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Abstract. The Julia set of the exponential familyEκ : z �→ κez, κ > 0 was shown to be the
entire complex plane when κ > 1/e essentially by Misiurewicz. Later, Devaney and Krych
showed that for 0 < κ ≤ 1/e the Julia set is an uncountable union of pairwise disjoint
simple curves tending to infinity. Bergweiler generalized the result of Devaney and Krych
for a three-dimensional analogue of the exponential map called the Zorich map. We show
that the Julia set of certain Zorich maps with symmetry is the whole of R3, generalizing
Misiurewicz’s result. Moreover, we show that the periodic points of the Zorich map are
dense in R

3 and that its escaping set is connected, generalizing a result of Rempe. We also
generalize a theorem of Ghys, Sullivan and Goldberg on the measurable dynamics of the
exponential.
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1. Introduction
In the study of the dynamics of complex analytic functions one of the most well-studied
and important families of functions is the exponential family Eκ : z �→ κez, κ ∈ C − {0}.
Perhaps the most fundamental fact about this family concerns its Julia set. The Julia set
J(f ) of an entire function f is the set of all points in the complex plane where the family of
iterates f n of f is not normal. For 0 < κ ≤ 1/e, as was proved first by Devaney and Krych
in [13], the Julia set J(Eκ) is a so-called Cantor bouquet which consists of uncountably
many disjoint curves each of which has a finite endpoint and goes off to infinity. On the
other hand, when κ > 1/e, Misiurewicz in [23] proved that the Julia set J(Eλ) equals the
entire complex plane C (actually Misiurewicz only proved this for κ = 1 but his proof can
easily be adapted to cover the other cases as well; see [10]). For a different proof of the
same fact, see [29]. For all these facts and much more we refer to Devaney’s survey [11]
on exponential dynamics.
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In recent years there has been increasing interest in the study of dynamics of
quasiregular functions. Quasiregular functions are a higher-dimensional generalization
of holomorphic maps on the plane. We refer to [2] for a survey on the dynamics of such
functions. As Bergweiler and Nicks have shown in [4, 5], there is a sensible definition for
the Julia set for such functions which has many of the properties of the classical Julia set.

Moreover, in this higher-dimensional setting, there is a whole family of maps that
can be considered analogues of the exponential map, called the Zorich maps, which are
quasiregular and were first constructed by Zorich in [33]. Following [18], we describe
the construction of the Zorich maps in three dimensions. Note that the construction can
be done in arbitrary dimensions but we will confine ourselves to three dimensions for
simplicity. First consider an L bi-Lipschitz, sense-preserving map h that maps the square

Q := {(x1, x2) ∈ R
2 : |x1| ≤ 1, |x2| ≤ 1}

to the upper hemisphere

{(x1, x2, x3) ∈ R
3 : x2

1 + x2
2 + x2

3 = 1, x3 ≥ 0}.
Then define the map Z : Q× R → R

3 as

Z(x1, x2, x3) = ex3h(x1, x2).

This maps the square beam Q× R to the upper half-space. By repeatedly reflecting now,
across the sides of the square beam in the domain and the x1x2 plane in the range,
we obtain a map Z : R3 → R

3. Note that this map is doubly periodic, meaning that
Z(x1 + 4, x2, x3) = Z(x1, x2 + 4, x3) = Z(x1, x2, x3). Moreover, the map is not locally
injective everywhere. The lines x1 = 2n+ 1, x2 = 2m+ 1, n, m ∈ Z, belong to the
branch set, namely the set

BZ := {x ∈ R
3 : Z is not locally homeomorphic at x}.

Also it can be shown that the map is quasiregular and has an essential singularity at infinity,
just like the exponential map on the plane. Although we will not need this, we say that such
quasiregular maps are of transcendental type.

We can also introduce a parameter ν > 0 and consider the family Zν = νZ, where Z is
a Zorich map. This family can be considered as an analogue of the exponential family in
higher dimensions (at least in the case where κ > 0). Hence, it would be very interesting
to know whether or not this family has similar behaviour to the exponential in terms of
dynamics. Indeed, Bergweiler in [3] and Bergweiler and Nicks in [5, §7] have proved
that for small values of ν this family has as its Julia set uncountably many, pairwise
disjoint curves. For those curves, Bergweiler in [3] proved a counterpart to Karpinska’s
paradox (see [19, 20]) for the exponential map, namely the fact that the endpoints of
those curves have Hausdorff dimension three while the curves minus the endpoints have
Hausdorff dimension one. Moreover, Comdühr in [6] proved that those curves are smooth,
generalizing a result of Viana da Silva [31], and in [30] we studied the topology of those
curves. It is also worth mentioning here that Cantor bouquets have been proved to exist
for other generalized exponential functions, not necessarily quasiregular (see [7]). Having
said all that, it seems quite reasonable to expect that for large values of ν the Julia set of
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the Zorich family would be the whole of R3 just like in the exponential family where the
Julia set is the entire complex plane. One aim of this paper is to prove that if we make some
reasonable modifications to the map h then this conjecture holds.

Let us now define the modified h and state our main theorem. The first thing that
we require is that our map h(x1, x2) = (h1(x1, x2), h2(x1, x2), h3(x1, x2)) must satisfy
h1(x1, x1) = h2(x1, x1) and h1(x1, −x1) = −h2(x1, −x1). In this way the planes x1 = x2

and x1 = −x2 are invariant under the Zorich map we obtain. Note that this implies that
h(0, 0) = (0, 0, 1). Second, we need to scale things by a factor λ > 1. To be more precise,
we define the function

h(x1, x2) = λh

(
1
λ
(x1, x2)

)
, (x1, x2) ∈ λQ.

We now define the Zorich maps we obtain by this h, which we denote byZ:

Zν(x1, x2, x3) = νex3h(x1, x2), (x1, x2, x3) ∈ λQ× R, ν > 0. (1.1)

Again we extend this map to R
3 by reflecting across the sides of the square beam and the

plane x3 = 0. Another important thing to note here is that during the process of extending
our map Zν from the initial square beam to the whole of R3 we can also extend h to a
Lipschitz map from R

2 to R
3 with the same Lipschitz constant L. We will always assume

that this extension has been done, and when we talk about h we will mean the extended one
unless otherwise stated. Moreover, let us note here that this new Zorich mapZ is conjugate
to x �→ Z(x1, x2, λx3), where Z is the classic Zorich map without the scaling.

Remark 1. Here it is worth elaborating on that last sentence. Instead of studying the family
Zν , defined in (1.1), we could have studied the family α ◦ Z, where α : R3 → R

3 is the
linear map induced by the matrix

⎛
⎝ν 0 0

0 ν 0
0 0 νλ

⎞
⎠

and Z is the Zorich map that leaves the planes x1 = ±x2 invariant and comes from
using h. It is easy to see that the map α ◦ Z is conjugate to νZ(x1, x2, λx3) and thus
to Zν . The advantage of this viewpoint is that the Zorich maps we consider here and
the maps considered by Bergweiler in [3] can all be seen as maps in the space {A ◦ Z :
A ∈ GL3(R)}, where GL3(R) is the general linear group of degree 3. Thus GL3(R) \ {0}
becomes the parameter space for Zorich maps in analogy with C \ {0} being the parameter
space for the exponential map.

Due to conjugacy, all of the theorems we will prove here are also true for the family
α ◦ Z. We have chosen to use a different presentation of Zorich maps than the one
described here since that way the definition seems more natural and the connection with
the exponential family is more apparent.

For the type of Zorich maps defined in (1.1) we will prove the following result.
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THEOREM 1. Let λ > L5. Then for all ν >
√

2L/λ the Zorich map Zν we obtain using
this scale factor λ has as its Julia set the whole of R3.

Remark 2. We will actually prove a slightly stronger result. Namely, that if the assumptions
of the above theorem are satisfied and V is any open set of R3 then

⋃
n≥0 Znν(V ) covers

R
3 \ {0}.
Theorem 1 implies that the behaviour of the iterates of the Zorich maps, for those

particular choices of the parameters, are chaotic in the whole of R3. The method we use
in the proof of Theorem 1 also allows us to prove a theorem on the measurable dynamics
of Zorich maps which can be seen as analogous to a theorem for exponential maps due to
Ghys, Sullivan and Goldberg (see Theorem 7 in §8 for more details). Another fact usually
associated with chaotic behaviour in a set is the density of periodic points on that set. In
the complex plane it is well known, and was first proved by Baker in [1], that periodic
points of an entire transcendental map (in fact even repelling periodic points) are dense in
its Julia set. However, it still unknown whether or not the periodic points of a quasiregular
map on R

3 are dense in its Julia set. We are able to prove that this is indeed the case for
Zorich maps.

THEOREM 2. Let ν and λ be as in Theorem 1. The periodic points ofZν are dense in R
3.

Another object of study in the exponential family, and in transcendental complex
dynamics in general, which is intimately connected with the Julia set is the escaping set.
It was first studied by Eremenko in [15], and if f : C → C is an entire function then it is
defined as

I (f ) := {z ∈ C : |f n(z)| → ∞ as n → ∞}.
Eremenko proved that I (f ) 
= ∅ and that ∂I (f ) = J(f ).

Moreover, for the exponential family from [14] it is true that I (f ) ⊂ J(f ) and thus
I (f ) is dense in the Julia set. When the Julia set is a Cantor bouquet, the escaping set
consists of the disjoint curves that make up the Julia set together with some of their
endpoints. In this case I (f ) is disconnected while I (f ) ∪ {∞} is connected (see [11]).
On the other hand, when the Julia set of a map in the exponential family is the entire
complex plane, the escaping set is dense in the complex plane, and Rempe in [27] has
proved that it is also connected.

The situation is similar for the Zorich maps as well. As we already mentioned, in [3, 5]
it is proved that for some values of the parameter ν the Julia set consists of disjoint curves
together with their endpoints and I (Zν) is again a disconnected subset of the Julia set.
On the other hand we are able to show the following result.

THEOREM 3. For the same choice of ν and λ as in Theorem 1, we have that the escaping
set I (Zν) is a connected subset of R3.

It is also worth mentioning here that there are other methods of constructing Zorich-like
maps where instead of mapping squares to hemispheres through bi-Lipschitz functions
we map squares to surfaces whose boundary lies on the plane x3 = 0 and the half-ray
connecting the origin with a point on the surface intersects the surface only once. If we
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further impose some bound on the angle between that ray and the tangent plane to the
surface (see §7 for more details) we can use our methods and prove a theorem similar to
Theorem 1.

To state the theorem, let us denote those Zorich maps by Zgen. In the construction of
those maps we will use a bi-Lipschitz map hgen which will be the rescaled version, by a
factor of λ, of another L bi-Lipschitz map h. Note that we do not introduce the parameter
ν in this case for simplicity.

THEOREM 4. For λ > Chgen the Julia set J(Zgen) is the whole of R3, where Chgen a
constant depending on hgen.

The proof of this theorem is essentially the same as the one we gave for Theorem 1. We
will give a sketch of the proof in §7 where we also find an explicit value for the constant
Chgen .

Theorems 2 and 3 possibly also hold for those kinds of Zorich maps with very similar
proofs, although we forgo the effort of proving them here.

The structure of the rest of paper is as follows. In §2 we give some definitions and some
preliminary results. In §3 we study our Zorich maps on the planes x1 = ±x2. In §4 we
prove Theorem 1. Section 5 is dedicated to the escaping set and the proof of Theorem 3.
In §6 we prove Theorem 2, while in §7 we discuss the more general Zorich maps. Finally,
in §8 we discuss some further questions and prove a theorem on the measurable dynamics
of the Zorich maps.

2. Preliminaries and background on quasiregular dynamics
Here we give a brief overview of the terminology and the notation we are going to need.
For definitions and a more detailed treatment of quasiregular maps we refer to [28, 32].
For a survey in the iteration of such maps we refer to [2].

Here we will just note that if d ≥ 2 andG ⊂ R
d is a domain and f = (f1, f2, . . . , fd) :

G → R
d is a differentiable map we will denote the total derivative of this map by Df (x).

Also |Df (x)| denotes the operator norm of the derivative, meaning

|Df (x)| = sup
|h|=1

|Df (x)(h)|,

and Jf (x) denotes the Jacobian determinant. Moreover, we set

�(Df (x)) = inf|h|=1
|Df (x)(h)|.

We will also need the notion of the capacity of a condenser in order to define the Julia
set of a quasiregular map. A condenser in R

d is a pair E = (A, C), where A is an open set
in R

d and C is a compact subset of A. The conformal capacity, or simply capacity, of the
condenser E is defined as

cap E = inf
u

∫
A

|∇u|d dm,

where the infimum is taken over all non-negative functions u ∈ C∞
0 (A) which satisfy

u|C ≥ 1 and m is the d-dimensional Lebesgue measure.
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If cap(A, C) = 0 for some bounded open set A containing C, then it is also true that
cap(A′, C) = 0 for every other bounded set A′ containing C; see [28, Lemma III.2.2]. In
this case we say that C has zero capacity and we write cap C = 0; otherwise we say that C
has positive capacity and we write cap C > 0. Also, for an arbitrary set C ⊂ R

d , we write
cap C = 0 when cap F = 0 for every compact subset F of C. If the capacity of a set is zero
then this set has Hausdorff dimension zero [28, Theorem VII.1.15]. Thus a zero-capacity
set is small in this sense. It is also quite easy to see that, for any two sets S, B with S ⊂ B,
if cap B = 0 then cap S = 0.

In [4] Bergweiler developed a Fatou–Julia theory for quasiregular self-maps of Rd ,
which include polynomial type quasiregular maps, and can be thought of as analogues of
rational maps, while in [5] Bergweiler and Nicks did the same but for transcendental type
quasiregular maps. Following those two papers, we define the Julia set of f : Rd → R

d ,
denoted J(f ), to be the set of all those x ∈ R

d such that

cap
(
R
d \

∞⋃
k=1

f k(U)

)
= 0

for every neighbourhood U of x. We call the complement ofJ(f ) the quasi-Fatou set, and
we denote it by QF(f ).

Note here that we used something like the blow-up property, possessed by the Julia
set in complex dynamics (see, for example, [22, Theorem 4.10]), in order to define our
Julia set. Also note that we do not assume anything about the normality of the family of
iterates of f in the quasi-Fatou set. It turns out that the Julia set we defined enjoys many
of the properties of the classical Julia set for holomorphic maps. In particular, a property
that we will use in this paper is that the Julia set is a completely invariant set, meaning
that x ∈ J(f ) if and only if f (x) ∈ J(f ). For more details and motivation behind the
definition of the Julia set we refer to [2, 4, 5].

As already noted, the Zorich map is a quasiregular map of transcendental type and thus
the above definitions make sense for this map.

In this section we will also prove the following proposition.

PROPOSITION 1. The x3-axis belongs in J(Zν) for all λ ≥ 1 and ν with λν > 1/e.

Before we prove this proposition, let us name a few things first. Using the same notation
as in [3], for r = (r1, r2) ∈ Z

2 we define

P(r) = P(r1, r2) := {(x1, x2) ∈ R
2 : |x1 − 2λr1| < λ, |x2 − 2λr2| < λ}.

For c ∈ R we also define H>c to be the half-space {(x1, x2, x3) ∈ R
3 : x3 > c} and we

define H≥c, H<c similarly. We observe here that Zν maps P(r1, r2)× R bijectively to
H>0, when r1 + r2 is even and toH<0 when r1 + r2 is odd. Thus there is an inverse branch
�(0,0) : H>0 → P(0, 0)× R. We can now, as in [3], find constantsM0 ∈ R and α ∈ (0, 1)
such that

|�(0,0)(x)−�(0,0)(y)| ≤ α|x − y| for all x, y ∈ H>νλeM0 . (2.1)

The next lemma is similar to [5, Lemma 7.1].
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LEMMA 1. Let M > M0 > 0 be a large positive number and x ∈ �(0,0)(H>νλeM ). Then

Zν(B(x, R) ∩H≥M) ⊃ B(Zν(x), α−1R) ∩H>νλeM , (2.2)

where R > 0 and B(x, R) denotes the ball of centre x and radius R.

Proof. Note that x ∈ �(0,0)(H>νλeM ) implies that x ∈ P(0, 0)× (M , ∞). Let

y ∈ B(Zν(x), α−1R) ∩H>νλeM .

Then by (2.1) we have that

|x −�(0,0)(y)| = |�(0,0)(Zν(x))−�(0,0)(y)| ≤ α|Zν(x)− y| < R.

Hence, �(0,0)(y) ∈ B(x, R) ∩ P(0, 0) and thus y = Zν(�(0,0)(y)) ∈ Zν(B(x, R) ∩
H≥M).

Proof of Proposition 1. Let us fix a point x = (0, 0, x0) on the x3-axis and consider a
neighbourhood U of that point. It is easy to see now that Zkν(x) = (0, 0, Ekνλ(x0)), where
Ekνλ denotes the kth iterate of the map Eνλ(t) = νλet . Since the x3-axis is invariant under
our Zorich map and since νλ > 1/e, we have that Ekνλ(x) → ∞ and thus we may assume
that x ∈ H≥M , for some M > M0. By repeatedly applying (2.2) we may now obtain a
sequence Rk → ∞ with

Zkν(U) ⊃ B(Zkν(x), Rk) ∩HEkνλ(M),
and we note that the intersection on the right-hand side always contains the upper half of
the ball B(Zkν(x), Rk). Hence, for large enough k, the set

Vk = {(x1, x2) ∈ R
2 : |x1| ≤ 2λ, |x2| ≤ 2λ} × [Ekνλ(x0), Ekνλ(x0)+ Rk/2]

is contained in B(Zkν(x), Rk) ∩HEkνλ(M). Observe now thatZν maps Vk onto the shell

Ak = {x ∈ R
3 : νλ exp(Ekνλ(x0)) ≤ |x| ≤ νλ exp(Ekνλ(x0)+ Rk/2)}.

It is easy to see now that this shell, for large enough k and since Rk → ∞, contains a set
of the form

{(x1, x2, x3) ∈ R
3 : |x1 − 2λqk,1| ≤ 2λ, |x2 − 2λqk,2| ≤ 2λ, |x3| ≤ tk},

with qk,1, qk,2 ∈ Z and tk → ∞. This implies that

{x ∈ R
3 : νλe−tk ≤ |x| ≤ νλetk } ⊂ Zν(Ak) ⊂ Zk+2

ν (U).

Hence
⋃∞
k=1 Zkν(U) = R

3 \ {(0, 0, 0)}, which means that x ∈ J(Zν).

3. The Zorich map on the planes x1 = ±x2

Here we will prove some basic facts about the Zorich family we have constructed. As
already mentioned in the introduction, our Zorich maps send the planes x1 = x2 and
x1 = −x2 to themselves. We would like to know the behaviour of Zν restricted to those
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planes. With that in mind, we observe that restricted to the plane x1 = x2 our Zorich map
is conjugate through φ(x1, x1, x3) = (1/λ)(x3 + i

√
2x1) to the map g : C → C given by

g(z) :=
{
ψ(z̄+ 2

√
2i), Im(z) ∈ [(4k + 1)

√
2, (4k + 3)

√
2],

ψ(z), Im(z) ∈ [(4k − 1)
√

2, (4k + 1)
√

2],

where k ∈ Z and ψ(x + iy) = νeλx(h3(y/
√

2, y/
√

2)+ i
√

2h1(y/
√

2, y/
√

2)). Simi-
larly, the Zorich map is conjugate to a similar map to g on the plane x2 = −x1 and
everything that follows works in that case as well. For simplicity let us write a(y) and
b(y) instead of h3(y/

√
2, y/

√
2) and

√
2h1(y/

√
2, y/

√
2). Note that a2(y)+ b2(y) = 1.

Also let us note here that the function ψ is quasiregular and that g(C) = {Re z > 0}.
Furthermore, g is not a quasiregular map, since it is not sense preserving, and is a
two-to-one function in the strip {z ∈ C : (4k − 1)

√
2 ≤ Im(z) ≤ (4k + 3)

√
2}.

We would now like to show that the planes x1 = ±x2 belong to the Julia set of Zν .
We already know, from Proposition 1, that the x3-axis belongs to the Julia set. With that
in mind we will prove that any open set in R

3 that intersects those planes also intersects
the x3-axis under iteration by Zν . Now since we know that Zν is conjugate to g on those
planes it is enough to prove that any open set in the complex plane intersects the real axis
under iteration by g.

THEOREM 5. Let ν2λ > 2L and V ⊂ C be a connected set withm(V ) > 0, where m is the
two-dimensional Lebesgue measure. Then gn(V ) intersects the real axis for some n ∈ N.

For the proof of this theorem we will need several lemmas. Note here that since h is a
Lipschitz function it will also be differentiable almost everywhere. This implies that g is
differentiable almost everywhere (a.e.).

LEMMA 2. Let g be the function we defined above. Then

|det(Dg(z))| ≥ ν2λe2λRe(z)

L
a.e.

Proof. It is enough to find a lower bound for Im z ∈ [(4k − 1)
√

2, (4k + 1)
√

2].
This is true because for other z we have that T (z) = z̄+ 2

√
2i has imaginary part

in [(4k′ − 1)
√

2, (4k′ + 1)
√

2] for some k′ ∈ Z and thus for those z we have g(z) =
g(T (z)) = ψ(T (z)). Then by the chain rule we have that Dg(z) = Dg(T (z))DT (z).
Since DT (z) = −1 this implies that |det Dg(z)| = |det Dg(T (z))|.

With that in mind, if z = x + iy we have thatDg(z) is the linear transformation induced
by the matrix

⎛
⎜⎜⎝
νλeλxa(y) νeλx

da

dy
(y)

νλeλxb(y) νeλx
db

dy
(y)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

νλeλxh3

(
y√
2

)
ν√
2
eλx

dh3

dy

(
y√
2

)

νλ
√

2eλxh1

(
y√
2

)
νeλx

dh1

dy

(
y√
2

)
⎞
⎟⎟⎟⎠ ,

if y ∈ [(4k − 1)
√

2, (4k + 1)
√

2].
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Thus

|det Dg(z)| = ν2λe2λx
∣∣∣∣h3(y)

dh1

dy
(y)− h1(y)

dh3

dy
(y)

∣∣∣∣
= ν2λe2λx

∣∣∣∣∣∣∣∣
det

⎛
⎜⎜⎝
a(y)

da

dy
(y)

b(y)
db

dy
(y)

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣
for y ∈ [(4k − 1)

√
2, (4k + 1)

√
2].

We now claim that ∣∣∣∣∣∣∣∣
det

⎛
⎜⎜⎝
a(y)

da

dy
(y)

b(y)
db

dy
(y)

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣
>

1
L

a.e.

Hence

|det Dg(z)| ≥ ν2λe2λx

L
a.e.

Indeed, because a2(y)+ b2(y) = 1 we obtain that the vectors (a(y), b(y)) and
(da/dy, db/dy) are orthogonal and thus so is their matrix. This implies that∣∣∣∣∣∣∣∣

det

⎛
⎜⎜⎝
a(y)

da

dy
(y)

b(y)
db

dy
(y)

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣
= |(a(y), b(y))|

∣∣∣∣
(
da

dy
(y),

db

dy
(y)

)∣∣∣∣ =
∣∣∣∣
(
da

dy
(y),

db

dy
(y)

)∣∣∣∣.

Now because h is a locally bi-Lipschitz map almost everywhere we have that∣∣∣∣dhdy
(
y√
2

,
y√
2

)∣∣∣∣ ≥ 1
L

a.e.

Since |(da/dy)(y), (db/dy)(y)| = |(dh/dy)(y/√2, y/
√

2)| we obtain what we
wanted.

LEMMA 3. Let ν2λ > 2L where λ ≥ 1, ν > 0, and let V ⊂ C be a connected subset of
the complex plane with m(V ) > 0 and such that its iterates under g do not intersect the
real axis. Then m(gn(V )) → ∞ as n → ∞, where m is the two-dimensional Lebesgue
measure.

Proof. We can assume that V lies on the right half-plane {z : Re(z) > 0}, otherwise
just consider g(V ) since g maps C to the right half-plane. We know that m(g(V )) =∫
g(V )

dm. Since none of the iterates of V under g intersects the real axis, we have
that those iterates also do not intersect any of the pre-images of the real axis, mean-
ing the lines y = 2

√
2k, k ∈ Z. Thus gn(V ) is always inside strips of the form

{z ∈ C : Im z ∈ (2√
2k, 2

√
2(k + 1))}. In each of those strips it is easy to see, by what

we have said in the first paragraph of this section, that g is a two-to-one map. By using

https://doi.org/10.1017/etds.2021.123 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.123


Julia sets of Zorich maps 701

FIGURE 1. The pre-images of the lines 2kπi, k ∈ Z \ {0} under the exponential map. The curves γm in the proof
of Theorem 5 have a similar structure.

Lemma 2 and since Re z > 0 for all z ∈ V we now obtain∫
g(V )

dm ≥ 1
2

∫
V

|det(Dg)| dm ≥ ν2λ

2L

∫
V

e2λRe(z) dm ≥ ν2λ

2L
m(V ).

This means that

m(g(V )) ≥ ν2λ

2L
m(V ).

Hence, since ν2λ > 2L, if we iterate that inequality we have that m(gn(V )) → ∞.

Proof of Theorem 5. Suppose, towards a contradiction, that there is a connected set V
withm(V ) > 0 whose iterates never intersect the real axis. Then by Lemma 3 we have that
m(gn(V )) → ∞ as n → ∞. Since gn(V ) never intersects the real axis it also does not
intersect its pre-images, meaning the lines Im(z) = 2

√
2k, k ∈ Z. This means that gn(V )

stays always inside strips of the form {z ∈ C : Im(z) ∈ (2√
2k, 2

√
2(k + 1)), k ∈ Z}. If we

now take the pre-image of the lines Im(z) = 2
√

2m, m ∈ Z \ {0}, that lie inside all those
strips we obtain curves γm which the iterates gn(V ) of our set must not cross (see Figure 1).
By symmetry we can confine ourselves to the strip

S := {z ∈ C : Im(z) ∈ (0, 2
√

2)}.
From now on let us write hi (y) instead of hi (y, y), i = 1, 2, 3, for simplicity. We now

have two cases to consider. Either S contains the pre-images of the lines Im(z) = 2
√

2m,
m > 0, in which case h1(y) > 0 for y > 0, or S contains the pre-images of the lines for
m < 0, in which case h1(y) < 0 for y > 0. We will only consider the first case here. The
second one can be dealt with similarly. So suppose m > 0. We claim that the curves γm
partition the strip S into sets of uniformly bounded area. In fact if we callAm the area of the
set defined by γm and γm+1 and we call A0 the area inside the strip between the imaginary
axis and γ1, then we claim that Am is an eventually decreasing sequence. Clearly, since
m(gn(V )) → ∞ and gn(V ) must stay inside those sets Am, this is impossible.
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FIGURE 2. The curve γ0 for the exponential map for two different values of ν. The situation is similar with our
maps as well.

In order to prove those claims note that the curves γm are given by the equa-
tions νeλxh1(y/

√
2) = 2m, when y ∈ (0,

√
2], and νeλxh1((2

√
2 − y)/

√
2) = 2m, when

y ∈ [
√

2, 2
√

2). It is also easy to see that those curves do not have self-intersections and
do not intersect with each other. The area we are looking for will be given by

Am =
∫ √

2

0

1
λ

(
log

2(m+ 1)

νh1(y/
√

2)
− log

2m

νh1(y/
√

2)

)
dy

+
∫ 2

√
2

√
2

1
λ

(
log

2(m+ 1)

νh1((2
√

2 − y)/
√

2)
− log

2m

νh1((2
√

2 − y)/
√

2)

)
dy.

ThusAm = (2
√

2/λ) log((m+ 1)/m)which proves what we wanted. We also need to find
A0 for which it is true that

A0 =
∫ √

2

0

1
λ

log
2

νh1(y/
√

2)
dy +

∫ 2
√

2

√
2

1
λ

log
2

νh1((2
√

2 − y)/
√

2)
dy

= 2
∫ √

2

0

1
λ

log
2

νh1(y/
√

2)
dy,

if νh1(y/
√

2) = 2 has no solution. If this equation has solutions then, although we can find
the area again we do not need to since A0 will be even smaller in this case (see Figure 2).

Notice that because (h1, h2, h3) is always a point on the unit sphere we have that

h1(x, y)2 + h2(x, y)2 = sin2 θ |h(x, y)− h(0, 0)|2
= sin2 θ(h1(x, y)2 + h2(x, y)2 + (h3(x, y)− 1)2),

where θ is the angle between the x3-axis and the segment that connects (0, 0, 1) with
(h1, h2, h3). Taking x = y, the fact that h is bi-Lipschitz on [−1, 1]2 and noticing that
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θ ≥ π/4 gives us |h1(y)| ≥ (|y|/√2L). Hence because h1(y) > 0 for y ∈ (0, 1) we have

A0 ≤ 2
λ

∫ √
2

0
log

(
4L
νy

)
dy,

which is finite.

4. Proof of Theorem 1
Having proved Theorem 5, we are now ready to proceed to our main theorem.

First we prove some lemmas that we will later need. Note here that since we proved
that the planes x1 = ±x2 are in the Julia set ofZν we will also know that all their inverse
images are in the Julia set. These inverse images are again planes of the form x1 = ±x2 +
2λk, where k ∈ Z. The planes partition R

3 into square beams. Denote by B(0,0) the open
rectangle beam that is the union of the two square beams that touch the x3-axis and are
in the half-space x2 ≤ x1. We can partition the space now into rectangle beams that are
translates of this B(0,0). Let us call them

B(i,j) = B(0,0) + i(2λ, 2λ, 0)+ j (λ, −λ, 0), i, j ∈ Z.

Note that the map Zν is a homeomorphism in those rectangle beams. The next lemma is
inspired by the one Misiurewicz used in his proof (compare [23, Lemma 1]) and is the
main reason why we need the scale factor λ in our definition of the Zorich map. It will be
convenient to introduce some notation. Let p : R3 → R

2 be the projection map defined by
p(x1, x2, x3) = (x1, x2). Also let p3(x), x ∈ R

3, denote the third coordinate of x; in other
words, p3(x1, x2, x3) = x3.

LEMMA 4. If λ and L are the numbers we used in the construction of the Zorich map and
ν > 0 then

det(DZnν(x)) ≥
(
λ

L5

)n 1
λ3 |(p ◦Znν)(x)|3 a.e.

Proof. First note that |p(Znν(x))| = νep3(Zn−1
ν ) · |(p ◦ h ◦ p ◦Zn−1

ν )(x)|. Also, using
the fact that h(0) = (0, 0, λ) and h(x1, x2) = (h1(x1, x2), h2(x1, x2), h3(x1, x2)) is a
Lipschitz map, we have that

|p(h(x))| = |p(h(x)− h(0))| ≤ |h(x)− h(0)| ≤ L|x|.
Hence

|p(Znν(x))| = νep3(Zn−1
ν )|(p ◦ h ◦ p ◦Zn−1

ν )(x)|
≤ Lνep3(Zn−1

ν )|(p ◦Zn−1
ν )(x)| ≤ · · ·

≤ (νL)nep3(Zn−1
ν )ep3(Zn−2

ν ) · · · ex3

√
h2

1(x1, x2)+ h2
2(x1, x2)

≤ λ(νL)nep3(Zn−1
ν )ep3(Zn−2

ν ) · · · ex3 . (4.1)
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From the chain rule we know that

det(DZnν(x)) =
n−1∏
k=0

det(DZν(Zkν(x))). (4.2)

Now from the definition ofZν we obtain

det(DZν(x)) = ν3e3x3 det H , (4.3)

where

H =

⎛
⎜⎜⎜⎜⎜⎝

∂h1

∂x1
(p(x))

∂h1

∂x2
(p(x)) h1(p(x))

∂h2

∂x1
(p(x))

∂h2

∂x2
(p(x)) h2(p(x))

∂h3

∂x1
(p(x))

∂h3

∂x2
(p(x)) h3(p(x))

⎞
⎟⎟⎟⎟⎟⎠ .

We now set

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂h1

∂x1
(p(x))

∂h2

∂x1
(p(x))

∂h3

∂x1
(p(x))

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂h1

∂x2
(p(x))

∂h2

∂x2
(p(x))

∂h3

∂x2
(p(x))

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, C =
⎛
⎝h1(p(x))

h2(p(x))

h3(p(x))

⎞
⎠ .

Recall now that from linear algebra, the determinant of a matrix equals the scalar triple
product. This means that

det H = 〈A× B, C〉,
where 〈·, ·〉 denotes the euclidean inner product. SinceZν is sense preserving we will have
that det H > 0, and since A and B are orthogonal to C we will have that A× B is parallel
to C. Remember that |C| = λ, so

det H = λ|A× B|
〈
A× B

|A× B| ,
C

|C|
〉

= λ|A× B|. (4.4)

Now because h is a locally bi-Lipschitz map we have that

|h(p(x)+ tv)− h(p(x))| ≥ |tv|
L

,

for all small t > 0 where v = (v1, v2) ∈ R
2. This implies that

|Dh(p(x))(v)| ≥ |v|
L

, (4.5)

and if we set v = (|B|, (−〈A, B〉)/|B|) and square both sides we obtain∣∣∣∣|B|A− 〈A, B〉
|B| B

∣∣∣∣
2

≥ 1
L2

(
|B|2 + 〈A, B〉2

|B|2
)

≥ |B|2
L2 .
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Simplifying, we obtain

|A|2|B|2 − 〈A, B〉2 ≥ |B|2
L2 .

Now note that, by elementary properties of the cross product, |A× B|2 = |A|2|B|2 −
〈A, B〉2 and thus

|A× B|2 ≥ |B|2
L2 ≥ 1

L4 ,

where the last inequality comes from (4.5) for v = (0, 1). Hence, (4.4) becomes det H ≥
(λ/L2). Putting everything together in (4.3), we obtain

det(DZν(x)) ≥ ν3e3x3
λ

L2 a.e. (4.6)

Hence, by (4.1) and (4.6) we have that

|p(Znν(x))|3 ≤ λ3(Lν)3ne3p3(Zn−1
ν )e3p3(Zn−2

ν ) · · · e3x3

≤ λ3L5n

λn
det(DZν(Zn−1

ν (x))) · · · det(DZν(x)) a.e.

By rearranging and (4.2) we now obtain the desired inequality.

The next lemma describes the behaviour of points near the x3-axis under iteration.

LEMMA 5. Let νλ > (1/e).
(a) There are δ > 0 and c > 0 such that if x ∈ Cδ , where Cδ is the cylinder around the

x3-axis with radius δ, then p3(Zν(x)) > p3(x)+ c,
(b) For δ as in (a) and for every x ∈ Cδ , with p(x) 
= (0, 0), there is an n ∈ N such that

Znν(x) 
∈ Cδ .
Proof. (a) If h(x1, x2) = (h1(x1, x2), h2(x1, x2), h3(x1, x2)), then we have that
p3(Zν(x)) = νex3h3(x1, x2). Now since h(0, 0) = (0, 0, λ) and h is continuous, for all
ε > 0 there is a disk D = D(0, δ) of radius δ > 0 on which we have h3(x1, x2) > λ− ε.
Hence if x = (x1, x2, x3) ∈ Cδ = D × R, then

p3(Zν(x)) = νex3h3(x1, x2) > νep3(x)(λ− ε) ≥ p3(x)+ 1 + log(ν(λ− ε)),

where the last inequality follows by minimizing νet (λ− ε)− t . Now notice that since
νλ > (1/e) we can find a small enough ε > 0 such that ν(λ− ε) > 1/e, which implies
that 1 + log(ν(λ− ε)) > 0. Hence, p3(Zν(x)) > p3(x)+ c with c = 1 + log(ν(λ− ε)).

(b) For a δ as in (a) and δ < λ now assume that there is a point x ∈ Cδ such that p(x) 
=
0 andZnν(x) ∈ Cδ for all n ∈ N. Then according to (a) we would have that p3(Znν(x)) →
∞ when n → ∞. We know that

|(p ◦Zn+1
ν )(x)| = ep3(Znν )|(p ◦ h ◦ p ◦Znν)(x)|. (4.7)

Now its a simple geometric fact that, for each y ∈ [−λ, λ]2,

|(p ◦ h)(y)| = sin θ |h(y)− h(0)|, (4.8)
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where θ is the angle between the line segment joining the point h(y), on the sphere, with
the point (0, 0, λ) and the x3-axis. Moreover, θ ≥ π/4 for all such y. Also, by the fact that
h is a bi-Lipschitz function, we have that |h(y)− h(0)| ≥ (|y|/L).

Now taking y = p(Znν(x)) and combining this with (4.7) and (4.8) implies that

|(p ◦Zn+1
ν )(x)| ≥ ep3(Zn(x))

√
2L

|(p ◦Znν)(x)|.

Thus, since p3(Znν(x)) → ∞, for all large enough n we can say that

|(p ◦Zn+1
ν )(x)| ≥ 2|(p ◦Znν)(x)|.

This of course contradicts the fact thatZn(x) ∈ Cδ for all n ∈ N.

The next lemmas describe how sets of positive measure behave under iteration by the
Zorich map, assuming that their iterates never cross the planes that we already know belong
in the Julia set.

LEMMA 6. Assume that λ > L5. Let V ⊂ R
3 be a connected set with m(V ) > 0 and

whose iterates do not intersect any of the planes x1 = ±x2 + 2λk, where k ∈ Z. Suppose
also that there is sequence of integers nj > 0 with Znjν (V ) ∩ Ca = ∅, where Ca is a
cylinder around the x3-axis of any radius a > 0. Then m(Znjν (V )) → ∞ as nj → ∞,
where m is the three-dimensional Lebesgue measure.

Proof. SinceZnjν (V ) stays outside the cylinder Ca we have that, for x ∈ V ,

|(p ◦Znjν )(x)| > a.

By using Lemma 4 we will now have that

det(DZnjν ) ≥
(
λ

L5

)nj
· a

3

λ3 a.e. on V .

Since all of the iterates of V do not intersect any of the planes x1 = ±x2 + 2λk, where
k ∈ Z, and since the Zorich map is a homeomorphism in the square beams that remain if
we remove those planes, we will have that Zn is a homeomorphism in V. Hence, for all
nj ∈ N, we will have that

m(Znjν (V )) =
∫
V

|det(DZnjν )| dm ≥
(
λ

L5

)nj(a3

λ3

)
m(V ),

which tends to infinity as j → ∞ since λ > L5.

For our next lemma let us assume that our Zorich map sends the beam B(0,0) to the
half-space x2 ≤ x1. The other alternative is mapping it to the half-space x1 ≤ x2, but the
methods work in a very similar way with minor modifications.

Consider the inverse image under Zν of the boundary of B(0,0) that lies in the interior
of B(0,0). This inverse image will be some surface which we will call S0. In Figure 3
we have drawn the x1 x2 plane and the rectangle beams B(0,0) and B(0,−1). Now take
the planes P1 : x2 = x1 − 4λ, P2 : x2 = −x1 + 4λ, P3 : x2 = −x1 − 4λ and consider the
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FIGURE 3. The x1x2 plane. The initial square we used to define our Zorich map is shown in dashed pink. The
rectangle beams B(0,0) and B(0,−1) are shown in blue, while the sets L1, L2, R1 and R2 are shown in orange, dark

green, green and red, respectively.

rectangle beam they define together with the plane x1 = x2. Let us now take the boundary
of this beam, without the part that belongs to x1 = x2, and name it L1. Consider now
the inverse image of L1 that lies inside B(0,0). This image is a surface; let us call it S1.
We can now do the same with the planes P4 : x2 = x1 − 6λ, P5 : x2 = −x1 + 6λ, P6 :
x2 = −x1 − 6λ and obtain the boundary of the beam they define, which we call L2, and
then the surface we obtain by taking the inverse image, which we call S2. If we continue
with this construction we obtain a sequence of surfaces, S0, S1, S2, S3, . . . inside B(0,0).
Each of those surfaces lies above the previous one, starting with S0. We can also construct
similar surfaces K0, K1, K2, . . . inside the beam B(0,−1) by taking inverse images of the
corresponding boundaries ∂B(0,−1), R1, R2, . . . (see Figure 3). Moreover, we construct
similar surfaces in all the other rectangle beams B(i,j), that partition the space, depending
on which half-space the beam is mapped to under the Zorich map. Let us denote by S the
union of all those surfaces.

We will show that the space between Sn and Sn+1 (and similarly, betweenKn andKn+1)
is of finite volume and is decreasing as n increases.
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LEMMA 7. Let In be the volume that the surface Sn encloses together with the plane
x3 = 0 and inside the beam B(0,0). Then In is finite for all n ∈ N. Furthermore, if Tn :=
In+1 − In is the volume between Sn and Sn+1 then Tn is a decreasing sequence.

Proof. Let us first find an implicit equation that describes each of these surfaces. We work
on B(0,0), but the same can be done on all other rectangle beams. Let us split B(0,0) into
three different beams whose cross-sections with the x1x2 plane are the sets

Q1 := h−1({(x1, x2, x3) ∈ S(0, λ) : 0 ≤ x2 ≤ x1}),
Q2 := h−1({(x1, x2, x3) ∈ S(0, λ) : x2 ≤ 0, x1 ≥ 0})

and

Q3 := h−1({(x1, x2, x3) ∈ S(0, λ) : x2 ≤ x1 ≤ 0}),
where S(0, λ) the sphere of centre 0 and radius λ. In the beam corresponding to the first
cross-section, meaning Q1 × R, the points on the surface Sn satisfy

νex3h1(x1, x2) = −νex3h2(x1, x2)+ 2(n+ 1)λ.

On the beam Q2 × R the surface points satisfy

νex3h1(x1, x2) = νex3h2(x1, x2)+ 2(n+ 1)λ,

while on the beam Q3 × R that corresponds to the last cross-section the points satisfy

νex3h1(x1, x2) = −νex3h2(x1, x2)− 2(n+ 1)λ.

Suppose now that the surfaces Sn do not intersect the plane x3 = 0. Hence the volume that
the surface Sn encloses together with the plane x3 = 0 and inside the beam B(0,0) is given
by the integrals

In =
∫ ∫

Q1

log
2(n+ 1)λ

ν(h2(x1, x2)+ h1(x1, x2))
dx2 dx1

+
∫ ∫

Q2

log
−2(n+ 1)λ

ν(h1(x1, x2)− h2(x1, x2))
dx2 dx1

+
∫ ∫

Q3

log
−2(n+ 1)λ

ν(h2(x1, x2)+ h1(x1, x2))
dx2 dx1.

It is not so hard to prove now that each of these integrals is finite since each is an integral of
a bounded function except at a neighbourhood of (0, 0) and the points where h1 ± h2 = 0
which are (0, −2λ), (2λ, 0). So in order to show that this sum is finite, it is enough to
consider the integrals only in neighbourhoods of those points. On the other hand, when
those surfaces Sn intersect the plane x3 = 0 the volumes are no longer given by the above
integrals (the set where we integrate will change), but again we only have to consider them
at a neighbourhood of (0, 0) as well as (0, −2λ), (2λ, 0), so that is what we do next. In
fact, those volumes in that case are even smaller.

We will only treat here the second integral around an ε-neighbourhood of (0, 0), and
the rest follows similarly. So we are looking at the integral
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∫ ∫
Q2∩B(0,ε)

log
−2(n+ 1)λ

ν(h2(x1, x2)− h1(x1, x2))
dx2 dx1,

where B(0, ε) is a ball centred at 0 with radius ε. Equivalently, we want to show that the
integral ∫ ∫

Q2∩B(0,ε)
− log(h1(x1, x2)− h2(x1, x2)) dx2 dx1 (4.9)

is finite. Now because h is a bi-Lipschitz map and because h2(x1, x2) ≤ 0 and h1(x1, x2) ≥
0 in the set we are integrating we have that

(h1 − h2)
2 = h2

1 + h2
2 + 2h1(−h2) ≥ h2

1 + h2
2

= sin2 θ(h2
1 + h2

2 + (h3 − λ)2) ≥ cε

L2 (x
2
1 + x2

2),

where θ is the angle between the x3-axis and the segment that connects (0, 0, λ) with
(h1, h2, h3), and cε > 0 is a constant that depends only on ε. Hence

|h1(x1, x2)− h2(x1, x2)| ≥
√
cε

L

√
x2

1 + x2
2 .

Now since h1 − h2 ≥ 0 in the set we are integrating, we will have that∫ ∫
Q2∩B(0,ε)

log(h1(x1, x2)− h2(x1, x2)) dx2 dx1

≥
∫ ∫

Q2∩B(0,ε)
log

(√
cε

L

√
x2

1 + x2
2

)
dx2 dx1.

Now since the last integral is finite we will have that the integral (4.9) is also finite.
Finally, let us show that the sequence Tn is a decreasing one. Indeed,

Tn = In+1 − In = λ2 log
n+ 2
n+ 1

+ λ2 log
n+ 2
n+ 1

+ 2λ2 log
n+ 2
n+ 1

= 4λ2 log
n+ 2
n+ 1

,

which can be easily seen to be a decreasing sequence.

LEMMA 8. Assume λ > L5 and let V be a connected subset of R3 with m(V ) > 0 and
such that Znν(V ) does not intersect any of the planes x1 = ±x2 + 2λk, where k ∈ Z for
all n ∈ N. ThenZnν(V ) visits infinitely often one of the two rectangle beams B(0,0), B(0,−1)

that have the x3-axis in their boundary.

Proof. Consider the iterates Vi = Ziν(V ) of the set V. The sets Vi always stay inside one
of the rectangle beams by assumption and also they cannot intersect any of the surfaces
in S that are in those beams since if they did on the next iterate they would intersect
the boundary of one of the beams. Suppose now that we can find an N ∈ N such that
Vi 
∈ B(0,0) ∪ B(0,−1) for all i > N . Then by Lemma 6 we have that m(Vi) → ∞. This
implies that our sets Vi cannot lie between any two of the surfaces in S, for all large i
since there is finite volume between them. Thus Vi stays below the lowest surface in the
relevant rectangle beam for all i > N1 > N , where N1 ∈ N. This is a contradiction since
being below that surface implies that Vi+1 is in either B(0,0) or B(0,−1).
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The next lemma tells us that when a set remains in B(0,0) under iteration byZν , we can
find points with large x3 coordinate in its iterates.

LEMMA 9. Assume λ > L5, ν > 1/λe and let V be a connected set of R3 with m(V ) > 0
and such that Znν(V ) does not intersect any of the planes x1 = ±x2 + 2λk, where k ∈ Z

for all n ∈ N. Suppose that there is an N0 ∈ N such that Znν(V ) ⊂ B(0,0), for all n > N0.
Then, for all M > 0 and ε > 0, there is some n0 > N0 and a point x ∈ Zn0

ν (V ) such that
p3(x) > M and d(x, x3-axis) < ε, where d is the euclidean distance.

Proof. Either an ε0 > 0 exists such that d(Znν(V ), x3-axis) > ε0 for all n > N0 or such
an ε0 does not exist. In the first case we know from Lemma 6 that m(Znν(V )) → ∞. We
also know that sinceZnν(V ) ∈ B(0,0), for all n > N0,Znν(V ) must, by Lemma 7, lie below
the surface S0. Since m(Znν(V )) → ∞, it must be true that for all M1 > 0 there exist a n0

and a point z0 inZn0
ν (V ) with p3(z0) < −M1. The pre-image of that point inside B(0,0) is

a point z(1) = (z
(1)
1 , z(1)2 , z(1)3 ) for which νez

(1)
3 h3(z

(1)
1 , z(1)2 ) < −M1 and h3(z

(1)
1 , z(1)2 ) < 0.

But since h3 > −λ we have that

ez
(1)
3 >

M1

νλ
⇒ z

(1)
3 > log

M1

νλ
.

If we now take the pre-image in B(0,0) of that point, z(2) = (z
(2)
1 , z(2)2 , z(2)3 ) then 0 <

h3(z
(2)
1 , z(2)2 ) < λ and

νez
(2)
3 h3(z

(2)
1 , z(2)2 ) = z

(1)
3 > log

M1

νλ
,

which implies that

z
(2)
3 > log

log(M1/νλ)

νλ
.

Thus we have shown that for any M > 0 there is a point z(2) in Zn0−2
ν (V ) for which

z
(2)
3 > M and also |z(2)1 |, |z(2)2 | < λ. This leads to a contradiction. To see why, note that

by our assumptions Znν(V ) is ε0 away from the x3-axis and below the surface S0 and
thus all of its points, which are also inside the initial square beam [−λ, λ]2 × R (pink in
Figure 3), have a bounded x3-coordinate. This is true because the surface S0 together with
any cylinder around the x3-axis and the plane x3 = 0 enclose a set inside [−λ, λ]2 × R

and outside the cylinder whose closure is compact.
For the second case, where such an ε0 does not exist, there is a sequence wk ∈⋃
n>N0

Znν(V ) with d(wk , x3-axis) → 0. If p3(wk) → ∞ we are done. If, on the other
hand, p3(wk) → −∞ then yk := Zν(wk) → (0, 0, 0) and thus Znν(yk) → Znν(0) =
(0, 0, Enνλ(0)), where Enνλ(0)) converges to ∞ and again we are done. The remaining case
to consider is when there is a subsequence wki converging to some point (0, 0, a) in the
x3-axis. By relabelling we may assume that wk → (0, 0, a). Now choose an N > 0 such
that ENνλ(a) > M , where Eνλ denotes the map x �→ νλex . By continuity of ZNν , for all
ε > 0 we may find a δ such that if |wk − (0, 0, a)| ≤ δ, then

|ZNν (wk)−ZNν (0, 0, a)| = |ZNν (wk)− (0, 0, ENνλ(a))| ≤ ε.
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Hence, if we choose ε small enough we get that x3(ZNν (wk)) > M andZNν (wk) is within
ε distance from the z-axis, when k is large enough.

LEMMA 10. Let y1, y2 ∈ B(0, r), where r > 0. Then for all n ∈ N it is true that

|Znν(y1)−Znν(y2)| ≤
(

max{L, λ}
λ

)n
Eνλ(r) · · · Enνλ(r)|y1 − y2|,

where Eνλ denotes the exponential map x �→ νλex and L is the bi-Lipschitz constant we
used in the construction of the Zorich maps.

Proof. The Zorich map is absolutely continuous on any line segment since it is locally
Lipschitz. Using the fundamental theorem of calculus for the Lebesgue integral now, it
is not too hard to prove that a version of the finite-increment theorem (see [34, 10.4.1,
Theorem 1]) is true for such functions. Specifically, we can prove that

|Znν(y1)−Znν(y2)| ≤ ess sup
x∈γ

|DZnν(x)||y1 − y2|,

where γ is the line segment that connects y1 to y2. Remember that |Df | denotes the
operator norm of the total derivative. Hence, by the chain rule and elementary properties
of linear maps we have that

|DZnν(x)| ≤ |DZν(Zn−1
ν (x))| · · · |DZν(x)|.

Hence by the above inequalities and because y1, y2 ∈ B(0, r) we have that

|Znν(y1)−Znν(y2)| ≤ ess sup
x∈γ

|DZν(Zn−1
ν (x))| · · · ess sup

x∈γ
|DZν(x)||y1 − y2|

≤ ess sup
x∈B(0,r)

|DZν(Zn−1
ν (x))| · · · ess sup

x∈B(0,r)
|DZν(x)||y1 − y2|. (4.10)

We also know that DZν(x) = ex3DZν(x1, x2, 0). Moreover, we will prove that

|DZν(x1, x2, 0)| ≤ ν max{L, λ}.
Indeed, let u = (u1, u2, u3) ∈ R

3. Then

|DZν(x1, x2, 0)|2 = sup
|u|=1

|DZν(x1, x2, 0)(u)|2 = ν2 sup
|u|=1

|u1A+ u2B + u3C|2,

where A, B, C are as in the proof of Lemma 4. Remember now that C is orthogonal to A
and B, and thus the above equation becomes

|DZν(x1, x2, 0)|2 = ν2 sup
|u|=1

(|u1A+ u2B|2 + |u3C|2)

= ν2 sup
|u|=1

(|Dh(x)(u1, u2)|2 + |u3|2|C|2)

≤ ν2 sup
|u|=1

(L2|(u1, u2)|2 + λ2|u3|2)

≤ ν2 max{L2, λ2},
where we have used the fact that h is locally bi-Lipschitz.
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Hence, |DZν(x)| ≤ ν max{L, λ}ex3 and (4.10) becomes

|Znν(y1)−Znν(y2)| ≤ νn max{L, λ}n sup
x∈B(0,r)

ep3(Zn−1
ν (x)) · · · sup

x∈B(0,r)
ep3(x)|y1 − y2|

=
(

max{L, λ}
λ

)n
Eνλ(r) · · · Enνλ(r)|y1 − y2|,

where we have used the fact that νλ supx∈B(0,r) e
p3(Znν (x)) = En+1

νλ (r) which can be easily
proved by induction on n.

Proof of Theorem 1. First, let us note that by assumption ν >
√

2L/λ > 1/λe. Let V be
any open and connected set in R

3. We want to show thatZnν(V ) intersects one of the planes
that belong to the Julia set for some n and thus V itself intersects the Julia set. Assume that
this does not happen. By Lemma 8 we can consider two cases.

First case. Suppose first that the sequence of iterates Znν(V ) does not eventually stay
inside the square beam B(0,0) ∪ B(0,−1) but also visits their complement infinitely often.

Then we can find a subsequence nj such thatZnjν (V ) ∈ B(0,0) ∪ B(0,−1) andZnj+1
ν (V ) ∈

B(k,l) for some (k, l) 
= (0, 0), (0, −1). Without loss of generality we may assume that
Znjν (V ) ∈ B(0,0).

Consider now the sets

V +
nj

=
{
x ∈ V : |(p ◦Znjν )(x)| ≥ λ

2

}

and

V −
nj

=
{
x ∈ V : |(p ◦Znjν )(x)| < λ

2

}

(λ is the scale factor by which we scaled up the initial square). Notice that V = V +
nj

∪ V −
nj

.

Since Znj+1
ν (V ) is outside of B(0,0) ∪ B(0,−1) we will have that Znjν (V ) lies between two

‘level surfaces’ Sk and Sk+1, but we know, from Lemma 7, that those surfaces enclose a
volume no greater than M0 between them, where M0 is a constant. Thus m(Znjν (V )) ≤
M0, where m denotes the Lebesgue measure. Also, by Lemma 4, it is true that, for almost
all points in V +

nj
,

det(DZnjν ) ≥
(
λ

L5

)nj 1
λ3 |(p ◦Znjν )(x)|3 ≥

(
λ

L5

)nj 1
8

.

Hence, becauseZnjν is a homeomorphism in V we have that

M0 ≥ m(Znjν (V +
nj
)) =

∫
V+
nj

|det(DZnjν )| dm ≥
(
λ

L5

)nj 1
8

·m(V +
nj
).

This implies that m(V +
nj
) → 0 as nj → ∞. On the other hand, the set Znjν (V −

nj
) is inside

the initial square beam [−λ, λ]2 × R. Thus Znj+1
ν (V −

nj
) lies in the half-space x3 > 0

and outside the square beam B(0,0) ∪ B(0,−1). This same set also lies between some level
surfaces or below all of them. Moreover, as we proved in Lemma 7, the volume enclosed
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by those successive surfaces and the volume enclosed by the first one and the plane x3 = 0
is smaller than some constant M0. Thus m(Znj+1

ν (V −
nj
)) ≤ M0. By arguing the same way

as before now we get that

M0 ≥ m(Znj+1
ν (V −

nj
)) =

∫
V−
nj

|det(DZnj+1
ν )| dm ≥

(
λ

L5

)nj+1 1
8

·m(V −
nj
).

This again implies thatm(V −
nj
) → 0 as nj → ∞. But this is a contradiction sincem(V ) =

m(V −
nj
)+m(V +

nj
).

Second case. Suppose now that Znν(V ) ∈ B(0,0) ∪ B(0,−1), for all n > N0. Observe
that either Zν(B(0,0)) ⊂ {(x1, x2, x3) : x2 ≤ x1} or Zν(B(0,0)) ⊂ {(x1, x2, x3) : x2 ≥ x1}.
In the first case Znν(V ) stays in B(0,0) for all large n or it stays in B(0,−1), while in the
second it alternates between B(0,0) and B(0,−1). For simplicity we will assume that the first
case holds and thusZnν(V ) ∈ B(0,0), for all n > N0.

Let us now consider the inverse image under Zν of the boundary of B(0,0), which lies
inside B(0,0), namely the surface S0 we had in the proof of Lemma 7. Remember that this
surface is defined as S0 := {(x1, x2, x3) ∈ B(0,0) : x3 = f (x1, x2)}, where f is continuous
on B(0,0) ∩ {x3 = 0} and extends continuously on the boundary of this set except at the
points (0, 0), (2λ, 0), (0, −2λ) where f → ∞. Notice then that all the iterates Znν(V )
stay below the surface S0.

Consider now a plane x3 = c, with c = ENνλ(0)− λ and N so large that this plane
intersects this surface S0 and also

(c + λ)log(c+λ)+1ec+λν2λ2e−(νλec/2) ≤ λ. (4.11)

We define sets A1, A2 and A3 as follows:
• A1 := {(x1, x2, x3) ∈ B(0,0) : c < x3 < f (x1, x2) and (x1, x2) in a neighbourhood of

(0, 0)};
• A2 := {(x1, x2, x3) ∈ B(0,0) : c < x3 < f (x1, x2) and (x1, x2) in a neighbourhood of

(2λ, 0)};
• A3 := {(x1, x2, x3) ∈ B(0,0) : c < x3 < f (x1, x2) and (x1, x2) in a neighbourhood of

(0, −2λ)}.
Then the following assertions hold.

(i) All those sets lie below (in terms of the x3-coordinate) the surface S0. By the
definitions and Lemma 7 it is easy to see that the sets A1, A2 and A3 are also of
finite Lebesgue measure.

(ii) Zν(A2 ∪ A3) ⊂ {(x1, x2, x3) ∈ R
3 : x3 < −(νλec/2)} and thus Z2

ν(A2 ∪ A3) ⊂
B(0, δ), where δ = νλe−(νλec/2). Note that δ < νλ = Eνλ(0).

(iii) It is easy to show by induction on N and since νλ > 1/e that ENνλ(0) ≥ Eνλ(N − 1)
and thus

Eνλ(N − 1) ≤ c + λ ⇒ N ≤ log(c + λ)+ 2. (4.12)

By Lemma 10 and since λ > L5 we will now have that, for all x ∈ B(0, δ),
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|ZNν (x)−ZNν (0)| ≤ Eνλ(δ) · · · ENνλ(δ)|x|
≤ E2

νλ(0) · · · EN+1
νλ (0)δ

≤ (c + λ)N−1Eνλ(λ+ c)δ

≤ (c + λ)log(c+λ)+1νλeλ+cδ.

Hence, by (4.11) we will have that

|ZNν (x)−ZNν (0)| ≤ λ. (4.13)

Equation (4.13) together with (ii) implies thatZN+2
ν (A2 ∪ A3) ⊂ B(ZNν (0), λ), and by

the choice of c this last ball is contained in {(x1, x2, x3) ∈ R
3 : x3 > c}. This implies that

the part ofZN+2
ν (A2 ∪ A3) that lies below S0 is contained in A1.

Recall thatZnν(V ) stays below S0 for n > N0. By Lemma 9 we know that there is a point
x0 ∈ Zn0

ν (V ) for some n0 > N0 such that x0 ∈ A1. Take such a point x0. Let us carefully
examine the behaviour of the iterates of this point. We can assume that A1 is so close
to the x3-axis that if y ∈ A1 then p3(Zν(y)) > p3(y) by Lemma 5(a). Hence the points
Znν(x0) go higher and higher up in the x3 direction, while at the same time staying in A1,
until at some point the iterate Zkν(x0), for some k, will lie in either A2 or A3 thanks to
Lemma 5(b). Without loss of generality assume that x1 := Zkν(x0) ∈ A2 and take a small
ball around x1, B(x1, r) with B(x1, r) ⊂ A2 ∩Zn0+k

ν (V ). By what we have said in the
previous paragraph, we will have thatZN+2

ν (B(x1, r)) ⊂ A1.
However, we know what happens in points inside A1 when we iterate: they eventually

leave A1. Thus for some k > N + 2 we will have that Zkν(B(x1, r)) ⊂ A2 ∪ A3 since
B(x1, r) is a connected set and the sets A1, A2 and A3 are disjoint. We can then repeat this
whole argument, meaning that we take the setZkν(B(x1, r)) which is now in A2 or A3 and
thus will get mapped byZν to the lower half-space x3 < −(νλec/2) and byZN+2

ν inside
A1. Now continue as above and then repeat. Eventually we obtain a sequence nj → ∞
with

Znjν (B(x1, r)) ⊂ A2 ∪ A3.

Then by using Lemma 6 we will have that m(Znjν (B(x1, r))) → ∞, but this is impossible
since m(A2 ∪ A3) is finite.

5. Escaping set of the Zorich maps
In this section we prove that the escaping set is connected for those Zorich maps for which
Theorem 1 holds. Note that we assume that λ > L5 and ν >

√
2L/λ.

The proof of this theorem closely follows Rempe’s proof for the connectivity of the
escaping set of the exponential family in [27]. Before we begin with the proof we need to
define a few things. First, in this section, for simplicity and without loss of generality we
will assume that our Zorich map sends B(0,0) in the half-space {(x1, x2, x3) ∈ R

3 : x2 ≤
x1}. Let

H0 := {(x1, x2, x3) ∈ R
3 : x2 < x1 and x2 > −x1},
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and similarly,

H1 := {(x1, x2, x3) ∈ R
3 : x2 > x1 and x2 > −x1},

H2 := {(x1, x2, x3) ∈ R
3 : x2 > x1 and x2 < −x1},

H3 := {(x1, x2, x3) ∈ R
3 : x2 < x1 and x2 < −x1}.

Also, let T0 = T(0,0) := B(0,0) ∩ H0 and

T(i,j) = T(0,0) + i(λ, λ, 0)+ j (λ, −λ, 0), i, j ∈ Z.

Note that T1 := T(0,−1) = B(0,−1) ∩ H1, T2 := T(−1,−1) = B(0,−1) ∩ H2 and T3 :=
T(−1,0) = B(0,0) ∩ H3 and thus Ti ⊂ Hi , i = 0, 1, 2, 3. Now define �i : Hi → Ti ,
i = 0, 1, 2, 3, to be the inverse branches of Zν in Ti . We can extend those maps to
Hi \ {0} for i = 0, 1, 2, 3, and again those extended maps are injective. We will use the
same symbols �i to denote these extended maps.

Now take γ0 := {(0, 0, x3) : x3 < 0} and inductively define

γk := �0(γk−1),

for all k ≥ 1. Each of the sets γk , k ≥ 1, is an injective curve inside T0.
We now define the set �0 by

�0 :=
⋃
k≥0

γk .

LEMMA 11. If U ⊂ R
3 is any open set with U ∩ �0 
= ∅ then there is a k0 ∈ N with γk ∩

U 
= ∅ for all k > k0. In particular,
⋃
k≥k0

γk is dense in �0.

Proof. Let x0 ∈ �0, and let U be a neighbourhood of this point. We want to show that
γk ∩ U 
= ∅ for all sufficiently large k. We know, from the definition of �0, that there is
a point x1 ∈ U ∩ �0. This implies that Znν(x1) belongs to the x3-axis for all n ≥ N0, for
some N0 ∈ N, and in fact we can assume that x2 := ZN0

ν (x1) ∈ H>M , where M is any
positive number. Now taking M > M0, where M0 is the constant we used in Lemma 1,
and applying that lemma n times for a ball B(x2, R) ⊂ ZN0

ν (U), we obtain

Znν(B(x2, R) ∩H>M) ⊃ B(Znν(x2), α−nR) ∩H>Enνλ(M).
For all large enough n the ball on the right-hand side, B(Znν(x2), α−nR), intersects the
line γ1 = {(2λ, 0, t) : t ∈ R}. Hence, for all large enough n,Znν(U) intersects γ1. Thus for
each n large enough there is a point x3 ∈ γ1 whose backward orbit intersects U itself. This
means that U contains a point in γk for all large enough k, as we wanted.

LEMMA 12. The set �0 is connected.

Proof. Suppose U ⊂ R
3 is an open set with U ∩ �0 
= ∅ and �0 ∩ ∂U = ∅. We show that

�0 ⊂ U .
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By Lemma 11 we have that γk ∩ U 
= ∅, for all k > k0. Since γk is a connected curve,
this implies that γk ⊂ U , for all k > k0. Thus

�0 ⊂ �0 =
⋃
k≥k0

γk ⊂ U .

Hence, since �0 ∩ ∂U = ∅, we have that �0 ⊂ U .

Similarly, we can define sets �i , for i = 1, 2, 3, using this time �i instead of �0 and
prove that �i is also connected. This implies that the union � := ⋃3

i=0 �i is a connected
set. Define the set

Y :=
⋃

(k,l)∈Z2

(� + k(2λ, 2λ, 0)+ l(2λ, −2λ, 0)),

which is connected since � contains the lines {(±2λ, 0, t) : t ∈ R}, {(0, ±2λ, t) : t ∈ R}
and is a subset of I (Zν) since the iterates of any point eventually land on the x3-axis. Next
we define, inductively, the sets Yj ⊂ I (Zν) by setting Y0 = Y and Yj+1 = Z−1

ν (Yj ) ∪ Yj .

LEMMA 13. The sets Yj are connected for all j ≥ 0.

Proof. We will prove this by induction on j. Let us define the inverse branches of Zν .
Using the notation we introduced in the first paragraphs of this section, define�k,l : Hp →
T(k,l), with p = 0, 1, 2, 3, to be the inverse branches of Zν that take values on the square
beams T(k,l). We also extend those maps to Hp \ {0} and use the same symbol to denote
those extensions. With that notation we have that

Yj+1 =
⋃

(k,l)∈Z2

�k,l(Yj ) ∪ Yj .

By the inductive hypothesis now we know that Yj is connected and because �k,l

is continuous the set �k,l (Yj ) is also connected. Observe now that the point xn,m =
(2λ, 0, 0)+ n(2λ, 0, 0)+m(0, 2λ, 0) is inside Y = Y0 and thus in Yj , for all n, m ∈ Z and
for all j ∈ N. Also note that Zν(xn,m) = (0, 0, −νλ) or (0, 0, νλ) which are both points
in Yj . This means that there are m, n depending on k, l such that xn,m ∈ �k,l(Yj ). Hence
�k,l(Yj ) ∩ Yj 
= ∅. This implies that the set �k,l (Yj ) ∪ Yj is connected. Hence Yj+1 is
connected as a union of connected sets with non-empty intersections with each other, as
we wanted.

Proof of Theorem 3. Consider the set⋃
j≥0

Z−j
ν ((0, 0, −1)) ⊂

⋃
j≥0

Yj .

The Zorich map is bounded on {(x1, x2, x3) : x3 < 0} and thus it does not have
the pits effect (see [5]). Hence, by [5, Theorem 1.8] we will have that the set⋃
j≥0 Z−j

ν ((0, 0, −1)) is dense in J(Zν), which by Theorem 1 is R
3, and thus also

dense in I (Zν). Thus the set
⋃
j≥0 Yj is a connected dense subset of I (Zν) which

implies that the escaping set itself is connected.

https://doi.org/10.1017/etds.2021.123 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.123


Julia sets of Zorich maps 717

6. Density of periodic points
Proof of Theorem 2. First let U0 = B(x0, r) be a ball centred at x0 ∈ R

3 of radius r > 0.
We seek a periodic point of Zν in U0. Without loss of generality we may assume that U0

does not intersect any of the planes x1 = ±x2 + 2λk, k ∈ Z.
We will follow the method of [16] where the authors prove that periodic points of a

quasiregular version of the sine function are dense on R
3. We will do this by finding an

N ∈ N and a finite sequence of open sets Uj , j = 0, . . . , N , such that:
(i) Uj+1 ⊂ Zν(Uj ), 0 ≤ j ≤ N − 1;

(ii) Zν is a homeomorphism on each Uj for j ≤ N − 1;
(iii) U0 ⊂ UN .
If these conditions are met then we can define a continuous inverse branch Z−N

ν : UN →
U0. Thus by the Brouwer fixed point theorem the mapZ−N

ν |U0 has a fixed point in U0.
We will now show how we can construct such a sequence. By Theorem 1 we

know that Znν(U0) eventually covers R
3 \ {0}. We set Uj = Zjν(U0) for all j such that

Zjν(U0) does not intersect the set P := ⋃
k∈Z{(x1, x2, x3) : x1 = ±x2 + 2kλ}. Let n0

be the biggest such j, so that we have defined U0, . . . , Un0 . Then take a point y1 in
Zn0+1(U0) ∩ P such that y1 
∈ BZν and a ball B(y1, r) ⊂ Zn0+1

ν (U0) \ BZν , where we
recall here that BZν is the branch set. Set Un0+1 = B(y1, r). We know that Zν(Un0+1)

intersects one of the planes x1 = ±x2 and it is easy to see that Zν is a homeomorphism
on Un0+1. Assume, without loss of generality that it intersects x1 = x2 and take y2 ∈
(Zν(Un0+1) ∩ {(x1, x2, x3) : x1 = x2}) \ BZν . Set Un0+2 = B(y2, r2), where r2 > 0 is
such that B(y2, r2) ⊂ Zν(Un0+1) \ BZν .

Consider the set V0 = Un0+2 ∩ {(x1, x2, x3) : x1 = x2} which is an open set of the plane
x1 = x2 in the subspace topology. We define the sets Vn by induction as follows. Suppose
that Vn has been defined and that Vn ∩ BZν = ∅. We consider now two cases:
(1) Zν(Vn) intersects one of the lines {(x1, x2, x3) : x1 = x2 = 2λk}, k ∈ Z which are

the pre-images of the x3-axis on the plane x1 = x2:
(2) Zν(Vn) does not intersect any of those lines.

In the first case, let y3 be a point in such an intersection. We define Vn+1 to be an open
ball around y3 in the subspace topology of x1 = x2 of radius r3 where r3 is chosen in such
a way that the ball does not contain branch points and such that Vn+1 ⊂ Zν(Vn).

In the second case, we define Vn+1 := Zν(Vn) ∩H0, where H0 is the whole plane
x1 = x2 if Zν(Vn) ∩ BZν = ∅, and it is an open half-plane on x1 = x2 otherwise, which
is defined as follows. Suppose that Zν(Vn) intersects one of the lines of BZν which we
call �1. We set H0 to be the half-plane defined by this line and the property

m2(Zν(Vn) ∩H0) ≥ 1
2m2(Zν(Vn)),

where m2 is the two-dimensional Lebesgue measure on x1 = x2. Note now that we have
inductively defined the sets Vn.

We now claim that case (1) must occur for some n, otherwise notice that by construction
Zν is a homeomorphism on Vn, for all n ∈ N. Hence,

m2(Vn+1) = m2(Zν(Vn) ∩H0) ≥ 1
2m2(Zν(Vn)). (6.1)
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Using the notation of §3, we now have that

m2(Zν(Vn)) = m2((φ
−1 ◦ g ◦ φ)(Vn)) = Cm2(g(φ(Vn))),

where C = |det Dφ−1|, which is a constant since φ is linear. Combining with equation
(6.1), this gives

m2(Vn+1) ≥ C

2
m2(g(φ(Vn))).

Thus by Lemma 3 we have that m2(Vn) → ∞, as n → ∞. This implies, just like in the
proof of Theorem 5, that there is an m0 such that Vm0 intersects the x3-axis.

We now set Un0+2+i to be the open set

Un0+2+i :=
⋃
x∈Vi

B(x, rx),

where rx is such that B(x, rx) ⊂ Zν(Un0+1+i ) and B(x, rx) ∩ BZν = ∅, for all 1 ≤
i ≤ m0.

Notice that the sets Un0+2+i satisfy properties (i) and (ii). We have that Un0+2+m0

intersects the x3-axis, so let

Un0+3+m0 = Zν(Un0+2+m0) ∩ B(0,0).

Define also

Q(0,0) = {(x1, x2) : |x1| + |x2| < 2λ}
and

Q(k,l) = Q(0,0) + k(2λ, 2λ)+ l(2λ, −2λ), k, l ∈ Z.

We now set

Un0+2+m0+j = Zν(Un0+1+m0+j ) ∩ B(0,0),

for all 2 ≤ j ≤ m1, wherem1, depending onM > 0, is so large thatUn0+2+m0+m1 contains
a set of the form Q0 × [R, R +M], where Q0 = Q(0,0) ∩ {(x1, x2) : x1 < x2} and for
some R > 0. We know that such anm1 exists because the iterated image, under the Zorich
map, of an open set that intersects the x3-axis eventually contains a ball of radius as large
as we want (see Lemma 1).

If M is large enough thenZν(Un0+2+m0+m1) will contain a set of the form

Un0+3+m0+m1 := Q(k,l) × [−tM , tM ],

for some k, l ∈ Z and tM → ∞, as M → ∞. Note that Zν is a homeomorphism on
Un0+2+m0+j for all 2 ≤ j ≤ m1 + 1 and thatZν(Un0+3+m0+m1) will be the set

UN := {x ∈ R
3 : νλe−tM < |x| < νλetM } \W ,

where W = {(x1, x2, x3) : x1 = ±x2, x3 ≤ 0}. If M is large enough UN will contain the
closure of our initial set U0, since U0 does not intersect any of the planes x1 = ±x2 + 2λk,
k ∈ Z, and we are done.
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7. Generalized Zorich maps
In this section we discuss a more general construction of Zorich maps. The goal of this
section is to sketch how to prove Theorem 4 by following the same methods we used in the
proof of Theorem 1 and highlight the most significant differences between the two cases.

We start again with the square

Q = {(x1, x2) ∈ R
2 : |x1| ≤ 1, |x2| ≤ 1}.

The L bi-Lipschitz function hgen : Q → R
3 maps this square to a surface S which satisfies

the following properties.
(1) The surface lies in the half-space {(x1, x2, x3) : x3 ≥ 0}.
(2) The boundary of S lies on the plane x3 = 0.
(3) The ray that connects (0, 0, 0) with hgen(x), x ∈ Q, intersects the surface S only at

hgen(x).
(4) There exist a θS ∈ (0, π/2) and ε > 0 such that for all points w, z ∈ S such that

|w − z| ≤ ε the acute angle between the lines connecting 0 with z and w with z
is greater than θS. We will call this property the non-tangential position vector
property.

(5) minx∈Q |hgen(x)| > 0.

Remark 3. We make two observations on the non-tangential position vector property that
we are going to need later.

First we note that it implies that for all points x ∈ S for which a tangent plane to S is
defined at x (we know that this includes Lebesgue almost all points of S) the angle between
the vector hgen(x) and the plane is at least θS.

Second, consider any straight line segment inside Q, which we can parametrize by φ(t),
t ∈ [0, 1] and φ linear, and consider h(φ([0, 1]))which is a curve inS that admits a tangent
line almost everywhere. The non-tangential position vector property now implies that the
angle between the vector h(φ(t)) and the tangent line at that point on the surface is again
at least θS.

We also note here that a similar condition to the non-tangential position vector property
was used by Nicks and Sixsmith in [25] on the boundary of a domain in R

d in order to
prove an extension theorem on bi-Lipschitz maps between domains.

Again if hgen = (hgen,1, hgen,2, hgen,3)we require that hgen,1(x1, x1) = hgen,2(x1, x1) and
hgen,1(x1, −x1) = −hgen,2(x1, −x1). For simplicity we will also assume that

hgen(0, 0) = (0, 0, 1) and sup
x∈Q

|hgen(x)| = 1. (7.1)

Although the last two conditions are not needed for our methods to work, they make the
arguments less arduous and more similar to the arguments we used in the more classical
setting.

We also rescale our map hgen by defining

hgen(x1, x2) = λhgen

(
1
λ
(x1, x2)

)
, (x1, x2) ∈ λQ.
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We then define

Zgen(x1, x2, x3) = ex3hgen(x1, x2),

on λQ× R and extend this map to the whole of R3 through reflections.

Remark 4. A case of particular interest is when the surface S is a square-based pyramid.
In this case we can be much more explicit and define the function hgen : λQ → R

3,

hgen(x1, x2) := (x1, x2, λ− max{|x1|, |x2|}),
which sends the square λQ to a pyramid with base λQ and height λ. On λQ× R we then
define

Zgen(x1, x2, x3) = ex3hgen(x1, x2)

and extend this map to all R3 in the same way we did with the classical Zorich map.
Let us also mention that in [25] the authors used those kinds of Zorich maps to construct

a quasiregular function in R
3 which resembles ez + z.

For those maps we can prove (although we omit the proof), using the same methods,
the corresponding result to Theorem 1 where we have a more explicit value for the scale
factor.

THEOREM 6. For λ > 2 the Julia set J(Zgen) is the whole of R3.

We are now ready to discuss the proof of Theorem 4.
First we have to show that the x3-axis belongs to the Julia set, which is proved in exactly

the same way as for the spherical Zorich maps (see Proposition 1) so we omit the proof.
Then we have to study our maps in the planes x1 = ±x2. Again in those planes our map is
conjugate through φ(x1, x2, x3) = (1/λ)(x3 + ix1) to the map

ĝ(z) :=
{
ψ̂(z̄+ 2i), Im(z) ∈ [(4k + 1), (4k + 3)],

ψ̂(z), Im(z) ∈ [(4k − 1), (4k + 1)],

where z = x + iy ∈ C, k ∈ Z and ψ̂(x + iy) = eλx(hgen,3(y, y)+ ihgen,1(y, y)). We
again set a(y) = hgen,3(y, y) and b(y) = hgen,1(y, y).

We can then prove that Theorem 5 holds in this setting as well.

LEMMA 14. For λ > 2L2/(sin θS minx∈Q |hgen(x)|), if V is a connected set of the
complex plane with m(V ) > 0 then ĝn(V ) intersects the real axis for some n ∈ N.

This of course implies that the planes x1 = ±x2 and all their parallel translate
planes x1 = ±x2 + 2λk, k ∈ Z, are in J(Zgen). Again all those planes partition R

3 into
square beams whose boundaries are in the Julia set and in which our Zorich map is a
homeomorphism.

We will not give the proof of the above lemma here since it is very similar to the proof
of Theorem 5. The only significant difference in the proof of the above lemma in this more
general setting is in the corresponding Lemma 2 which we prove below.
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LEMMA 15. Let ĝ be the map we defined above. Then

|det(Dĝ(z))| ≥ sin θS minx∈Q |hgen(x)|λe2λRe(z)

2L
a.e.

Proof. The only difference with the proof of Lemma 2 is in finding a lower bound for∣∣∣∣∣∣∣det

⎛
⎜⎝a(y)

da

dy
(y)

b(y)
db

dy
(y)

⎞
⎟⎠

∣∣∣∣∣∣∣ .

This time we know that the absolute value of the determinant equals

|(a(y), b(y))|
∣∣∣∣
(
da

dy
(y),

db

dy
(y)

)∣∣∣∣| sin θ(y)|,

where θ(y) is the angle between the vectors (a(y), b(y)) and ((da/dy)(y), (db/dy)(y)).
Hence, using the non-tangential position vector property and the fact that∣∣∣∣

(
da

dy
(y),

db

dy
(y)

)∣∣∣∣ ≥ 1√
2L

and |(a(y), b(y))| ≥ minx∈Q |hgen(x)|√
2

,

we get that ∣∣∣∣∣∣∣det

⎛
⎜⎝a(y)

da

dy
(y)

b(y)
db

dy
(y)

⎞
⎟⎠

∣∣∣∣∣∣∣ ≥ sin θS minx∈Q |hgen(x)|
2L

and thus

|det Dĝ(z)| ≥ sin θS minx∈Q |hgen(x)|λe2λRe z

2L
a.e.

Next we need the Misiurewicz type Lemma 4 which in this case is expressed as follows.

LEMMA 16. Let DZngen be the generarized Zorich map and hgen, θS be the bi-Lipschitz
map and the constant we used in the construction of that Zorich map. Then

det(DZngen(x)) ≥
(
λ minx∈Q |hgen(x)| sin θS

L5

)n 1
λ3 |(p ◦Zngen)(x)|3 a.e.

Proof. Again the only difference is in obtaining a lower bound for the determinant
det DZgen(x). Define

H =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂hgen,1

∂x1
(p(x))

∂hgen,1

∂x2
(p(x)) hgen,1(p(x))

∂hgen,2

∂x1
(p(x))

∂hgen,2

∂x2
(p(x)) hgen,2(p(x))

∂hgen,3

∂x1
(p(x))

∂hgen,3

∂x2
(p(x)) hgen,3(p(x))

⎞
⎟⎟⎟⎟⎟⎟⎠
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and set

A =

⎛
⎜⎜⎜⎜⎜⎝

∂hgen,1

∂x1
(p(x))

∂hgen,2

∂x1
(p(x))

∂hgen,3

∂x1
(p(x))

⎞
⎟⎟⎟⎟⎟⎠ , B =

⎛
⎜⎜⎜⎜⎜⎝

∂hgen,1

∂x2
(p(x))

∂hgen,2

∂x2
(p(x))

∂hgen,3

∂x2
(p(x))

⎞
⎟⎟⎟⎟⎟⎠ , C =

⎛
⎝hgen,1(p(x))

hgen,2(p(x))

hgen,3(p(x))

⎞
⎠ .

Then detH = 〈A× B, C〉 = |A× B||C| cos φ, where φ is the angle between A× B
and C. Using the fact that |C| ≥ λ minx∈Q |hgen(x)| and |A× B| ≥ 1/L2, together with
the non-tangential position vector property, we can show that

detH ≥ λ minx∈Q |hgen(x)| sin θS
L2 .

Hence

det DZgen(x) ≥ e3x3
λ minx∈Q |hgen(x)| sin θS

L2 ,

and the rest follows in exactly the same way as in the proof of Lemma 4.

Versions of Lemmas 5–10 now follow with only slight modifications of their proofs.
Hence, the proof of Theorem 4 now follows with the same arguments as the proof of
Theorem 1. Let us briefly sketch how all this should work.

LEMMA 17.

(a) There are δ > 0 and c > 0 such that for all x ∈ Cδ , where Cδ is the cylinder around
x3-axis with δ radius, we have that p3(Zgen(x)) > p3(x)+ c.

(b) For δ as in (a) and for every x ∈ Cδ , with p(x) 
= (0, 0), there is an n ∈ N such that
Zngen(x) 
∈ Cδ .

Proof. The proof of (a) follows that of Lemma 5 word for word. For (b) again the proof is
almost the same. The difference here is the lower bound for the angle θ used in the proof
of Lemma 5: instead of π/4 it is now some constant greater than 0.

LEMMA 18. Assume λ > L5/(minx∈Q |hgen(x)| sin θS). Let V ⊂ R
3 be a connected set

with m(V ) > 0 and whose iterates do not intersect any of the planes x1 = ±x2 + 2kλ,
k ∈ Z. Suppose also that there is a sequence of integers nj > 0 with Znjgen(V ) ∩ Ca = ∅,
where Ca is a cylinder around the x3-axis of any radius a > 0. Then m(Znjgen(V )) → ∞
as nj → ∞, where m is the three-dimensional Lebesgue measure.

Proof. The proof is the same as in Lemma 6, only now we use Lemma 16 in place of
Lemma 4.

In the same way, as for the Zorich map defined using spheres, we can define the surfaces
Sn and Kn lying inside the rectangle beams B(0,0) and B(0,−1), respectively. Again those
surfaces, together with the plane x3 = 0 and the boundaries of the beams, define sets of
finite volume.
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The next three lemmas are those corresponding to Lemmas 7–9, respectively. Their
proofs follow the proofs of the lemmas we just mentioned almost word for word and are
therefore omitted.

LEMMA 19. Let In be the volume that the surface Sn encloses together with the plane
x3 = 0 and inside the beam B(0,0). Then In is finite for all n ∈ N. Furthermore, if Tn :=
In+1 − In is the volume between Sn and Sn+1 then Tn is a decreasing sequence.

LEMMA 20. Assume λ > L5/(minx∈Q |hgen(x)| sin θS). Let V be a connected subset of
R

3 withm(V ) > 0 and such thatZngen(V ) does not intersect any of the planes x1 = ±x2 +
2kλ, k ∈ Z, for all n ∈ N. Then Zngen(V ) visits infinitely often one of the two rectangle
beams B(0,0), B(0,−1), that have the x3-axis in their boundary.

LEMMA 21. Assume λ > (L5/(minx∈Q |hgen(x)| sin θS)). Let V be a connected set of R3

with m(V ) > 0 and such that Zngen(V ) does not intersect any of the planes x1 = ±x2 +
2kλ, k ∈ Z for all n ∈ N. Suppose that there is an N0 ∈ N such that Zngen(V ) ⊂ B(0,0),
for all n > N0. Then for all M > 0 and ε > 0 there exist some n0 > N0 and a point x ∈
Zn0

gen(V ) such that p3(x) > M and d(x, x3-axis) < ε, where d is the euclidean distance.

The next lemma is the analogue of Lemma 10 in this new setting.

LEMMA 22. Let y1, y2 ∈ B(0, r), where r > 0. Then for all n ∈ N it is true that

|Zngen(y1)−Zngen(y2)| ≤
(√

L2 + λ2

λ

)n
Eλ(r) · · · Enλ(r)|y1 − y2|,

where Eλ denotes the exponential map λex .

Proof. The proof follows the proof of Lemma 10 almost word for word. Note, however,
that A, B, C are not orthogonal. Still, when estimating |DZgen(x1, x2, 0)| (see the proof
of Lemma 10) we can argue as follows:

|DZgen(x1, x2, 0)|2 = sup
|v|=1

(|v1A+ v2B+ v3C|2)

≤ sup
|v|=1

(|v1A+ v2B| + |v3C|)2

≤ sup
|v|=1

(L|(v1, v2)| + λ|v3|)2

≤ L2 + λ2.

We also note that to argue here as in the last few lines of the proof of Lemma 10 we use
the two conditions in equation (7.1).

Proof of Theorem 4. Let V be any open and connected set of R3. Assuming that

λ > Chgen := max{L5, 2L}
minx∈Q |hgen(x)| sin θS

,

we want to show that Zngen(V ) intersects one of the planes that belong to the Julia set for
some n and thus V itself intersects the Julia set.
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The proof now proceeds in the same way as the proof of Theorem 1. We consider the
same two cases.
(i) The iteratesZngen(V ) do not eventually stay inside the beam B(0,0) ∪ B(0,−1). In this

case the proof is the same almost word for word.
(ii) The iteratesZngen(V ) eventually stay insideB(0,0) ∪ B(0,−1). The idea in this case will

be the same. We leave the details, which will be slightly different, to the interested
reader.

8. Questions and remarks
As we have already seen, the Zorich maps resemble the exponential family in many ways.
The literature on exponential dynamics is vast and there are many striking phenomena.
It is expected that Zorich maps, given the higher-dimensional setting and their greater
flexibility, should have an even more intricate nature. In this section we will mention some
problems that require further study.

8.1. Dynamics for different values of λ. We saw in Theorem 1 that when λ is large
enough the Julia set of the Zorich map is the whole of R3, assuming that ν is large enough.
It is interesting to ask what happens when the scale factor λ is not large. In that case we
do not have enough expansion in the sense of Lemma 4 in order for our argument to work.
Nonetheless, it seems that the dynamics in this case is also chaotic. We therefore pose the
following question.

Question 1. Let λ > 0. Does there always exist a constant cλ depending on λ such that for
all ν > cλ the Julia set J(Zν) is the whole of R3?

We can even pose this question in the complex plane. If we rescale the complex
exponential family we obtain the maps

fν(x + iy) = νλex
(

cos
(
y

λ

)
+ i sin

(
y

λ

))
,

for λ > 0 and ν ∈ R. Note that for λ = 1 we get the exponential family. Of course those
maps are no longer holomorphic but they are quasiregular and we can define their Julia
set. A similar approach to that used for the Zorich maps should give us that the Julia set
of those maps for λ large enough and ν > c′λ is the entire complex plane, with c′λ constant
depending on λ. But we can pose the following question.

Question 2. Let λ > 0. Assuming that ν > c′λ, is J(fν) the whole complex plane?

Closely related to the above question and worth mentioning here is the paper [7] where
the authors study families of functions like fν in the complex plane. The functions they
study are not necessarily quasiregular. However, their results show that if we choose a
λ > 0 then for small values of ν the Julia set of fν is a ‘Cantor bouquet’.

8.2. Measurable dynamics of Zorich maps. In this subsection we assume that ν = 1 and
λ is as in Theorem 1. We will make some remarks on the Lebesgue measure of some sets.
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First we need to introduce symbolic dynamics. In order to do that we partition R
3 into the

rectangular beams

T(i,j) = T(0,0) + 2i(λ, λ, 0)+ 2j (λ, −λ, 0),

where i, j ∈ Z and

T(0,0) = B(0,0) ∪ B(0,−1) ∪ {(x1, x2, x3) : x1 = x2 − 2λ, −2λ < x1 ≤ 0}
∪ {(x1, x2, x3) : x1 = −x2 + 2λ, 0 ≤ x1 < 2λ}
∪ {(x1, x2, x3) : x1 = x2, −λ < x1 < λ}.

For each point x ∈ R
3 we associate a sequence on Z × Z, S(x) := (s1, s2, . . .), which we

call its itinerary, and the sk = (sk,1, sk,2) are chosen such thatZk(x) ∈ Tsk . We denote the
space of all sequences by �, so S is a map from R

3 to �. This procedure of course can be
done to the exponential map in a similar manner. Consider now the set of all points with a
given itinerary (s1, s2, . . .), namely the set

{x ∈ R
3 : S(x) = (s1, s2, . . .)}.

Ghys, Goldberg and Sullivan in [17] proved that the analogous set for the exponential
map has Lebesgue measure zero. With a bit more work we can see that in our proof of
Theorem 1 we have actually proved the same result for the Zorich maps. Phrasing it in the
same way as in [17], we have proved the following result.

THEOREM 7. The fibres of the map S have Lebesgue measure zero.

Proof. Let V be a set with m(V ) > 0 and where all points in V have the same itinerary s.
Remember that the planes x1 = ±x2 together with their parallel translates form a forward
invariant set so any point in V which lands on one of those planes stays on those planes.
Those points will have zero Lebesgue measure since the planes have zero Lebesgue
measure and quasiregular maps have Luzin’s N property (see [28, I.Proposition 4.14]).
Hence, we can assume that V does not contain such points and it always stays on the
interior of the square beams under iteration. Thus we find ourselves in the same two cases
as in the proof of Theorem 1. Note here that Lemmas 6 and 8 require the set V to be
connected. However, it is easy to see in their proofs that this hypothesis can be weakened
to all points in V having the same itinerary, which is exactly what we have here.

The first case now of Theorem 1 is exactly the same. Assuming that points in V have
an itinerary in which we can find a subsequence snk with snk 
= (0, 0), we arrive at a
contradiction due to the fact that m(V ) > 0.

In the second case we assume that the itinerary of points in V is eventually 0, and
without loss of generality in fact equal to (0, 0, . . .). We may assume that all points in V
are density points since by Lebesgue’s density theorem this is true for almost all points.
Thus if x ∈ V then we know that

m(B(x, ε) ∩ V )
m(B(x, ε))

> 0,

for all ε > 0.
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We now claim that m(B(x, ε) ∩ V ) > 0, for all ε > 0 small enough, if and only if
m(B(Z(x), ε) ∩Z(V )) > 0 for all ε > 0 small enough. Indeed, this follows by Lusin’s
N property and the fact that the Zorich map is locally invertible inZ(V ).

This implies that all points in Zn(V ) have the property m(B(y, ε) ∩Zn(V )) > 0 for
all ε > 0 small enough. Hence, by Lemma 9, we may assume that x lies in A1 (otherwise
just consider an iterate of V and rename it V) and fix a small ε so that

U := B(x, ε) ∩ V ⊂ A1.

We can now repeat the argument in the proof of the second case of Theorem 1 and conclude
that there is a subsequence nj withZnj (U) ⊂ A2 ∪ A3 but m(Znj (U)) → ∞, which is a
contradiction due to the fact that m(A2 ∪ A3) < ∞.

Closely related is the question of the typical behaviour of an orbit of the exponential
map. Lyubich in [21] proved that for Lebesgue almost all points of the complex plane the
limit set of their orbit En(z) is the orbit of 0, {En(0)}n∈N plus ∞. Thus a typical point will
follow closely the orbit of 0 for some time and then ‘break off’ for some iterates until it
goes back to following the orbit of 0 for more iterates this time. Hence, almost all points
in the complex plane belong to the bungee set of the exponential map (see [26]), namely
the set of points that neither escape to infinity nor remain bounded under iteration. The
bungee set can be also defined for quasiregular maps (see [24]). So we pose the following
question.

Question 3. What is the typical behaviour of an orbit of a point x ∈ R
3 under the Zorich

map? Do almost all points belong to the bungee set?

Another interesting question that was answered by Lyubich in the same paper is that of
ergodicity of the exponential. Ergodicity here means that there is no partition of the plane
into two invariant sets of positive Lebesgue measure. We have the following theorem.

THEOREM 8. (Lyubich [21]) E(z) is not ergodic.

In the same sense we can pose the following question.

Question 4. Is the Zorich mapZ ergodic?

8.3. Indecomposable continua in Zorich maps. Another fascinating and well-studied
phenomenon in exponential dynamics is the presence of indecomposable continua in the
dynamic plane. It was Devaney in [9] who first studied such sets. The way to construct
them in the complex plane is as follows. Consider the strip

S = {z ∈ C : 0 ≤ Im z ≤ π}.
Now take any κ > 1/e and consider the set

� := {z ∈ C : Enκ (z) ∈ S for all n ∈ N}.
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By suitably compactifying this set, Devaney shows that we obtain a curve that accumulates
everywhere on itself but does not separate the plane. By applying a theorem due to Curry,
[8, Theorem 8], he then concludes that this curve must be an indecomposable continuum.

Assuming that ν = 1, we can try and construct a similar set in the case of Zorich maps.
The role of the strip S is now played by the rectangular beam B(0,0). Thus we can consider
the set

�Z := {x ∈ R
3 : Zn(x) ∈ B(0,0), for all n ∈ N}.

We can also, just like Devaney, suitably compactify this set and obtain a surface (�, say)
that accumulates everywhere on itself. However, Curry’s criterion is no longer available in
this higher-dimensional setting, so Devaney’s argument does not work here.

Question 5. Is � an indecomposable continuum?

If the answer to the above question is yes we can then consider the same continua for
different values of ν. Let us call these continua �ν1 and �ν2 , with ν1, ν2 ≥ 1.

Question 6. If ν1 
= ν2 are �ν1 and �ν2 homeomorphic?

Let us also remark here that the points in the set�Z all have the same itinerary, so by the
results of the previous subsection we have that the three-dimensional Lebesgue measure
of this set is zero.

Finally, let us mention [12] where the authors prove the existence of many more
indecomposable continua in the dynamical plane of the exponential map and ask many
more questions. Such considerations also make sense for Zorich maps.
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