcal{X}) \\ & \text{for all } 1 \leq i \leq m \\ & \Longleftrightarrow \bigoplus_{j=1}^m \mathcal{T}(A_{jj} - \lambda \mu_i) \in \operatorname{Inv}_{\times}(\mathcal{X}) \text{ for all } 1 \leq i \leq m \\ & \longleftrightarrow \prod_{i=1}^m \{\bigoplus_{j=1}^m \mathcal{T}(A_{jj} - \lambda \mu_i)\} \in \operatorname{Inv}_{\times}(\mathcal{X}) \\ & = \prod_{i=1}^m \mathcal{T}(A - \lambda \mu_i) \in \operatorname{Inv}_{\times}(\mathcal{X}) \\ & \Longleftrightarrow \pi_B(A, \lambda) \in \Phi_{\times}(\mathcal{X}) \end{aligned}$$

if $\lambda \neq 0$, and

if $\lambda = 0$.

(c) Let $\lambda \neq 0$. Choosing i = j in

$$\pi_B(A,\lambda) \in \Phi_{\times}(\mathcal{X}) \Longleftrightarrow A - \lambda(\bigoplus_{i=1}^m (B_i - \mu_i + \mu_i)) \in \Phi_{\times}(\mathcal{X})$$

for all $1 \le i \le m$, it then follows that

$$\pi_B(A,\lambda) \in \Phi_{\times}(\mathcal{X}) \Longrightarrow A - \lambda B \in \Phi_{\times}(\mathcal{X}).$$

Remark 3.1.

- (i) Some hypothesis of the type [A, B] ∈ PtrbΦ_×(X), or [A, B] = 0, is essential to the validity of Theorem 3.1. To see this, consider operators A, B such that π_B(A, λ) ∈ Φ_×(X) and π_B(B) is compact. Then, since T_p(π_B(B)) = 0 = T(π_B(B)), π_B(A, λ) − λ^mπ_B(B) ∈ Φ_×(X) ⇔ π_B(A, λ) ∈ Φ_×(X). This does not however imply A − λB (or, A − B₀ if λ = 0, or A − λB₀ − μ_i if λ ≠ 0) ∈ Φ_×(X), as the following elementary example shows. Letting I denote the identity of B[X], define the polynomially compact operator B (with minimal polynomial π_B(z) = (z − 1)²) by B = (I I ∩ I), and let A = (2I ∩ I ∩ I). Then, with λ = 1, π_B(A, λ) = (I ∩ I − I) is invertible (hence, Fredholm). However, the operator A − λB (which satisfies (A − λB)² = 0) is not even semi-Fredholm. Again, if we define A by A = (I ∩ I − I), then (A − B₀)² = 0 and A − B₀ is not semi-Fredholm. Observe that neither of the hypotheses [A, B] = 0 or [A, B] ∈ Ptrb(Φ_×(X) is satisfied.
- (ii) Let *A* and *B* be the operators of Theorem 3.1, parts (b) and (c). Then, $A \lambda \mu_i \in \Phi_{\times}(\mathcal{X})$ if and only if $A_{ij} \lambda \mu_i \in \Phi_{\times}(\mathcal{X}_j)$ for all $1 \le j \le m$ and $\mathcal{T}(A_{ij}) = 0$ for all $1 \le i \ne j \le m$. The conclusion $\mathcal{T}(A_{ij}) = 0$ for all $1 \le i \ne j \le m$ implies that the operator $A = [A_{ij}]_{1 \le i,j \le m}$ may be written as the sum $A = A_1 + A_0$, where

 $A_1 = \bigoplus_{i=1}^m A_{ji}$ and the compact (hence, Riesz) operator A_0 is defined by

$$A_0 = [A_{ij}]_{1 \le i,j \le m}$$
 with $A_{ii} = 0$ for all $1 \le i \le m$.

Recalling that the sum of two commuting Riesz operators is a Riesz operator, it follows that the operators $\frac{1}{\lambda}A_0 - B_0$ (case $\lambda \neq 0$) and $A_0 - B_0$ (case $\lambda = 0$) are Riesz operators. It is now seen that the operators

$$A - \lambda \mu_i - \lambda B_0 = (A_1 - \lambda \mu_i) + \lambda (\frac{1}{\lambda} A_0 - B_0) \text{ and } A_1 - \lambda \mu_i \ (\lambda \neq 0),$$

 $A - B_0 = A_1 + (A_0 - B_0) \text{ and } A_1 \ (\lambda = 0)$

are quasinilpotent equivalent. Hence

$$A_1 - \lambda \mu_i \in \Phi_{\times}(\mathcal{X}) \iff A - \lambda \mu_i - \lambda B_0 \in \Phi_{\times}(\mathcal{X}), \ \lambda \neq 0$$

and

$$A \in \Phi_{\times}(\mathcal{X}) \iff A - B_0 \in \Phi_{\times}(\mathcal{X}).$$

This provides an alternative to some of the argument used to prove parts (b) and (c) of Theorem 3.1.

Let $\lambda(t)$ denote a continuous function from a connected subset \mathcal{I} of the reals into \mathcal{C} such that $\lambda(t_1) = 0$ and $\lambda(t_2) = 1$ for some $t_1, t_2 \in \mathcal{I}, t_1 < t_2$. Then, the argument of the proof of Theorem 3.1 holds with λ replaced by $\lambda(t)$ and we have:

COROLLARY 3.1. Let $A, B \in \mathcal{B}[\mathcal{X}]$ be such that $B \in Holo^{-1}(\mathcal{R}[\mathcal{X}])$.

- (a) If $\pi_B(A, \lambda) = \prod_{i=1}^m (A \lambda(t)\mu_i) \in \Phi_{\times}(\mathcal{X})$ and $[A, B] \in Ptrb(\Phi_{\times}(\mathcal{X}))$, then $A \lambda(t)B \in \Phi_{\times}(\mathcal{X})$ for all $t \in [t_1, t_2]$.
- (b) If A, B commute, then
 - (i) $\pi_B(A, \lambda(t)) = \prod_{i=1}^m (A \lambda(t)\mu_i) \in \Phi_{\times}(\mathcal{X})$ if and only if $A \lambda(t)(B_0 + \mu_i) \in \Phi_{\times}(\mathcal{X})$, $1 \le i \le m$, for all $t \in [t_1, t_2]$;
 - (ii) $\pi_B(A, \lambda(t_1)) \in \Phi_{\times}(\mathcal{X})$ if and only if $A B_0 \in \Phi_{\times}(\mathcal{X})$;
 - (iii) $\pi_B(A, \lambda(t)) \in \Phi_{\times}(\mathcal{X})$ implies $A \lambda(t)B \in \Phi_{\times}(\mathcal{X})$ for all $t \in [t_1, t_2]$.

Recalling the fact that "every locally constant function on a connected set is constant", it follows from the local constancy of the index function "ind" that $ind(A) = ind(A - B) = ind(A - \lambda(t)B)$ for all $t \in [t_1, t_2]$. In particular, if $A \in \Phi_{\ell}(\mathcal{X})$ (resp., $A \in \Phi_{r}(\mathcal{X})$), then $(A - \lambda(t)B)(\mathcal{X})$ (resp., $(A - \lambda(t)B)^{-1}(0)$) is complemented by a finite-dimensional subspace if and only if $A(\mathcal{X})$ (resp., $A^{-1}(0)$) is complemented by a finite-dimensional subspace.

4. Operators with SVEP. $A \in \mathcal{B}[\mathcal{X}]$ has the single-valued extension property at $\lambda_0 \in \mathbb{C}$, SVEP at λ_0 for short, if for every open disc \mathcal{D}_{λ_0} centred at λ_0 the only holomorphic function $f : \mathcal{D}_{\lambda_0} \to \mathcal{X}$ which satisfies

$$(T - \lambda)f(\lambda) = 0$$
 for all $\lambda \in \mathcal{D}_{\lambda_0}$

is the function $f \equiv 0$. T has SVEP if it has SVEP at every $\lambda \in \mathbb{C}$. Operators with countable spectrum have SVEP: If $A \in \mathcal{R}[\mathcal{X}]$, then both A and (the conjugate operator) A^* have SVEP. It is known that $f(A), A \in \mathcal{B}[\mathcal{X}]$ and $f \in H_c(\sigma(A))$, has SVEP at a point

 λ if and only if A has SVEP at every μ such that $f(\mu) = \lambda$ (see [1, Theorem 2.39] and [14]). If an $A \in \mathcal{B}[\mathcal{X}]$ has SVEP at a point λ , then SVEP for $B \in \mathcal{B}[\mathcal{X}]$ at λ does not transfer to A + B, even if A and B commute. However:

PROPOSITION 4.1 ([2, Theorem 0.3]). If A and B commute, and if $B \in \mathcal{R}[\mathcal{X}]$, then SVEP at λ for A implies SVEP for A - B at λ .

Recall that the *ascent* (resp., *descent*) of $A \in \mathcal{B}[\mathcal{X}]$, asc(A) (resp., dsc(A)), is the least non-negative integer n such that $A^{-n}(0) = A^{-(n+1)}(0)$ (resp., $A^n(\mathcal{X}) = A^{n+1}(\mathcal{X})$); if no such integer exists, then $\operatorname{asc}(A) = \infty$ (resp., $\operatorname{dsc}(A) = \infty$). Finite ascent (resp., descent) at a point λ for A implies ind $(A - \lambda) \leq 0$ and A has SVEP at λ (resp., ind $(A - \lambda) \geq 0$ and A^* has SVEP at λ ; conversely, if $A - \lambda \in \Phi_{\times}(\mathcal{X})$ (resp., $A^* - \lambda \in \Phi_{\times}(\mathcal{X})$) has SVEP at 0, then $\operatorname{asc}(A - \lambda) < \infty$ and $0 \in \operatorname{iso}\sigma_a(A)$ (resp., $\operatorname{dsc}(A - \lambda) < \infty$ and $0 \in$ $iso\sigma_s(A)$ [1, Theorems 3.16, 3.17, 3.23, 3.27]. The operator A is upper Browder (resp., lower Browder, left Browder, right Browder, or (simply) Browder) if it is upper Fredholm with $\operatorname{asc}(A) < \infty$ (resp., lower Browder with $\operatorname{dsc}(A) < \infty$, left Browder with $\operatorname{asc}(A) < \infty$ ∞ , right Browder with dsc(A) < ∞ , Fredholm with asc(A) = dsc(A) < ∞). Let $A \in$ \times -Browder denote that A is one of upper Browder, lower Browder, left Browder, right Browder or (simply) Browder. It is well known, see [9, Theorem 7.92.] or [6, Proposition 2.2], that if A, $B \in \mathcal{B}[\mathcal{X}]$ are commuting operators, then $AB \in \times -B$ rowder if and only if $A, B \in \times -Browder$. If an operator $A \in \{\Phi_+(\mathcal{X}) \cup \Phi_\ell(\mathcal{X})\}$ (resp., $A \in \{\Phi_-(\mathcal{X}) \cup \Phi_r(\mathcal{X})\}$ and A^*) has SVEP at 0, then A is upper or left (resp., lower or right) Browder [1, Theorem 3.52]. As before, the operator $B_0 \in \mathcal{B}[\mathcal{X}]$ is defined by $B_0 = \bigoplus_{i=1}^m (B_i - \mu_i)$.

The following theorem generalizes [6, Theorem 4.1].

THEOREM 4.1. Let $A, B \in \mathcal{B}[\mathcal{X}]$ be such that [A, B] = 0, $\pi_B(B) = \prod_{i=1}^m (B - \mu_i) \in \mathcal{R}[\mathcal{X}]$ and $\pi_B(A, \lambda) = \prod_{i=1}^m (A - \lambda\mu_i) \in \Phi_{\times}(\mathcal{X})$ for some complex number λ . Then

- (a) $A \in \times$ -Browder if and only if $A B_0 \in \times$ -Browder;
- (b) (i) $\pi_B(A, \lambda) \in \times -B$ rowder implies $A \lambda B \in \times -B$ rowder, and (ii) $\pi_B(A, \lambda) \in \times -B$ rowder if and only if $A \lambda B_0 \lambda \mu_i \in \times -B$ rowder for all $1 \le i \le m$;
- (c) if $A \in \{\Phi_+(\mathcal{X}) \cup \Phi_\ell(\mathcal{X})\}$ has SVEP at 0 (resp., $A \in \{\Phi_-(\mathcal{X}) \cup \Phi_r(\mathcal{X})\}$ and A^* has SVEP at 0), then $A \lambda B$ is upper or, respectively, left (resp., lower or, respectively, right) Browder.

Proof. We consider the case \times -Browder = upper Browder or left Browder only (thus \times in Φ_{\times} shall stand for upper or left); the proof for the other cases is similar.

- (a) The operator $B_0 = \bigoplus_{i=1}^{m} (B_i \mu_i)$ being the direct sum of Riesz operators is a Riesz operator. Since *A* commutes with B_0 , $A - B_0$ has SVEP at 0 if and only if *A* has SVEP at 0. Again, by Theorem 2.1(b.ii), $A - B_0 \in \Phi_{\times}(\mathcal{X})$ if and only if $A \in \Phi_{\times}(\mathcal{X})$. Hence, since an operator *T* is \times -Browder if and only if $T \in \Phi_{\times}(\mathcal{X})$ and *T* has SVEP at 0 [1, Theorem 3.52], $A - B_0 \in \times$ -Browder if and only if $A \in \times$ -Browder.
- (b.i) The hypothesis $\pi_B(A, \lambda) \in \times$ -Browder implies $A \lambda \mu_i \in \times$ -Browder if and only if $A - \lambda \mu_i \in \Phi_{\times}(\mathcal{X})$ and $A - \lambda \mu_i$ has SVEP at 0. Since $\pi_B(B) = \prod_{i=1}^{m} (B - \mu_i)$ is Riesz, there an integer $i, 1 \le i \le m$, such that $\lambda(B - \mu_i)$ is Riesz (and commutes with $A - \lambda \mu_i$). Hence, $A - \lambda B = (A - \lambda \mu_i) - (B - \lambda \mu_i)$ has SVEP at 0. Since $A - \lambda B \in \Phi_{\times}(\mathcal{X})$ by Theorem 2.1(c), $A - \lambda B \in \times$ -Browder.

(b.ii) The case $\lambda = 0$ being evident, we consider $\lambda \neq 0$. It is clear from Theorem 2.1(b.i) that

$$\pi_B(A,\lambda) \in \Phi_{\times}(\mathcal{X}) \Longleftrightarrow A - \lambda B - \lambda \mu_i \in \Phi_{\times}(\mathcal{X}).$$

Since,

$$\pi_B(A, \lambda) \in \times -\text{Browder} \iff A - \lambda \mu_i \in \times -\text{Browder for all } 1 \le i \le m$$
$$\iff A - \lambda \mu_i \in \Phi_{\times}(\mathcal{X}), A - \lambda \mu_i \text{ has SVEP at } 0$$
for all $1 \le i \le m$.

The operator B_0 being a Riesz operator which commutes with $A - \lambda \mu_i$, it follows that $A - \lambda \mu_i - \lambda B_0$ has SVEP at 0 if and only if $A - \lambda \mu_i$ has SVEP at 0. Hence,

$$\pi_B(A,\lambda) \in \times -$$
Browder $\iff A - \lambda B_0 - \lambda \mu_i \in \times -$ Browder.

(c) Recall from above that if an operator A ∈ Φ_×(X) has SVEP at 0, then 0 ∈ isoσ_a(A). Since σ_a(A − λμ_i) ⊂ σ_a(A) − {λμ_i}, it follows from our hypotheses that (at worst) λμ_i ∈ isoσ_a(A) for all 1 ≤ i ≤ m. Hence, A − λμ_i has SVEP at 0. As seen above, A − λB ∈ Φ_×(X). Hence, since the operator B − μ_i is Riesz and commutes with A − λμ_i, A − λB_i = (A − λμ_i) − λ(B_i − μ_i) has SVEP at 0. Thus, [1, Theorem 3.52] implies that A − λB ∈ ×−Browder. □

REMARK 4.1. An alternative argument proving Theorem 4.1(b.i) goes as follows. If $\times =$ upper or left, then the hypotheses imply that $\pi_B(A, \lambda)$ has SVEP at 0 and the Riesz operator $\pi_B(B)$ commutes with $\pi_B(A, \lambda)$. Hence, $\pi_B(A, \lambda) - \lambda^m \pi_B(B)$ has SVEP at 0. Already, we know from (the proof of) Theorem 3.1 that $\pi_B(A, \lambda) - \lambda^m \pi_B(B) \in \Phi_{\times}(\mathcal{X})$, where $\Phi_{\times}(\mathcal{X}) = \Phi_{+}(\mathcal{X}) \cup \Phi_{\ell}(\mathcal{X})$. Hence, $\pi_B(A, \lambda) - \lambda^m \pi_B(B) = (A - \lambda B)g(A, B, \lambda) = g(A, B, \lambda)(A - \lambda B)$ is upper or (resp.) left Browder. This implies $A - \lambda B$ is upper or (resp.) left Browder.

Essential SVEP. Let $\mathcal{T}_q: \mathcal{B}[\mathcal{X}] \to \mathcal{B}[\mathcal{X}_q], \mathcal{X}_q = \ell^{\infty}(\mathcal{X})/m(\mathcal{X})$, denote the homomorphism effecting the "essential enlargement $A \to T_q(A) = A_q$ " of [4] (and [15, Theorems 17.6 and 17.9]). Then, $A \in \mathcal{B}[\mathcal{X}]$ is upper semi-Fredholm (lower semi-Fredholm), $A \in \mathcal{B}[\mathcal{X}]$ $\Phi_+(\mathcal{X})$ (resp., $A \in \Phi_-(\mathcal{X})$), if and only if A_q is bounded below (resp., A_q is surjective); $A_q = 0$ for an operator A if and only if A is compact, and if $A \in \mathcal{R}[\mathcal{X}]$, then A_q is a quasinilpotent. Recall from Theorem 3.1(b.ii) and (c) that if $A, B \in \mathcal{B}[\mathcal{X}]$ are such that $[A, B] = 0, \ \pi_B(B) = \prod_{i=1}^m (B - \mu_i) \in \mathcal{R}[\mathcal{X}] \text{ and } \pi_B(A, \lambda) = \prod_{i=1}^m (A - \lambda \mu_i) \in \Phi_{\pm}(\mathcal{X}),$ then $A - \lambda B \in \Phi_{\pm}(\mathcal{X})$ if $\lambda \neq 0$ and $A - B_0 \in \Phi_{\pm}(\mathcal{X})$ if $\lambda = 0$. If we now assume that $\pi_B(A, \lambda) \in \Phi_-(\mathcal{X})$ (resp., the conjugate operator $\pi_B(A, \lambda)^* \in \Phi_-(\mathcal{X})$), $\lambda \neq 0$, has SVEP at 0, then $A - \lambda B \in \Phi(\mathcal{X})$ is inner regular. Again, if we assume $\lambda = 0$ and $A \in \Phi_{-}(\mathcal{X})$ (resp., $A^* \in \Phi_{-}(\mathcal{X})$) has SVEP at 0, then $A - B_0 \in \Phi(\mathcal{X})$ is inner regular. SVEP for an operator neither implies nor is implied by SVEP for its image under the homomorphisms \mathcal{T}_q [3, Remark 2.9]: We say in the following that A has essential SVEP at a point λ if $A_q = T_q(A)$ has SVEP at λ . The following corollary says that a result similar to the one above on the inner regularity of $A - \lambda B$ and $A - B_0$ holds with the hypotheses on SVEP replaced by hypotheses on essential SVEP.

COROLLARY 4.1. Let $A, B \in \mathcal{B}[\mathcal{X}]$ be such that $[A, B] = 0, \pi_B(B) = \prod_{i=1}^m (B - \mu_i) \in \mathcal{R}[\mathcal{X}], \pi_B(A, \lambda)$ has essential SVEP at 0 whenever $\pi_B(A, \lambda) \in \Phi_-(\mathcal{X})$ and $\pi_B(A, \lambda)^*$ has essential SVEP at 0 whenever $\pi_B(A, \lambda) \in \Phi_+(\mathcal{X})$, then $A - \lambda B \in \Phi(\mathcal{X})$ if $\lambda \neq 0$ and $A - B_0 \in \Phi(\mathcal{X})$ if $\lambda = 0$.

Proof. We consider the case in which $\pi_B(A, \lambda) \in \Phi_+(\mathcal{X})$ and $\pi_B(A, \lambda)^*$ has essential SVEP at 0: The proof for the other case is similar. Arguing as in the proof of Theorem 3.1, the hypotheses [A, B] = 0, $\pi_B(B) \in \mathcal{R}[\mathcal{X}]$ and $\pi_B(A, \lambda) \in \Phi_+(\mathcal{X})$ imply that if $\lambda \neq 0$, then

$$A - \lambda \mu_i$$
 and $A - \lambda B \in \Phi_+(\mathcal{X})$ for all $1 \le i \le m$
 $\iff T_q(A - \lambda \mu_i)$ and $T_q(A - \lambda B)$ are bounded below for all $1 \le i \le m$

and if $\lambda = 0$, then

A and $A - B_0 \in \Phi_+(\mathcal{X}) \iff T_q(A)$ and $T_q(A - B_0)$ are bounded below.

Since $T_q(A - \lambda \mu_i)$ is bounded below for all $\leq i \leq m$ implies $\pi_B(A, \lambda)$ is bounded below, it follows from the hypothesis $T_q(\pi_B(A, \lambda)^*)$ has SVEP that

$$T_q(\pi_B(A,\lambda))$$
 is invertible $\iff T_q(A-\lambda\mu_i)$ is invertible for all $1 \le i \le m$

[1, Corollary 2.24]. Letting *A* and *B* have the representations $A = [A_{ij}]_{1 \le i,j \le m} \in B(\bigoplus_{j=1}^{m} \mathcal{X}_j)$ and $B = \bigoplus_{j=1}^{m} B_j \in B(\bigoplus_{j=1}^{m} \mathcal{X}_j)$ (as in the proof of Theorem 3.1), this implies that $T_q(A_{jj} - \lambda \mu_j)$ is invertible, and $T_q(B_j - \mu_j)$ is quasinilpotent, for all $1 \le j \le m$. Since the operators $T_q(A_{jj} - \lambda \mu_j)$ and $T_q(B_j - \mu_j)$ commute, $\sigma(T_q(A_{jj} - \lambda B_j)) \subset \sigma(T_q(A_{jj} - \lambda \mu_j)) - \{0\}$ and $\sigma(A_{jj} - B_j + \mu_j) \subset \sigma(T_q(A_{jj})) - \{0\}$ for all $1 \le j \le m$. Hence, the operators $T_q(A_{jj} - \lambda B_j)$ and $T_q(A_{jj} - B_j + \mu_j)$ are invertible for all $1 \le j \le m$. But then

$$T_q(A - \lambda B) = T_q \{ \bigoplus_{j=1}^m (A_{jj} - \lambda B_j) \}$$
 invertible $\iff A - \lambda B \in \Phi(\mathcal{X})$

and

$$T_q(A - B_0) = T_q\{\bigoplus_{i=1}^m (A_{ii} - B_i + \mu_i)\}$$
 invertible $\iff A - B_0 \in \Phi(\mathcal{X}).$

This completes the proof.

5. A perturbed inner regular operator. If $A \in \Phi_{\times}(\mathcal{X})$, $\Phi_{\times} = \Phi_{\ell}$ or Φ_r , then A has an inner generalized inverse, which we shall denote by A^{\dagger} in the following. Clearly, the operator AA^{\dagger} is (then) a projection from \mathcal{X} onto $A(\mathcal{X})$, and $I - A^{\dagger}A$ is a projection from \mathcal{X} onto $A^{-1}(0)$. Let N denote a complement of $A(\mathcal{X})$ and let M denote a complement of $A^{-1}(0)$. Then, $A : M \oplus A^{-1}(0) \to A(\mathcal{X}) \oplus N$ has a matrix $A = A_1 \oplus 0$, where $A_1 \in \mathcal{B}[M, A(\mathcal{X})]$ is invertible. If A^{\dagger} is any generalized inverse of A such that $A^{\dagger}A(\mathcal{X}) =$ M and $(AA^{\dagger})^{-1}(0) = N$, then $A_{M,N,E}^{\dagger} = A^{\dagger} : A(\mathcal{X}) \oplus N \to M \oplus A^{-1}(0)$ has the form $A_{M,N,E}^{\dagger} = A_1^{-1} \oplus E$ for some arbitrary $E \in \mathcal{B}[N, A^{-1}(0)]$ [7, Page 37]. Now, let $A, B \in \mathcal{B}[\mathcal{X}]$ be such that $B \in Holo^{-1}(\mathcal{R}[\mathcal{X}])$ (with minimal polynomial $\pi_B(z)$, defined as in Theorem 3.1), $AB - BA \in \text{Ptrb}(\Phi_{\ell}(\mathcal{X}))$ and $\pi_B(A, \lambda) = \prod_{i=1}^m (A - \lambda\mu_i) \in \Phi_{\ell}(\mathcal{X})$ for some scalar λ . Then, the operators $A - \lambda B$ if $\lambda \neq 0$ and $A - B_0$ if $\lambda = 0$ (with the operator B_0 as earlier defined) are in $\Phi_{\ell}(\mathcal{X})$. Letting S denote either of the operators

 $A - \lambda B$ and $A - B_0$, it then follows that S has an inner generalized inverse S^{\dagger} . In general, $A(\mathcal{X})$ and $S(\mathcal{X})$, also $A^{-1}(0)$ and $S^{-1}(0)$, are quite distinct. However:

THEOREM 5.1. If $AA^{\dagger} = SS^{\dagger}$ and $A^{\dagger}A = S^{\dagger}S$, then A and S have the same range and the same null space, and S^{\dagger} has a representation

$$S^{\dagger} = (I - \lambda A_{N,M,E}^{\dagger} B)^{-1} A_{N,M,F}^{\dagger} \text{ if } \lambda \neq 0, \text{ and} \\ S^{\dagger} = (I - A_{N,M,E}^{\dagger} B_0)^{-1} A_{N,M,F}^{\dagger} \text{ if } \lambda = 0.$$

Here, N *is a complement of* $A(\mathcal{X})$ *,* M *is a complement of* $A^{-1}(0)$ *and* $E, F \in \mathcal{B}[N, A^{-1}(0)]$ *are arbitrary.*

Proof. If $AA^{\dagger} = SS^{\dagger}$ and $A^{\dagger}A = S^{\dagger}S$, then

$$S(\mathcal{X}) = SS^{\dagger}(\mathcal{X}) = AA^{\dagger}(\mathcal{X}) = A(\mathcal{X}), \text{ and} S^{-1}(0) = (S^{\dagger}S)^{-1}(0) = (A^{\dagger}A)^{-1}(0) = A^{-1}(0).$$

Now, choose the subspaces N, M as above. For $A_1 = A|_M$, $S_1 = S|_M$ and every $E \in \mathcal{B}[N, A^{-1}(0)]$, if $\lambda \neq 0$, then the operator

$$I - \lambda A_{N,M,E}^{\dagger} B = I + A_{N,M,E}^{\dagger} (S - A)$$

= $I + \begin{pmatrix} A_1^{-1} & 0 \\ 0 & E \end{pmatrix} \begin{pmatrix} S_1 - A_1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} A_1^{-1} S_1 & 0 \\ 0 & 1 \end{pmatrix}$

from $M \oplus A^{-1}(0)$ into $A(\mathcal{X}) \oplus N$ is invertible with the inverse satisfying

$$(I + A_{N,M,E}^{\dagger}(S - A))^{-1}A_{N,M,F}^{\dagger} = \begin{pmatrix} S_1^{-1}A_1 & 0\\ 0 & 1 \end{pmatrix} \begin{pmatrix} A_1^{-1} & 0\\ 0 & F \end{pmatrix} = \begin{pmatrix} S_1^{-1} & 0\\ 0 & F \end{pmatrix}$$

for every operator $F \in \mathcal{B}[N, A^{-1}(0)]$. Again, if $\lambda = 0$, then

$$I - \lambda A_{N,M,E}^{\dagger} B_0 = I + A_{N,M,E}^{\dagger} (S - A) = \begin{pmatrix} A_1^{-1} S_1 & 0\\ 0 & 1 \end{pmatrix}$$

from $M \oplus A^{-1}(0)$ into $A(\mathcal{X}) \oplus N$ is invertible with the inverse (as before) satisfying

$$(I + A_{N,M,E}^{\dagger}(S - A))^{-1}A_{N,M,F}^{\dagger} = \begin{pmatrix} S_1^{-1}A_1 & 0\\ 0 & 1 \end{pmatrix} \begin{pmatrix} A_1^{-1} & 0\\ 0 & F \end{pmatrix} = \begin{pmatrix} S_1^{-1} & 0\\ 0 & F \end{pmatrix}$$

for every operator $F \in \mathcal{B}[N, A^{-1}(0)]$. Evidently, $SS^{\dagger}S = S$, where $S^{\dagger} = (I + A_{N,M,E}^{\dagger}(S - A))^{-1}A_{N,M,F}^{\dagger}$.

ACKNOWLEDGEMENTS. We thank an anonymous referee who made sensible remarks to improve the paper.

REFERENCES

1. P. Aiena, *Fredholm and Local Spectral Theory, with Applications to Multipliers* (Kluwer-Springer, New York, 2004).

2. P. Aiena and V. Müller, The localized single-valued extension property and Riesz operators, *Proc. Amer. Math. Soc.* 143 (2015), 2051–2055.

3. E. Albrecht and R. D. Mehta, Some remarks on local spectral theory, *J. Operator Theory*. **12** (1984), 285–317.

4. J. J. Buoni, R. E. Harte and A. W. Wickstead, Upper and lower Fredholm spectra, *Proc. Amer. Math. Soc.* 66 (1977), 309–314.

5. S. L. Campbell and G. D. Faulkner, Operators on Banach spaces with complemented ranges, *Acta Math. Acad. Sci. Hungar.* **35** (1980), 123–128.

6. D. S. Djordjević, B. P. Duggal and S.Č. Živković-Zlatanović, Perturbations, quasinilpotent equivalence and communicating operators, *Math. Proc. Royal Irish Acad.* **115**A (2015), 1–14.

7. D. S. Djordjević and V. Rakočević, *Lectures on Generalized Inverse*, Faculty of Science and Mathematics (University of Niš, Niš, 2008).

8. F. Gilfeather, The structure and asymptotic behaviour of polynomially compact operators, *Proc. Amer. Math. Soc.* 25 (1970), 127–134.

9. R. E. Harte, Invertibility and Singularity, Vol 109 (Marcel Dekker, New York, 1988).

10. J. R. Holub, On perturbation of operators with complemented range, *Acta Math. Hung.* **44** (1984), 269–273.

11. A. Jeribi and N. Moalla, Fredholm operators and Riesz theory for polynomially compact operators, *Acta Applicandae Math.* **90** (2006), 227–247.

12. C. S. Kubrusly and B. P. Duggal, Upper-lower and left-right semi-Fredholmness, *Bull. Belg. Math. Soc. Simon Stevin*, 23 (2016), 217–233.

13. K. Latrach, J. Martin Padi and M. A. Taoudi, A characterization of polynomially Riesz strongly continuous semigroups, *Comment. Math. Carolina* 47 (2006), 275–289.

14. K. B. Laursen and M. N. Neumann, *Introduction to Local Spectral Theory* (Clarendon Press, Oxford, 2000).

15. V. Müller, Spectral Theory of Linear Operators – and Spectral Systems in Banach Algebras, 2nd edn. (Birkhäuser, Basel, 2007).

16. S. Č. Živkovic-Zlatanović, D. S. Djordjević, R. E. Harte and B. P. Duggal, On polynomially Riesz operators, *Filomat* 28:1 (2014), 197–205.