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Abstract. Let C[X ] be any class of operators on a Banach space X , and let
Holo−1(C) denote the class of operators A for which there exists a holomorphic
function f on a neighbourhood N of the spectrum σ (A) of A such that f is non-
constant on connected components of N and f (A) lies in C. Let R[X ] denote the
class of Riesz operators in B[X ]. This paper considers perturbation of operators
A ∈ �+(X ) ∪ �−(X ) (the class of all upper or lower [semi] Fredholm operators) by
commuting operators in B ∈ Holo−1(R[X ]). We prove (amongst other results) that if
πB(B) = ∏m

i=1 (B − μi) is Riesz, then there exist decompositions X = ⊕m
i=1Xi and B =

⊕m
i=1B|Xi = ⊕m

i=1Bi such that: (i) If λ �= 0, then πB(A, λ) = ∏m
i=1 (A − λμi)αi ∈ �+(X )

(resp., ∈ �−(X )) if and only if A − λB0 − λμi ∈ �+(X ) (resp., ∈ �−(X )), and (ii) (case
λ = 0) A ∈ �+(X ) (resp., ∈ �−(X )) if and only if A − B0 ∈ �+(X ) (resp., ∈ �−(X )),
where B0 = ⊕m

i=1(Bi − μi); (iii) if πB(A, λ) ∈ �+(X ) (resp., ∈ �−(X )) for some λ �= 0,
then A − λB ∈ �+(X ) (resp., ∈ �−(X )).

1991 Mathematics Subject Classification. Primary 47A53, Secondary 47A10.

1. Introduction. Given an infinite-dimensional complex Banach spaceX , letB[X ]
denote the algebra of operators (equivalently, bounded linear transformations) of X
into itself. Let A−1(0) and A(X ) denote, respectively, the null space and the range of an
operator A ∈ B[X ]. The operator A has an inner generalized inverse if there exists an
operator B ∈ B[X ] such that ABA = A. It is easily seen that if B is an inner generalized
inverse of A, then AB is a projection from X onto A(X ) and IX − BA is a projection
from X onto A−1(0): Indeed, A is inner regular (i.e., A has an inner generalized inverse)
if and only if A(X ) and A−1(0) are complemented (in X ). The study of inner regular
operators has a long and rich history, and there is a large body of information available
on inner regular operators in the extant literature(see, for example, [7]). An important
class of inner regular Banach space operators is that of operators A ∈ B[X ] which
are either left or right Fredholm. Here, we say that A ∈ B[X ] is left Fredholm, A ∈
��(X ) (resp, right Fredholm, A ∈ �r(X )), if A ∈ �+(X ) and R(A) is complemented
(resp., A ∈ �−(X ) and A−1(0) is complemented), �+(X ) = {A ∈ B[X ] : A(X ) is
closed and dim(A−1(0)) < ∞} is the class of upper semi-Fredholm operators and
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�−(X ) = {A ∈ B[X ] : dim(X /A(X )) < ∞} is the class of lower semi-Fredholm
operators (see, e.g., [12]).

The problem of the perturbation of inner regular operators by compact operators
is of some interest, and has been considered in the not too distant past. Thus, if an
A ∈ B[X ] is left Fredholm (or right Fredholm), and S ∈ B[X ] is a compact operator,
then A + S is left Fredholm (resp., right Fredholm) [5, 10]. This result is in a way the
best possible: If A ∈ B[X ,Y ] for Banach spacesX andY , A−1(0) is infinite-dimensional
and complemented in X , A(X ) is closed, complemented and of infinite co-dimension
in Y , then the closure of (A + S)(X ) is complemented in Y for every compact S ∈
B[X ,Y ] only if A(X ) has a complementary subspace isomorphic to a Hilbert space
[10, Theorem 3].

For an operator A ∈ B[X ], let H(σ (A)) denote the set of functions f which are
holomorphic on a neighbourhood N of the spectrum σ (A) of A, and let Hc(σ (A) =
{f ∈ H(σ (A)) : f is non-constant on the connected components ofN }. LetK[X ] denote
the ideal of compact operators, and let R[X ] denote the class of Riesz operators (i.e.,
operators whose non-zero translates are Fredholm). The operator A is holomorphically
compact (resp., Riesz), A ∈ Holo−1(K[X ]) (resp., A ∈ Holo−1(R[X ])), if there exists an
f ∈ Hc(σ (A)) such that f (A) is compact (resp., Riesz).

This paper considers perturbation of operators in �±(X ) = �+(X ) ∪ �−(X ) by
commuting operators in (Holo−1(K[X ]), more generally) Holo−1(R[X ]). It is known
that if B ∈ Holo−1(K[X ]) (resp., B ∈ Holo−1(R[X ])), then there exists a polynomial
πB(z) = ∏m

i=1 (z − μi)αi for some complex numbers μi and positive integers αi (resp.,
πB(z) = ∏m

i=1 (zi − μi)), which is the minimal polynomial πB(.) of B, such that πB(B)
is compact (resp., Riesz).

Let �×(X ) denote either of �+(X ) and �−(X ). We prove (a more general version
of the result) that if πB(A) ∈ �×(X ), if [A, B] = AB − BA = 0 (or, more generally,
[A, B] is in the “perturbation class” Ptrb(�×(X )) of �×(X )) and πB(B) is Riesz,
then A − B ∈ �×(X ). The hypothesis B ∈ Holo−1(K[X ]) (or, B ∈ Holo−1(R[X ]))
enforces a decomposition X = ⊕m

i=1 Xi of X such that B = ⊕m
i=1 Bi = ⊕m

i=1 B|Xi

with
⊕m

i=1 (Bi − μi)αi compact (resp.,
⊕m

i=1 (Bi − μi) Riesz). Let B0 = ⊕m
i=1(Bi − μi),

where m and μi are as above. It is proved that if [A, B] = 0 and B ∈ Holo−1(R[X ]),
then (a) πB(A, λ) = ∏m

i=1 (A − λμi) ∈ �×(X ) for a complex number λ �= 0 if and
only if A − λ(B0 − μi) ∈ �×(X ), and A ∈ �×(X ) if and only if A − B0 ∈ �×(X ); (b)
πB(A, λ) ∈ �×(X ) for some λ �= 0 implies A − λB ∈ �×(X ). The case of operator A
such πB(A, λ) has SVEP, the single-valued extension property, or essential SVEP, at 0
is also considered.

2. Auxiliary results. Let Inv�(X ) (Invr(X )) denote the class of operators A ∈ B[X ]
which are left invertible (resp., right invertible). Let T denote the Calkin homomorphism
T : B[X ] → B[X ]/K[X ]. Then, A ∈ K[X ] if and only if T (A) = 0, A ∈ R[X ] if and only
if T (A) is a quasinilpotent operator, and an A ∈ B[X ] is in ��(X ) (resp., �r(X )) if and
only if T (A) ∈ Inv�(X ) (resp., T (A) ∈ Invr(X )). Let B ∈ Holo−1(K[X ]). Then, there
exists a function f ∈ Hc(σ (B)) such that f (B) ∈ K[X ], and hence such that T (f (B)) =
f (T (B)) = 0. Since f (z) has at best a finite number of zeros, there exists a polynomial p(.)
such that f (T (B)) = p(T (B))g(T (B)) = 0, where the (holomorphic on σ (B)) function g
satisfies the property that g(z) �= 0 on σ (B). But then p(T (B)) = 0, and hence there exists
a monic irreducible polynomial, the minimal polynomial of B, which divides every other
polynomial q(z) such that q(T (B)) = 0. If we let πB(z) = ∏m

i=1 (z − μi)αi denote the
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minimal polynomial of B, then πB(B) ∈ K[X ]. In the case in which B ∈ Holo−1(R[X ]),
so that f (B) ∈ R[X ] for some f ∈ Hc(σ (B)), f (T (B)) is a quasinilpotent such that
f (T (B)) = p(T (B))g(T (B)) for some polynomial p(.) such that p(T (B)) is quasinilpotent
and the function g(.) is invertible. Once again there exists a minimal polynomial πB(.)
of B such that πB(B) ∈ R[X ]. We have ([11, 13, 16]):

PROPOSITION 2.1. The following conditions are equivalent for operators B ∈ B[X ]:

(i) B ∈ Holo−1(K[X ]) (resp., B ∈ Holo−1(R[X ])).
(ii) B is polynomially compact (resp., polynomially Riesz).

(iii) There exists a monic irreducible polynomial πB(z) = ∏m
i=1 (z − μi)αi (resp., πB(z) =∏m

i=1 (z − μi)), the minimal polynomial of B, such that πB(B) is compact (resp.,
Riesz).

If f (B) ∈ K[X ] ∪ R[X ] is such that (the Fredholm essential spectrum) σe(f (B)) �= ∅,
then (it follows from the considerations above that) there exists a finite subset
{μ1, μ2, . . . , μm} of the set of complex numbers � such that f (μi) = 0 for all 1 ≤ i ≤ m,
and there exist disjoint countable subsets Si = {μin} ⊂ � such that μin converges
to μi ∈ Si and S1 ∪ S2 ∪ · · · ∪ Sm = σ (B). (Here, either of the sets Si may consist
just of the singleton μi, and then the quasinilpotent part H0(B − μi) = {x ∈ X :
limn→∞ ||(B − μi)nx|| 1

n = 0} of B − μi is infinite dimensional.) Letting Pi denote the
spectral projection associated with the spectral set Si, we then obtain spectral subspaces
Xi of X and operators Bi = B|Xi such that X = ⊕m

i=1Xi, B = ⊕m
i=1Bi and σe(Bi) = {μi}.

Furthermore, each (Bi − μi)αi is compact in the case in which B ∈ Holo−1(K[X ]), and
(since, for an operator E ∈ B[X ], Eαi ∈ R[X ] if and only if E ∈ R[X ]) each Bi − μi is
Riesz in the case in which B ∈ Holo−1(R[X ]). We have the following:

PROPOSITION 2.2 ([8, 16]). If B ∈ Holo−1(K[X ]) (resp., B ∈ Holo−1(R[X ])), then
there exists a finite subset {μ1, μ2, . . . μm} ⊂ �, a subset {α1, α2, . . . , αm} of positive
integers, a decomposition X = ⊕m

i=1Xi of X into closed B-invariant subspaces and a
decomposition B = ⊕m

i=1Bi of B such that each (Bi − μi)αi is compact (resp., each Bi − μi

is Riesz).

3. Riesz perturbations. Given operators A, B ∈ B[X ], let δA,B ∈ B[B[X ]] denote
the generalized derivation δA,B(X) = AX − XB, and let δn

A,B(X) = δn−1
A,B (δA,B(X)). The

operators A, B are said to be quasinilpotent equivalent if

lim
n→∞ ||δn

A,B(I)|| 1
n = lim

n→∞ ||δn
B,A(I)|| 1

n = 0.

The following proposition is well known (see [14, Proposition 3.4.11], [6, Theorem
3.1]).

PROPOSITION 3.1. If A, B are quasinilpotent equivalent operators, then σ×(A) =
σ×(B), where σ× stands for either of the left spectrum, the right spectrum, the approximate
point spectrum σa, the surjectivity spectrum σs and the spectrum σ .

We assume in the following that if an operator B ∈ B[X ] is such that B ∈
Holo−1(K[X ]) or Holo−1(R[X ]), then it has the minimal polynomial function of
Proposition 2.1, the Banach space X and the operator B have the decompositions X =
⊕m

i=1Xi and B = ⊕m
i=1Bi of Proposition 2.2. The operator B0 ∈ B[X ] shall henceforth be
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defined by B0 = ⊕m
i=1 (Bi − μi), where the scalars μi are as defined in Proposition 2.1.

Let Inv×(X ) denote operators A ∈ B[X ] which are either bounded below or surjective.
Given operators A, B ∈ B[X ], let [A, B] denote the commutator [A, B] = AB − BA

of A and B. If �×(X ) denotes either of ��(X ) or �r(X ) or �±(X ) = �+(X ) ∪ �−(X ),
then the perturbation class of �×(X ), Ptrb(�×(X )), is the closed two-sided ideal.

Ptrb(�×(X )) = {A ∈ B[X ] : A + B ∈ �×(X ) for every B ∈ �×(X )}.

It is seen that

Ptrb(��(X )) = Ptrb(�r(X )) = Ptrb(�(X )) ⊇ Ptrb(�+(X )) ∪ Ptrb(�−(X )).

Let Tp denote the homomorphism

Tp : B[X ] → B[X ]/Ptrb(�×(X )),

which is effected by the natural projection of the algebra B[X ] into the quotient
algebra B[X ]/Ptrb(�×(X )). It is then clear that [A, B] = AB − BA ∈ Ptrb(�×(X )) if
and only if Tp(AB − BA) = Tp(A)Tp(B) − Tp(B)Tp(A) = 0; furthermore, if the function
f ∈ Holo−1(σ (A) ∪ σ (B)), in particular if f is a polynomial, then [A, B] ∈ Ptrb(�×(X ))
implies f (A)f (B) − f (B)f (A) ∈ Ptrb(�×(X )), and hence Tp(f (A)f (B) − f (B)f (A)) = 0.

THEOREM 3.1. Let A, B ∈ B[X ] be such that B ∈ Holo−1(R[X ]).

(a) If πB(A, λ) = ∏m
i=1 (A − λμi) ∈ �×(X ) for some complex number λ and [A, B] ∈

Ptrb(�×(X )), then A − λB ∈ �×(X ) if λ �= 0, and A − B0 ∈ �×(X ) whenever λ = 0.
(b) Suppose that [A, B] = 0.

(i) If λ �= 0, then πB(A, λ) = ∏m
i=1 (A − λμi)αi ∈ �×(X ) if and only if A − λB0 −

λμi ∈ �×(X ).
(ii) (Case λ = 0) A ∈ �×(X ) if and only if A − B0 ∈ �×(X ).

(c) If λ �= 0, [A, B] = 0 and πB(A, λ) ∈ �×(X ), then A − λB ∈ �×(X ).

Proof.

(a) Define the operators D, E and F by

D = E − F, E = πB(A, λ) if λ �= 0 and E = Am if λ = 0,

F = λmπB(B) if λ �= 0 and F = Bm
0 if λ = 0.

Then, F ∈ R[X ], and the hypothesis that [A, B] ∈ Ptrb�×(X ) implies

Tp[E, F ] = Tp(E)Tp(F) − Tp(F)Tp(E) = 0.

The operator Tp(F) being quasinilpotent, we have

δn
Tp(D),Tp(E)(I) = δn−1

Tp(D),Tp(E)((−1)Tp(F))

= · · · = (−1)nTp(F)n = · · · = (−1)nδn
Tp(E),Tp(D)(I),

and hence Tp(D) and Tp(E) are quasinilpotent equivalent. Since E ∈ �×(X ),

Tp(E) ∈ Inv×(X ) ⇐⇒ Tp(D) ∈ Inv×(X ).
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Again, since

Tp(D) = (Tp(A) − Tp(B))g(Tp(A), Tp(B), λ)

= g(Tp(A), Tp(B), λ)(Tp(A) − λTp(B)) if λ �= 0,

and

Tp(D) = Tp(A)m − Tp(B0)m = (Tp(A) − Tp(B0))g1(Tp(A), Tp(B), λ)

= g1(Tp(A), Tp(B), λ)(Tp(A) − Tp(B0)) if λ = 0,

it follows that

Tp(A) − λTp(B) ∈ Inv×(X ) if λ �= 0 and

Tp(A) − Tp(B0) ∈ Inv×(X ) if λ = 0.

Since

A − λB (resp., A − B0) ∈ �+(X ), if and only if

Tp(A) − λTp(B) (resp., Tp(A) − Tp(B0)) is bounded below and

A − λB (resp., A − B0) ∈ �−(X ), if and only if

Tp(A) − λTp(B) (resp., Tp(A) − Tp(B0)) is surjective,

the proof follows.
(b) The proof at places is similar to the one above, so we shall at points be brief. Let

T : B[X ] → B[X ]/K[X ] denote the Calkin homomorphism. Suppose that [A, B] =
0. Letting B = ⊕m

i=1Bi with respect to the decomposition X = ⊕m
i=1Xi of X , it is

seen that A has a matrix representation A = (Aij)m
i,j=1 such that

AijBj = BiAij for all 1 ≤ i, j ≤ m

⇐⇒ Aij(Bj − μi) = (Bi − μi)Aij for all 1 ≤ i, j ≤ m.

Here, the complex numbers μi, 1 ≤ i ≤ m, are distinct, the operators Bi − μi being
Riesz for all 1 ≤ i ≤ m and (since μi /∈ σ (Bj) for all 1 ≤ i �= j ≤ m), the operator
T (Bj − μi) is invertible for all 1 ≤ i �= j ≤ m. Consequently,

T (Aij)T (Bj − μi)n = T (Bi − μi)nT (Aij)

⇐⇒ T (Aij) = T (Bj − μi)−nT (Bi − μi)nT (Aij).

We have two possibilities: Either T (Aij) �= 0 or T (Aij) = 0. If T (Aij) �= 0, then (since
T (Bi − μi) is quasinilpotent):

||T (Aij)|| ≤ ||T (Aij)||||T (Bj − μi)−1||n||T (Bi − μi)n||
=⇒ 1 ≤ ||T (Bj − μi)−1|| lim

n→∞||T (Bi − μi)n|| 1
n = 0.

This being a contradiction, we must have

T (A) = ⊕m
i=1T (Aii), T (Aij) = 0 and [Aii, Bi] = 0 for all 1 ≤ i �= j ≤ m.

https://doi.org/10.1017/S001708951600046X Published online by Cambridge University Press

https://doi.org/10.1017/S001708951600046X


664 B. P. DUGGAL AND C. S. KUBRUSLY

Define the operators Mj, Nj ∈ B[Xj], 1 ≤ j ≤ m, by

Mj = (Ajj − λBj) − λ(μi − μj), Nj = Ajj − λμi for all 1 ≤ i, j ≤ m if λ �= 0,

and

Mj = Ajj − Bj + μj, Nj = Ajj for all 1 ≤ j ≤ m if λ = 0.

Then, the equivalences

πB(B) ∈ R[X ] ⇐⇒
m∏

i=1

(B − μi) =
m∏

i=1

{⊕m
j=1(Bj − μi)} ∈ R[X ]

⇐⇒
m∏

i=1

(Bj − μi) ∈ R[Xj] for all 1 ≤ j ≤ m

⇐⇒ Bj − μj ∈ R[Xj] for all 1 ≤ j ≤ m

and

πB(A, λ) ∈ �×(X ) ⇐⇒
m∏

i=1

T (A − λμi) =
m∏

i=1

{⊕m
j=1T (Ajj − λμi)} ∈ Inv×(X )

⇐⇒
m∏

i=1

T (Ajj − λμi) = T {
m∏

i=1

(Ajj − λμi)} ∈ Inv×(Xj)

for all 1 ≤ i, j ≤ m

⇐⇒
m∏

i=1

(Ajj − λμi) ∈ �×(Xj) for all 1 ≤ i, j ≤ m

⇐⇒ Ajj − λμi ∈ �×(Xj) for all 1 ≤ i, j ≤ m

imply that

δn
T (Mj),T (Nj)(Ij) = (−λ)δn−1

T (Mj),T (Nj)
T (Bj − μj) = · · · = (−λ)nT (Bj − μj)n

= · · · = δn
T (Nj),T (Mj)(Ij).

This implies that the operators T (Mj) and T (Nj) are quasinilpotent equivalent,
and hence

Mj ∈ �×(Xj) ⇐⇒ Nj ∈ �×(X ), 1 ≤ j ≤ m.
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Now, if we define B0 ∈ B[X ] (as above) by B0 = ⊕m
j=1(Bj − μj), then

T (A − λB0 − λμi) = ⊕m
j=1{T ((Ajj − λBj) − λ(μi − μj))} ∈ Inv×(X )

for all 1 ≤ i ≤ m

⇐⇒ ⊕m
j=1T (Ajj − λμi) ∈ Inv×(X ) for all 1 ≤ i ≤ m

⇐⇒
m∏

i=1

{⊕m
j=1T (Ajj − λμi)} ∈ Inv×(X )

=
m∏

i=1

T (A − λμi) ∈ Inv×(X )

⇐⇒ πB(A, λ) ∈ �×(X )

if λ �= 0, and

⊕m
j=1T (Mj) = ⊕m

j=1T (Ajj − Bj + μj) = T (A − B0) ∈ Inv×(X )

⇐⇒ ⊕m
j=1T (Nj) = ⊕m

j=1T (Ajj) = T (πB(A, 0)) ∈ Inv×(X )

⇐⇒ πB(A, 0) ∈ �×(X )

if λ = 0.
(c) Let λ �= 0. Choosing i = j in

πB(A, λ) ∈ �×(X ) ⇐⇒ A − λ(⊕m
j=1(Bj − μj + μi) ∈ �×(X )

for all 1 ≤ i ≤ m, it then follows that

πB(A, λ) ∈ �×(X ) =⇒ A − λB ∈ �×(X ). �

REMARK 3.1.

(i) Some hypothesis of the type [A, B] ∈ Ptrb�×(X ), or [A, B] = 0, is essential to
the validity of Theorem 3.1. To see this, consider operators A, B such that
πB(A, λ) ∈ �×(X ) and πB(B) is compact. Then, since Tp(πB(B)) = 0 = T (πB(B)),
πB(A, λ) − λmπB(B) ∈ �×(X ) ⇐⇒ πB(A, λ) ∈ �×(X ). This does not however
imply A − λB (or, A − B0 if λ = 0, or A − λB0 − μi if λ �= 0) ∈ �×(X ), as the
following elementary example shows. Letting I denote the identity of B[X ], define
the polynomially compact operator B (with minimal polynomial πB(z) = (z − 1)2)

by B =
(

I I
0 I

)
, and let A =

(
2I 0
I 0

)
. Then, with λ = 1, πB(A, λ) =

(
I 0
I −I

)

is invertible (hence, Fredholm). However, the operator A − λB (which satisfies

(A − λB)2 = 0) is not even semi-Fredholm. Again, if we define A by A =
(

I 0
I −I

)
,

then (A − B0)2 = 0 and A − B0 is not semi-Fredholm. Observe that neither of the
hypotheses [A, B] = 0 or [A, B] ∈ Ptrb(�×(X ) is satisfied.

(ii) Let A and B be the operators of Theorem 3.1, parts (b) and (c). Then, A − λμi ∈
�×(X ) if and only if Ajj − λμi ∈ �×(Xj) for all 1 ≤ j ≤ m and T (Aij) = 0 for
all 1 ≤ i �= j ≤ m. The conclusion T (Aij) = 0 for all 1 ≤ i �= j ≤ m implies that
the operator A = [Aij]1≤i,j≤m may be written as the sum A = A1 + A0, where
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A1 = ⊕m
j=1Ajj and the compact (hence, Riesz) operator A0 is defined by

A0 = [Aij]1≤i,j≤m with Aii = 0 for all 1 ≤ i ≤ m.

Recalling that the sum of two commuting Riesz operators is a Riesz operator, it
follows that the operators 1

λ
A0 − B0 (case λ �= 0) and A0 − B0 (case λ = 0) are

Riesz operators. It is now seen that the operators

A − λμi − λB0 = (A1 − λμi) + λ(
1
λ

A0 − B0) and A1 − λμi (λ �= 0),

A − B0 = A1 + (A0 − B0) and A1 (λ = 0)

are quasinilpotent equivalent. Hence

A1 − λμi ∈ �×(X ) ⇐⇒ A − λμi − λB0 ∈ �×(X ), λ �= 0

and

A ∈ �×(X ) ⇐⇒ A − B0 ∈ �×(X ).

This provides an alternative to some of the argument used to prove parts (b) and
(c) of Theorem 3.1.

Let λ(t) denote a continuous function from a connected subset I of the reals into
C such that λ(t1) = 0 and λ(t2) = 1 for some t1, t2 ∈ I, t1 < t2. Then, the argument of
the proof of Theorem 3.1 holds with λ replaced by λ(t) and we have:

COROLLARY 3.1. Let A, B ∈ B[X ] be such that B ∈ Holo−1(R[X ]).

(a) If πB(A, λ) = ∏m
i=1 (A − λ(t)μi) ∈ �×(X ) and [A, B] ∈ Ptrb(�×(X )), then A −

λ(t)B ∈ �×(X ) for all t ∈ [t1, t2].
(b) If A, B commute, then

(i) πB(A, λ(t)) = ∏m
i=1 (A − λ(t)μi) ∈ �×(X ) if and only if A − λ(t)(B0 + μi) ∈

�×(X ), 1 ≤ i ≤ m, for all t ∈ [t1, t2];
(ii) πB(A, λ(t1)) ∈ �×(X ) if and only if A − B0 ∈ �×(X );

(iii) πB(A, λ(t)) ∈ �×(X ) implies A − λ(t)B ∈ �×(X ) for all t ∈ [t1, t2].

Recalling the fact that “every locally constant function on a connected set is
constant”, it follows from the local constancy of the index function “ind” that ind(A) =
ind(A − B) = ind(A − λ(t)B) for all t ∈ [t1, t2]. In particular, if A ∈ ��(X ) (resp., A ∈
�r(X )), then (A − λ(t)B)(X ) (resp., (A − λ(t)B)−1(0)) is complemented by a finite-
dimensional subspace if and only if A(X ) (resp., A−1(0)) is complemented by a finite-
dimensional subspace.

4. Operators with SVEP. A ∈ B[X ] has the single-valued extension property at
λ0 ∈ �, SVEP at λ0 for short, if for every open disc Dλ0 centred at λ0 the only
holomorphic function f : Dλ0 → X which satisfies

(T − λ)f (λ) = 0 for all λ ∈ Dλ0

is the function f ≡ 0. T has SVEP if it has SVEP at every λ ∈ �. Operators with
countable spectrum have SVEP: If A ∈ R[X ], then both A and (the conjugate operator)
A∗ have SVEP. It is known that f (A), A ∈ B[X ] and f ∈ Hc(σ (A)), has SVEP at a point
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λ if and only if A has SVEP at every μ such that f (μ) = λ (see [1, Theorem 2.39] and
[14]). If an A ∈ B[X ] has SVEP at a point λ, then SVEP for B ∈ B[X ] at λ does not
transfer to A + B, even if A and B commute. However:

PROPOSITION 4.1 ([2, Theorem 0.3]). If A and B commute, and if B ∈ R[X ], then
SVEP at λ for A implies SVEP for A − B at λ.

Recall that the ascent (resp., descent) of A ∈ B[X ], asc(A) (resp., dsc(A)), is the least
non-negative integer n such that A−n(0) = A−(n+1)(0) (resp., An(X ) = An+1(X )); if no
such integer exists, then asc(A) = ∞ (resp., dsc(A) = ∞). Finite ascent (resp., descent)
at a point λ for A implies ind(A − λ) ≤ 0 and A has SVEP at λ (resp., ind(A − λ) ≥ 0
and A∗ has SVEP at λ); conversely, if A − λ ∈ �×(X ) (resp., A∗ − λ ∈ �×(X )) has
SVEP at 0, then asc(A − λ) < ∞ and 0 ∈ isoσa(A) (resp., dsc(A − λ) < ∞ and 0 ∈
isoσs(A)) [1, Theorems 3.16, 3.17, 3.23, 3.27]. The operator A is upper Browder (resp.,
lower Browder, left Browder, right Browder, or (simply) Browder) if it is upper Fredholm
with asc(A) < ∞ (resp., lower Browder with dsc(A) < ∞, left Browder with asc(A) <

∞, right Browder with dsc(A) < ∞, Fredholm with asc(A) = dsc(A) < ∞). Let A ∈
×−Browder denote that A is one of upper Browder, lower Browder, left Browder, right
Browder or (simply) Browder. It is well known, see [9, Theorem 7.92.] or [6, Proposition
2.2], that if A, B ∈ B[X ] are commuting operators, then AB ∈ ×−Browder if and only if
A, B ∈ ×−Browder. If an operator A ∈ {�+(X ) ∪ ��(X )} (resp., A ∈ {�−(X ) ∪ �r(X )}
and A∗) has SVEP at 0, then A is upper or left (resp., lower or right) Browder [1,
Theorem 3.52]. As before, the operator B0 ∈ B[X ] is defined by B0 = ⊕m

j=1(Bj − μj).
The following theorem generalizes [6, Theorem 4.1].

THEOREM 4.1. Let A, B ∈ B[X ] be such that [A, B] = 0, πB(B) = ∏m
i=1 (B− μi) ∈

R[X ] and πB(A, λ) = ∏m
i=1 (A − λμi) ∈ �×(X ) for some complex number λ. Then

(a) A ∈ ×−Browder if and only if A − B0 ∈ ×−Browder;
(b) (i) πB(A, λ) ∈ ×−Browder implies A − λB ∈ ×−Browder, and (ii) πB(A, λ) ∈

×−Browder if and only if A − λB0 − λμi ∈ ×−Browder for all 1 ≤ i ≤ m;
(c) if A ∈ {�+(X ) ∪ ��(X )} has SVEP at 0 (resp., A ∈ {�−(X ) ∪ �r(X )} and A∗ has

SVEP at 0), then A − λB is upper or, respectively, left (resp., lower or, respectively,
right) Browder.

Proof. We consider the case ×−Browder = upper Browder or left Browder only
(thus × in �× shall stand for upper or left); the proof for the other cases is similar.

(a) The operator B0 = ⊕m
i=1(Bi − μi) being the direct sum of Riesz operators is

a Riesz operator. Since A commutes with B0, A − B0 has SVEP at 0 if and
only if A has SVEP at 0. Again, by Theorem 2.1(b.ii), A − B0 ∈ �×(X ) if
and only if A ∈ �×(X ). Hence, since an operator T is ×−Browder if and
only if T ∈ �×(X ) and T has SVEP at 0 [1, Theorem 3.52], A − B0 ∈ ×−
Browder if and only if A ∈ ×−Browder.

(b.i) The hypothesis πB(A, λ) ∈ ×−Browder implies A − λμi ∈ ×−Browder if
and only if A − λμi ∈ �×(X ) and A − λμi has SVEP at 0. Since πB(B) =∏m

i=1(B − μi) is Riesz, there an integer i, 1 ≤ i ≤ m, such that λ(B − μi) is
Riesz (and commutes with A − λμi). Hence, A − λB = (A − λμi) − (B −
λμi) has SVEP at 0. Since A − λB ∈ �×(X ) by Theorem 2.1(c), A − λB ∈
×−Browder.
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(b.ii) The case λ = 0 being evident, we consider λ �= 0. It is clear from Theorem
2.1(b.i) that

πB(A, λ) ∈ �×(X ) ⇐⇒ A − λB − λμi ∈ �×(X ).

Since,

πB(A, λ) ∈ ×−Browder ⇐⇒ A − λμi ∈ ×−Browder for all 1 ≤ i ≤ m

⇐⇒ A − λμi ∈ �×(X ), A − λμi has SVEP at 0

for all 1 ≤ i ≤ m.

The operator B0 being a Riesz operator which commutes with A − λμi, it
follows that A − λμi − λB0 has SVEP at 0 if and only if A − λμi has SVEP
at 0. Hence,

πB(A, λ) ∈ ×−Browder ⇐⇒ A − λB0 − λμi ∈ ×−Browder.

(c) Recall from above that if an operator A ∈ �×(X ) has SVEP at 0, then 0 ∈
isoσa(A). Since σa(A − λμi) ⊂ σa(A) − {λμi}, it follows from our hypotheses
that (at worst) λμi ∈ isoσa(A) for all 1 ≤ i ≤ m. Hence, A − λμi has SVEP
at 0. As seen above, A − λB ∈ �×(X ). Hence, since the operator B − μi is
Riesz and commutes with A − λμi, A − λBi = (A − λμi) − λ(Bi − μi) has
SVEP at 0. Thus, [1, Theorem 3.52] implies that A − λB ∈ ×−Browder. �

REMARK 4.1. An alternative argument proving Theorem 4.1(b.i) goes as follows.
If × = upper or left, then the hypotheses imply that πB(A, λ) has SVEP at 0 and
the Riesz operator πB(B) commutes with πB(A, λ). Hence, πB(A, λ) − λmπB(B) has
SVEP at 0. Already, we know from (the proof of) Theorem 3.1 that πB(A, λ) −
λmπB(B) ∈ �×(X ), where �×(X ) = �+(X ) ∪ ��(X ). Hence, πB(A, λ) − λmπB(B) =
(A − λB)g(A, B, λ) = g(A, B, λ)(A − λB) is upper or (resp.) left Browder. This implies
A − λB is upper or (resp.) left Browder.

Essential SVEP. Let Tq : B[X ] → B[Xq], Xq = �∞(X )/m(X ), denote the homomorph-
ism effecting the “essential enlargement A → Tq(A) = Aq” of [4] (and [15, Theorems
17.6 and 17.9]). Then, A ∈ B[X ] is upper semi-Fredholm (lower semi-Fredholm), A ∈
�+(X ) (resp., A ∈ �−(X )), if and only if Aq is bounded below (resp., Aq is surjective);
Aq = 0 for an operator A if and only if A is compact, and if A ∈ R[X ], then Aq is a
quasinilpotent. Recall from Theorem 3.1(b.ii) and (c) that if A, B ∈ B[X ] are such that
[A, B] = 0, πB(B) = ∏m

i=1 (B − μi) ∈ R[X ] and πB(A, λ) = ∏m
i=1 (A − λμi) ∈ �±(X ),

then A − λB ∈ �±(X ) if λ �= 0 and A − B0 ∈ �±(X ) if λ = 0. If we now assume
that πB(A, λ) ∈ �−(X ) (resp., the conjugate operator πB(A, λ)∗ ∈ �−(X )), λ �= 0, has
SVEP at 0, then A − λB ∈ �(X ) is inner regular. Again, if we assume λ = 0 and
A ∈ �−(X ) (resp., A∗ ∈ �−(X )) has SVEP at 0, then A − B0 ∈ �(X ) is inner regular.
SVEP for an operator neither implies nor is implied by SVEP for its image under the
homomorphisms Tq [3, Remark 2.9]: We say in the following that A has essential SVEP
at a point λ if Aq = Tq(A) has SVEP at λ. The following corollary says that a result
similar to the one above on the inner regularity of A − λB and A − B0 holds with the
hypotheses on SVEP replaced by hypotheses on essential SVEP.
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COROLLARY 4.1. Let A, B ∈ B[X ] be such that [A, B] = 0, πB(B) = ∏m
i=1 (B− μi) ∈

R[X ], πB(A, λ) has essential SVEP at 0 whenever πB(A, λ) ∈ �−(X ) and πB(A, λ)∗ has
essential SVEP at 0 whenever πB(A, λ) ∈ �+(X ), then A − λB ∈ �(X ) if λ �= 0 and
A − B0 ∈ �(X ) if λ = 0.

Proof. We consider the case in which πB(A, λ) ∈ �+(X ) and πB(A, λ)∗ has essential
SVEP at 0: The proof for the other case is similar. Arguing as in the proof of Theorem
3.1, the hypotheses [A, B] = 0, πB(B) ∈ R[X ] and πB(A, λ) ∈ �+(X ) imply that if λ �=
0, then

A − λμi and A − λB ∈ �+(X ) for all 1 ≤ i ≤ m

⇐⇒ Tq(A − λμi) and Tq(A − λB) are bounded below for all 1 ≤ i ≤ m

and if λ = 0, then

A and A − B0 ∈ �+(X ) ⇐⇒ Tq(A) and Tq(A − B0) are bounded below.

Since Tq(A − λμi) is bounded below for all ≤ i ≤ m implies πB(A, λ) is bounded below,
it follows from the hypothesis Tq(πB(A, λ)∗) has SVEP that

Tq(πB(A, λ)) is invertible ⇐⇒ Tq(A − λμi) is invertible for all 1 ≤ i ≤ m

[1, Corollary 2.24]. Letting A and B have the representations A = [Aij]1≤i,j≤m ∈
B(⊕m

j=1Xj) and B = ⊕m
j=1Bj ∈ B(⊕m

j=1Xj) (as in the proof of Theorem 3.1), this
implies that Tq(Ajj − λμj) is invertible, and Tq(Bj − μj) is quasinilpotent, for all
1 ≤ j ≤ m. Since the operators Tq(Ajj − λμj) and Tq(Bj − μj) commute, σ (Tq(Ajj −
λBj)) ⊂ σ (Tq(Ajj − λμj)) − {0} and σ (Ajj − Bj + μj) ⊂ σ (Tq(Ajj)) − {0} for all 1 ≤ j ≤
m. Hence, the operators Tq(Ajj − λBj) and Tq(Ajj − Bj + μj) are invertible for all
1 ≤ j ≤ m. But then

Tq(A − λB) = Tq{⊕m
j=1(Ajj − λBj)} invertible ⇐⇒ A − λB ∈ �(X )

and

Tq(A − B0) = Tq{⊕m
j=1(Ajj − Bj + μj)} invertible ⇐⇒ A − B0 ∈ �(X ).

This completes the proof. �

5. A perturbed inner regular operator. If A ∈ �×(X ), �× = �� or �r, then A has
an inner generalized inverse, which we shall denote by A† in the following. Clearly, the
operator AA† is (then) a projection fromX onto A(X ), and I − A†A is a projection from
X onto A−1(0). Let N denote a complement of A(X ) and let M denote a complement
of A−1(0). Then, A : M ⊕ A−1(0) → A(X ) ⊕ N has a matrix A = A1 ⊕ 0, where A1 ∈
B[M, A(X )] is invertible. If A† is any generalized inverse of A such that A†A(X ) =
M and (AA†)−1(0) = N, then A†

M,N,E = A† : A(X ) ⊕ N → M ⊕ A−1(0) has the form

A†
M,N,E = A−1

1 ⊕ E for some arbitrary E ∈ B[N, A−1(0)] [7, Page 37]. Now, let A, B ∈
B[X ] be such that B ∈ Holo−1(R[X ]) (with minimal polynomial πB(z), defined as in
Theorem 3.1), AB − BA ∈ Ptrb(��(X )) and πB(A, λ) = ∏m

i=1 (A − λμi) ∈ ��(X ) for
some scalar λ. Then, the operators A − λB if λ �= 0 and A − B0 if λ = 0 (with the
operator B0 as earlier defined) are in ��(X ). Letting S denote either of the operators
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A − λB and A − B0, it then follows that S has an inner generalized inverse S†. In
general, A(X ) and S(X ), also A−1(0) and S−1(0), are quite distinct. However:

THEOREM 5.1. If AA† = SS† and A†A = S†S, then A and S have the same range
and the same null space, and S† has a representation

S† = (I − λA†
N,M,EB)−1A†

N,M,F if λ �= 0, and

S† = (I − A†
N,M,EB0)−1A†

N,M,F if λ = 0.

Here, N is a complement of A(X ), M is a complement of A−1(0) and E, F ∈ B[N, A−1(0)]
are arbitrary.

Proof. If AA† = SS† and A†A = S†S, then

S(X ) = SS†(X ) = AA†(X ) = A(X ), and

S−1(0) = (S†S)−1(0) = (A†A)−1(0) = A−1(0).

Now, choose the subspaces N, M as above. For A1 = A|M , S1 = S|M and every E ∈
B[N, A−1(0)], if λ �= 0, then the operator

I − λA†
N,M,EB = I + A†

N,M,E(S − A)

= I +
(

A−1
1 0
0 E

) (
S1 − A1 0

0 0

)
=

(
A−1

1 S1 0
0 1

)

from M ⊕ A−1(0) into A(X ) ⊕ N is invertible with the inverse satisfying

(I + A†
N,M,E(S − A))−1A†

N,M,F =
(

S−1
1 A1 0
0 1

) (
A−1

1 0
0 F

)
=

(
S−1

1 0
0 F

)

for every operator F ∈ B[N, A−1(0)]. Again, if λ = 0, then

I − λA†
N,M,EB0 = I + A†

N,M,E(S − A) =
(

A−1
1 S1 0
0 1

)

from M ⊕ A−1(0) into A(X ) ⊕ N is invertible with the inverse (as before) satisfying

(I + A†
N,M,E(S − A))−1A†

N,M,F =
(

S−1
1 A1 0
0 1

) (
A−1

1 0
0 F

)
=

(
S−1

1 0
0 F

)

for every operator F ∈ B[N, A−1(0)]. Evidently, SS†S = S, where S† = (I +
A†

N,M,E(S − A))−1A†
N,M.F . �
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