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Abstract

We study the numbers of involutions and their relation to Frobenius–Schur indicators in the groups
SO±(n, q) and Ω±(n, q). Our point of view for this study comes from two motivations. The first is
the conjecture that a finite simple group G is strongly real (all elements are conjugate to their inverses
by an involution) if and only if it is totally orthogonal (all Frobenius–Schur indicators are 1), and we
observe this holds for all finite simple groups G other than the groups Ω±(4m, q) with q even. We prove
computationally that for small m this statement indeed holds for these groups by equating their character
degree sums with the number of involutions. We also prove a result on a certain twisted indicator for the
groups SO±(4m + 2, q) with q odd. Our second motivation is to continue the work of Fulman, Guralnick,
and Stanton on generating functions and asymptotics for involutions in classical groups. We extend their
work by finding generating functions for the numbers of involutions in SO±(n, q) and Ω±(n, q) for all q,
and we use these to compute the asymptotic behavior for the number of involutions in these groups when
q is fixed and n grows.
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1. Introduction

An element g in a group G is real in G if g is conjugate to its inverse in G. In this
case, all elements in the G-conjugacy class of g are also real, and the class is called
a real class. If g is G-conjugate to its inverse by an element h ∈ G which satisfies
h2 = 1, then we say that the element g is strongly real in G, and the conjugacy class
of g in G is called a strongly real class. If all classes of G are real (or strongly real),
then G is said to be a real group (or a strongly real group). If G is a finite group,
then the number of real classes of G is equal to the number of complex irreducible
characters of G which are real-valued. If χ is a real-valued irreducible character of G,
then the complex irreducible representation (π,V) which affords χ may or may not be
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realizable as a representation over the real numbers. The Frobenius–Schur indicator of
χ, denoted ε(χ), is defined to be ε(χ) = 1 if (π,V) is realizable as a real representation,
ε(χ) = −1 if (π,V) is not realizable as a real representation but χ is real-valued, and
ε(χ) = 0 if χ is not real-valued. The group G is said to be totally orthogonal if ε(χ) = 1
for all complex irreducible characters χ of G.

Brauer [4, Problem 14] asked for a group-theoretical interpretation for the number
of complex irreducible χ of G which satisfy ε(χ) = 1. Because of many important
classes of examples, it is suspected that an answer to Brauer’s question should involve
the strongly real classes of G. In particular, it has been stated as a conjecture in [20]
(attributed to P. H. Tiep) that if G is a finite simple group, then G is strongly real if
and only if G is totally orthogonal. It is known that this does not hold for finite groups
in general; indeed, Kaur and Kulshrestha [20] have exhibited families of 2-groups that
are strongly real but not totally orthogonal, and families that are totally orthogonal but
not strongly real.

After establishing some preliminary notation and results in Section 2, we consider
in Section 3 the conjecture that a finite simple group is strongly real if and only if it is
totally orthogonal. Except for the case where G is of the form Ω±(4m, q) with q even,
we observe that this conjecture holds for all other finite simple groups G by applying
the classification of strongly real simple groups and known results on Frobenius–Schur
indicators in Theorem 3.2. In Section 4 we enumerate various sets of involutions in the
finite orthogonal groups and certain subgroups, which is directly related to the above
conjecture since a finite group G is totally orthogonal if and only if its character degree
sum is equal to the number of involutions in G (see Lemma 2.2). We immediately
apply these counts in Section 5, where we use data obtained by Lübeck [25] to show
computationally that the groups Ω±(4m, q) with q even are indeed totally orthogonal
for small rank, and that certain twisted indicators of Ω±(4m + 2, q) are all 1 for small
rank, in Theorem 5.4. We show the analogous twisted indicators are always 1 for
SO±(4m + 2, q) when q is odd in Theorem 5.2.

In Sections 6 and 7 we extend results of Fulman et al. [11] on the asymptotics
for the numbers of involutions in finite classical groups. Specifically, in Section 6
we find generating functions for the numbers of involutions in SO±(n, q) and Ω±(n, q)
(for q odd and even), and in Section 7 we compute asymptotics for the number of
involutions in these groups (as n grows and q is fixed), as is suggested could be
done in the introduction of [11]. Several interesting results emerge, for example
in Corollary 7.9 we see that as n grows Ω±(n, q) asymptotically has half as many
involutions as SO±(n, q), when q is odd and fixed.

The generating functions in Section 6 are also significant in the problem of
computing Frobenius–Schur indicators for the groups of interest. By using the
generating function for the number of involutions in Sp(2n, q) found in [11], and
applying Deligne–Lusztig theory and extending the techniques from [12], the second-
named author showed that when q is even the group Sp(2n, q) is totally orthogonal
[36]. The hope is that a similar method, using the relevant generating functions from
Section 6 in this paper, will yield the analogous result for Ω±(4m, q) with q even and
thus complete the last case in Theorem 3.2.
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2. Preliminaries

2.1. The finite orthogonal groups. We primarily study various types of orthogonal
groups defined over finite fields, which we now discuss. Consideration of other groups
is deferred to Section 3.

Let Fq denote a finite field with q elements, and let V be a vector space over Fq of
dimension N where N ∈ {2n, 2n + 1}. We first consider the case where q is odd. Let
Q be a nondegenerate quadratic form defined on V (that is, the symmetric form on
V defined by Q is nondegenerate). In this case, Q must be equivalent to one of four
possible forms. We label these as follows, where the form is given by the image of a
vector in V with some coordinates (x1, . . . , xN):

(0) x1x2 + x3x4 + · · · + x2n−1x2n,
(w) x1x2 + x3x4 + · · · + x2n−3x2n−2 + x2

2n−1 − δx2
2n,

(1) x1x2 + x3x4 + · · · + x2n−1x2n + x2
2n+1,

(d) x1x2 + x3x4 + · · · + x2n−1x2n + δx2
2n+1,

where δ is some fixed element in F×q \ F
×2
q . We define W = {0,w, 1, d}, and the Witt

type of Q is defined to be the symbol in W corresponding to the quadratic form in
the list above to which Q is equivalent. We may define the orthogonal group on V
corresponding to Q, denoted by OQ(V), and since the isomorphism type depends only
on the Witt type, we may also write this as OQ(V) = O(s)(N, q), where s ∈W is the
Witt type of Q. When N = 2n is even, we will denote O(0)(N, q) = O+(2n, q) and
O(w)(N, q) = O−(2n, q). When N = 2n + 1 is odd, we denote O(1)(N, q) = O+(2n + 1, q)
and O(d)(N, q) = O−(2n + 1, q), and in fact we further have

O+(2n + 1, q) � O−(2n + 1, q),

which we commonly denote by O(2n + 1, q). We will write O±(N, q) for a general
orthogonal group of one of the types just described. We let SO±(N, q) denote
the special orthogonal group, or the index-2 subgroup consisting of determinant-1
elements of the corresponding orthogonal group O±(N, q). Note that we have

O(2n + 1, q) � SO(2n + 1, q) × {±1},

where Z = {±1} is the center of O±(N, q). We let Ω±(N, q) denote the derived
subgroup of SO±(N, q), which has index 2 in SO±(N, q). Then Ω±(N, q) has center
Z = Ω±(N, q) ∩ {1,−1}, and the projective group PΩ±(N, q) = Ω±(N, q)/Z is known to
be simple in all but finitely many cases (see [17, Theorem 6.31], for example).

We now consider the case where q is even, and the orthogonal group OQ(V)
corresponding to some nondefective quadratic form Q defined on V . The classification
of equivalence classes of such quadratic forms when q is even is only somewhat
different from the situation when q is odd given above, although we do not need the
full description here, and we refer to [17, Ch. 12] for details. In particular, when
dim(V) = 2n + 1 is odd, there is again only one isomorphism class of orthogonal
groups, which we denote by O(2n + 1, q). In this case, we have

O(2n + 1, q) � Sp(2n, q),
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where Sp(2n, q) is the symplectic group corresponding to the unique class of
nondegenerate alternating forms that one can define on an Fq-vector space of
dimension 2n (see, for example, [17, Theorem 14.2]). When q is even, we have that
Sp(2n, q) = PSp(2n, q) is a simple group for all but finitely many cases. When N = 2n
is even, there are two equivalence classes of nondefective quadratic forms on V (see
[17, Theorem 12.9(2)]). We write O+(2n, q) for the group corresponding to the form
which may be defined as Q(x1, . . . , x2n) = x1x1+n + x2x2+n + · · · + xnx2n, and we write
O−(2n, q) for the group corresponding to the other possible class of quadratic form. In
the case where q is even, we let Ω±(2n,q) denote the derived group of O±(2n,q), which
has index 2 in O±(2n, q), and is a simple group for all but finitely many cases. There
is also the following useful criterion for determining when an element of O±(2n, q) is
in its derived subgroup Ω±(2n, q) (see [29, Proposition 3.2]).

Lemma 2.1. If q is even and g ∈ O±(2n, q), then g ∈ Ω±(2n, q) if and only if rank(1 + g)
is even.

We will need to use the orders of the groups described above numerous times
throughout this paper, and so we list them here for reference. The first formula holds
whether q is even or odd:

|O±(2n, q)| = 2qn(n−1)(qn ∓ 1)
n−1∏
i=1

(q2i − 1).

When q is odd,

|O(2n + 1, q)| = 2qn2
n∏

i=1

(q2i − 1).

When q is even,

|O(2n + 1, q)| = |Sp(2n, q)| = qn2
n∏

i=1

(q2i − 1).

Moreover, when q is odd,

|SO±(N, q)| = 1
2 |O

±(N, q)| and |Ω±(N, q)| = 1
2 |SO±(N, q)|,

and when q is even,

|Ω±(2n, q)| = 1
2 |O

±(2n, q)|.

Note that when q is odd we have |O(1, q)| = 2, while when q is even we have
|O(1, q)| = |Sp(0, q)| = 1. For q even or odd, we define |O+(0, q)| = 1, but we do not
define |O−(0, q)|.
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2.2. Characters and Frobenius–Schur indicators. Let G be a finite group, let
Irr(G) denote the collection of irreducible complex characters of G, and let 〈·, ·〉
denote the standard inner product on class functions of G. If χ ∈ Irr(G) and (π, V)
is the representation of G affording χ, let [π]B denote the matrix representation
corresponding to a choice of basis B for V . We say that (π, V) is defined over R if
there is a basis B for V such that [π(g)]B has all entries in R for all g ∈ G. Recall that
the Frobenius–Schur indicator of χ ∈ Irr(G), denoted ε(χ), is defined to be ε(χ) = 0
if χ is not real-valued, ε(χ) = 1 if (π,V) is defined over R, and ε(χ) = −1 if χ is real-
valued but (π,V) is not defined over R. Then we have ε(χ) = 1/|G|

∑
g∈G χ(g2), and∑

χ∈Irr(G) ε(χ)χ(1) = #{g ∈ G | g2 = 1} (see [18, Ch. 4], for example).
We now discuss a useful generalization of the Frobenius–Schur indicator. Let ι be

an automorphism of G such that ι2 = 1, and we denote the action of ι on g ∈ G by ιg.
We also let ιχ and ιπ be defined by ιχ(g) = χ(ιg) and ιπ(g) = π(ιg), respectively. Given
χ ∈ Irr(G), the representation (π, V) which affords χ, and the automorphism ι of G,
define the twisted Frobenius–Schur indicator of χ, denoted ει(χ), by

ει(χ) =



1 if there is some B such that
[ιπ(g)]B = [π(g)]B for all g ∈ G,

−1 if ιχ = χ̄ but there is no B such that
[ιπ(g)]B = [π(g)]B for all g ∈ G,

0 if ιχ , χ̄.

Note that ει(χ) = ±1 for all χ ∈ Irr(G) if and only if ιg is conjugate to g−1 for every
g ∈ G. It was proved by Kawanaka and Matsuyama [21] that a formula for ει(χ) is
given by

ει(χ) =
1
|G|

∑
g∈G

χ(g ιg).

Further, by applying orthogonality relations, the following formula is obtained by
Bump and Ginzburg [5, Proposition 1]:∑

χ∈Irr(G)

ει(χ)χ(1) = #{g ∈ G | ιg = g−1}.

An immediate consequence of this formula that we will need is as follows.

Lemma 2.2. If G is a finite group with automorphism ι such that ι2 = 1, then ει(χ) = 1
for all χ ∈ Irr(G) if and only if∑

χ∈Irr(G)

χ(1) = #{g ∈ G | ιg = g−1}.

When ι = 1, we recover the classical Frobenius–Schur indicator, that is ει(χ) = ε(χ),
in which case ε(χ) = ±1 if and only if χ is real-valued, and ε(χ) = ±1 for all χ ∈ Irr(G)
if and only if G is a real group, so g is conjugate to g−1 for all g ∈ G. Further,
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Lemma 2.2 says that ε(χ) = 1 for all χ ∈ Irr(G), that is, G is totally orthogonal,
exactly when the sum of the degrees of the irreducible characters of χ is the number
of involutions in G, where we define an involution of G to be any element g ∈ G such
that g2 = 1. When ι is defined by an inner automorphism, say ιg = hgh−1 with h ∈ G,
such that h2 = z ∈ Z(G) where Z(G) is the center of G, we have an explicit relationship
between ει(χ) and ε(χ). In particular, if we let ωχ denote the central character of the
representation of G which affords π, we have [34, Lemma 2.1]

ει(χ) = ωχ(z)ε(χ). (2.1)

Now suppose H ≤G is an index-2 subgroup of G such that for some s ∈G \ H with
s2 = 1, we have G = H〈s〉 = H ∪ sH. We have the following relationship between
indicators and twisted indicators of G and H in this case.

Lemma 2.3. Suppose G is a finite group, H ≤ G, [G : H] = 2, G = H〈s〉 with s2 = 1,
and define ι on H by ιh = shs−1. Then the following statements hold.

(i) If ε(χ) = 1 for all χ ∈ Irr(G), and H is a real group, then for all ψ ∈ Irr(H), we
have ε(ψ) = 1 and ει(ψ) ≥ 0.

(ii) If ε(χ) = 1 for all χ ∈ Irr(G), and ιh is H-conjugate to h−1 for all h ∈ H, then for
all ψ ∈ Irr(H), we have ει(ψ) = 1 and ε(ψ) ≥ 0.

(iii) If G is a real group, and if ε(ψ) = 1 for all ψ ∈ Irr(H), then for all χ ∈ Irr(G) we
have ε(χ) = 1, and for all ψ ∈ Irr(H) we have ει(ψ) ≥ 0.

(iv) If G is a real group, and if ει(ψ) = 1 for all ψ ∈ Irr(H), then for all χ ∈ Irr(G) we
have ε(χ) = 1, and for all ψ ∈ Irr(H) we have ε(ψ) ≥ 0.

Proof. All of the statements essentially follow from [35, Proposition 2.1], which may
be applied as follows. Given any ψ ∈ Irr(H), the induced character ψG = χ either is
irreducible or else ψG = χ1 + χ2 where χ1, χ2 ∈ Irr(G). Then [35, Proposition 2.1] says
that in these two cases, we have

ε(χ) = ε(ψ) + ει(ψ), or ε(χ1) + ε(χ2) = ε(ψ) + ει(ψ) with ε(χ1) = ε(χ2), (2.2)

respectively.
In cases (i) and (ii), we have ε(χ) = ε(χ1) = ε(χ2) = 1. If H is a real group, then

ε(ψ) = ±1 for all ψ ∈ Irr(G), and the only possibility for (2.2) to hold is that ε(ψ) = 1
and ει(ψ) ≥ 0 for all ψ ∈ Irr(G), and (i) follows. Likewise for (ii), if ιh is conjugate to
h−1 in H for all h ∈ H, then ει(ψ) = ±1 for all ψ ∈ Irr(G), and it follows from (2.2) we
must have ει(ψ) = 1 and ε(ψ) ≥ 0 for all ψ ∈ Irr(H).

In cases (iii) and (iv), we have ε(χ) = ±1 and ε(χ1) = ε(χ2) = ±1. In (iii), since
ε(ψ) = 1 for all ψ ∈ Irr(H), we have that (2.2) holds only if ε(χ) = 1 for all χ ∈ Irr(G)
and ει(ψ) ≥ 0 for all ψ ∈ Irr(H). Similarly in (iv), since ει(ψ) = 1 for all ψ ∈ Irr(H),
the only way (2.2) can be satisfied is if ε(χ) = 1 for all χ ∈ Irr(G) (so G is totally
orthogonal) and ε(ψ) ≥ 0 for all ψ ∈ Irr(H). �

We will also need the following relationship between indicators of G and G/Z(G)
when considering projective classical groups.
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Lemma 2.4. Let G be a finite group with automorphism ι such that ι2 = 1, and let
Z = Z(G) be the center of G. Let ι also denote the automorphism of G/Z defined by
ι(gZ) = ι(g)Z. If ει(χ) = 1 for every χ ∈ Irr(G), then ει(ψ) = 1 for every ψ ∈ Irr(G/Z).

Proof. Note that ι is well defined on G/Z by ι(gZ) = ι(g)Z. Let ψ ∈ Irr(G/Z) and define
the class function χ on G by χ(g) = ψ(gZ). It follows that χ ∈ Irr(G), since

〈χ, χ〉=
1
|G|

∑
g∈G

|χ(g)|2 =
1
|G|

∑
g∈G

|ψ(gZ)|2

=
|Z|
|G|

∑
gZ∈G/Z

|ψ(gZ)|2 = 〈ψ, ψ〉 = 1.

By assumption we have ει(χ) = 1, and we can compute ει(ψ) as follows:

ει(ψ) =
|Z|
|G|

∑
gZ∈G/Z

ψ(g ιgZ) =
|Z|
|G|

∑
gZ∈G/Z

χ(g ιg)

=
1
|G|

∑
g∈G

χ(g ιg) = ει(χ) = 1,

as claimed. �

3. Real simple groups

Tiep and Zalesski classified all finite quasisimple groups (and so all finite simple
groups) which are real [31]. The following theorem, stated in [33, Theorems 2 and 3],
solves the problem of classifying all finite simple groups which are strongly real, and it
turns out that a finite simple group is real if and only if it is strongly real. This theorem
follows from the work of many authors [2, 8, 10, 13, 15, 23, 24, 29, 31, 33, 38].

Theorem 3.1. Let G be a finite simple group. Then G is real if and only if G is strongly
real, and this occurs if and only if G is isomorphic to one of the following groups:

(1) one of the Janko sporadic groups J1 or J2;
(2) one of the alternating groups A10 or A14;
(3) the Steinberg triality group 3D4(q);
(4) Ω(2n + 1, q) for q ≡ 1 mod 4 and n ≥ 3;
(5) Ω(9, q) for q ≡ 3 mod 4;
(6) PΩ−(4m, q) for m ≥ 2;
(7) PΩ+(4m, q) for q . 3 mod 4 and m ≥ 3;
(8) PΩ+(8, q);
(9) PSp(2n, q) for q . 3 mod 4 and n ≥ 1.

As mentioned in the introduction, it has been conjectured that a finite simple group
is strongly real if and only if it is totally orthogonal. We now prove this statement for
all but one family of finite simple groups, namely PΩ±(4m, q) = Ω±(4m, q) for q even.
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Theorem 3.2. Let G be a finite simple group other than one of the form Ω±(4m, q) with
q even. Then G is strongly real if and only if G is totally orthogonal.

Proof. First, if G is totally orthogonal, then in particular G is real, and from
Theorem 3.1 we know G is strongly real.

Conversely, suppose that G is strongly real, so listed in Theorem 3.1, but is not
Ω±(4m, q) with q even. We go through each type of group in the classification, and
give references or show that it is totally orthogonal.

If G is one of the Janko groups J1 or J2, then the fact that G is totally orthogonal
follows from the Atlas of Finite Groups [7, pages 36, 42–43].

If G is A10 or A14, then G is an index-2 subgroup of S10 or S14. For all n, Sn

is totally orthogonal (all representations of Sn are defined over Q by [19, Theorem
2.1.12]). Since G is real, it follows from Lemma 2.3(i) that G is totally orthogonal.

If G = 3D4(q), then for q odd, G is totally orthogonal by Barry [3]. If q is even, then
G is totally orthogonal by Ohmori [28].

Suppose either G = Ω(2n + 1, q) with n ≥ 3, q ≡ 1 mod 4 or G = Ω(9, q) with
q ≡ 3 mod 4. It is a result of Gow [16, Theorem 2] that SO(2n + 1, q) is totally
orthogonal when q is odd. Since G is both a real group and an index-2 subgroup
in some SO(2n + 1, q), it follows from Lemma 2.3(i) that G is totally orthogonal.

Now consider the case where either G = PΩ+(8,q) with q odd, G = PΩ−(4m,q) with
q odd and m ≥ 2, or G = PΩ+(4m, q) with q ≡ 1 mod 4 and m ≥ 3. Gow [16, Theorem
2] proved that for q odd and m ≥ 1 the groups SO±(4m, q) are all totally orthogonal,
and so by Lemma 2.4 the groups PSO±(4m, q) are totally orthogonal. Since in each
case G is an index-2 subgroup of some PSO±(4m, q), and G is a real group, it follows
from Lemma 2.3(i) that G is totally orthogonal.

The case where G = PSp(2n, q) = Sp(2n, q) with q even is proved in [36,
Theorem 4.2].

Finally, we consider the case where G = PSp(2n, q) with q ≡ 1 mod 4 and n ≥ 1.
Gow proved [16, Theorem 1] that if χ is an irreducible character of Sp(2n, q) with
q ≡ 1 mod 4, then ε(χ) = ωχ(−I), where ωχ is the central character of the
representation with character χ. Let α ∈ Fq such that α2 = −1. If we define Sp(2n, q)
via the alternating form corresponding to

[
0 −In
In 0

]
(which may always be done), then

h =
[
αIn 0
0 −αIn

]
∈ Sp(2n, q). Then define ι to be the order-2 inner automorphism of

Sp(2n, q) defined by conjugation by h. Since h2 = −I, then by (2.1) we have ει(χ) =

ωχ(−I)ε(χ) for any irreducible character χ of Sp(2n, q). From the result of Gow, for
q ≡ 1 mod 4 it follows that ει(χ) = 1 for every irreducible character χ of Sp(2n, q). By
Lemma 2.4, we have that ει(ψ) = 1 for any irreducible character ψ of G, where ι is
the induced inner automorphism defined by hZ in G. In this case, (hZ)2 = −IZ = Z
in G, and so again by (2.1) we have 1 = ει(ψ) = ωψ(Z)ε(ψ) = ε(ψ) for any irreducible
character ψ of G. Thus G is totally orthogonal. �
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4. Numbers of involutions

In this section we count the number of involutions in various subgroups and cosets
in the finite orthogonal groups. In general, if G is a group (or some subset of a group),
then we will write i(G) for the number of involutions in G.

4.1. Groups over fields of odd characteristic. We first consider the case where q is
odd. Below we recall the number of involutions in the full orthogonal group O±(n, q),
which is given in [11, Lemma 6.1].

Proposition 4.1. Let q be odd.

(1) The number of involutions in O+(2n, q) is equal to

i(O+(2n, q)) =

2n∑
k=0

|O+(2n, q)|
|O+(k, q)||O+(2n − k, q)|

+

2n−1∑
k=1

|O+(2n, q)|
|O−(k, q)||O−(2n − k, q)|

.

(2) The number of involutions in O−(2n, q) is equal to

i(O−(2n, q)) =

2n−1∑
k=0

|O−(2n, q)|
|O+(k, q)||O−(2n − k, q)|

+

2n∑
k=1

|O−(2n, q)|
|O−(k, q)||O+(2n − k, q)|

.

(3) The number of involutions in O(2n + 1, q) is equal to

i(O(2n + 1, q)) =

2n+1∑
k=0

|O(2n + 1, q)|
|O+(k, q)||O+(2n + 1 − k, q)|

+

2n∑
k=1

|O(2n + 1, q)|
|O−(k, q)||O−(2n + 1 − k, q)|

.

The quantities in Proposition 4.1 are obtained by noting that an involution in
O±(N, q) has only +1 or −1 as eigenvalues. If we fix the −1 eigenspace to have
dimension k and so the +1 eigenspace has dimension N − k, there are two conjugacy
classes of involutions with this property, and their centralizers are products of
smaller orthogonal groups whose orders are given in the denominators of the above
expressions. The type of orthogonal groups making up the direct product of their
centralizer depends on the Witt type obtained when restricting the quadratic form
to the eigenspaces. Only slight modifications to this reasoning are needed to obtain
expressions for other required involution counts.
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Proposition 4.2. Let q be odd.

(1) The number of involutions in SO+(2n, q) is equal to

i(SO+(2n, q)) =

n∑
R=0

|O+(2n, q)|
|O+(2R, q)||O+(2n − 2R, q)|

+

n−1∑
R=1

|O+(2n, q)|
|O−(2R, q)||O−(2n − 2R, q)|

.

(2) The number of involutions in SO−(2n, q) is equal to

i(SO−(2n, q)) =

n−1∑
R=0

|O−(2n, q)|
|O+(2R, q)||O−(2n − 2R, q)|

+

n∑
R=1

|O−(2n, q)|
|O−(2R, q)||O+(2n − 2R, q)|

= 2
n−1∑
R=0

|O−(2n, q)|
|O+(2R, q)||O−(2n − 2R, q)|

.

(3) The number of involutions in SO(2n + 1, q) is equal to

i(SO(2n + 1, q)) =

n∑
R=0

|O(2n + 1, q)|
|O+(2R, q)||O(2n + 1 − 2R, q)|

+

n∑
R=1

|O(2n + 1, q)|
|O−(2R, q)||O(2n + 1 − 2R, q)|

=
1
2

i(O(2n + 1, q)).

Proof. In the expressions given in Proposition 4.1, the index k corresponds to the
dimension of the −1 eigenspace of the involution. The involution is in SO±(N,q) if and
only if k is even, and so we let k = 2R and take only these relevant terms from the sums
in Proposition 4.1. In case (2), the two sums are the same after re-indexing. In case
(3), the isomorphism O(2n + 1, q) � SO(2n + 1, q) × {±1} implies that, in particular,
i(SO(2n + 1, q)) = 1

2 i(O(2n + 1, q)). �

We also consider the number of involutions with determinant −1 in the orthogonal
group of even dimension.

Proposition 4.3. Let q be odd. The number of involutions in O±(2n, q) \ SO±(2n, q) is
equal to

i(O±(2n, q) \ SO±(2n, q)) = 2
n−1∑
R=0

|O±(2n, q)|
|O(2R + 1, q)||O(2n − 2R − 1, q)|

.
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Proof. This expression is obtained by considering when k = 2R + 1 is odd in the
sums in Proposition 4.1. Since O+(N, q) � O−(N, q) when N is odd, the orders in
the denominators of the two sums obtained are the same, and so the terms in each
resulting sum are the same. �

The following statement is needed to count involutions in the groups Ω±(n, q)
when q is odd, and is a special case of [6, Proposition 16.30] (noting involutions are
semisimple elements when q is odd).

Lemma 4.4. Let q be odd, and let C be a class of involutions in SO±(N, q). Let d be
the dimension of the −1 eigenspace of C (where d must be even). If Q is the quadratic
form corresponding to SO±(N, q), then let s−1 be the Witt type of the form Q restricted
to the −1 eigenspace of an involution in C. Define

v− =


d(q − 1)

4
if s−1 = 0,

1 +
d(q − 1)

4
if s−1 = w.

Then C lies in Ω±(N, q) if and only if v− is an even integer, and C defines a unique
class of involutions in Ω±(N, q) in this case.

We are now equipped to count involutions in the groups Ω±(n, q) when q is odd.

Proposition 4.5. Let q ≡ 1 mod 4.

(1) The number of involutions in Ω+(2n, q) is equal to

i(Ω+(2n, q)) =

n∑
R=0

|O+(2n, q)|
|O+(2R, q)||O+(2n − 2R, q)|

.

(2) The number of involutions in Ω−(2n, q) is equal to

i(Ω−(2n, q)) =

n−1∑
R=0

|O−(2n, q)|
|O+(2R, q)||O−(2n − 2R, q)|

.

(3) The number of involutions in Ω(2n + 1, q) is equal to

i(Ω(2n + 1, q)) =

n∑
R=0

|O(2n + 1, q)|
|O+(2R, q)||O(2n + 1 − 2R, q)|

.

Proof. Applying Lemma 4.4, let V−1 be the −1 eigenspace of some involution, where
dim(V−1) = d = 2R. Since q ≡ 1 mod 4 and d is even, v− is always even if s−1 = 0
and always odd if s−1 = w. Hence an involution lies in Ω±(n, q) if and only if the
quadratic form restricted to V−1 has Witt type 0, corresponding to the orthogonal group
O+(2R, q). Taking the corresponding terms in the summations of Proposition 4.1, we
obtain the expressions as claimed. �
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Proposition 4.6. Let q ≡ 3 mod 4.

(1) The number of involutions in Ω+(2n, q) is equal to

i(Ω+(2n, q)) =

n∑
R=0

R even

|O+(2n, q)|
|O+(2R, q)||O+(2n − 2R, q)|

+

n−1∑
R=1

R odd

|O+(2n, q)|
|O−(2R, q)||O−(2n − 2R, q)|

.

(2) The number of involutions in Ω−(2n, q) is equal to

i(Ω−(2n, q)) =

n−1∑
R=0

R even

|O−(2n, q)|
|O+(2R, q)||O−(2n − 2R, q)|

+

n∑
R=1

R odd

|O−(2n, q)|
|O−(2R, q)||O+(2n − 2R, q)|

.

(3) The number of involutions in Ω(2n + 1, q) is equal to

i(Ω(2n + 1, q)) =

n∑
R=0

R even

|O(2n + 1, q)|
|O+(2R, q)||O(2n + 1 − 2R, q)|

+

n∑
R=1

R odd

|O(2n + 1, q)|
|O−(2R, q)||O(2n + 1 − 2R, q)|

.

Proof. We use the same notation and idea as in the proof of Proposition 4.5, and
apply Lemma 4.4. Since q ≡ 3 mod 4 and d = 2R, v− is even either when R is even
and s−1 = 0, or when R is odd and s−1 = w. These situations apply to the terms
from Proposition 4.1 when either R is even and the first factor in the denominator
is |O+(2R, q)| (corresponding to s−1 = 0), or when R is odd and the first factor in the
denominator is |O−(2R, q)| (when s−1 = w), respectively. The result follows. �

4.2. Groups over fields of characteristic 2. We now deal with sets of involutions
when q is even. The next result is [11, Theorems 5.6].

Proposition 4.7. Let q be even, and let

A±k = qk(k−1)/2+k(2n−2k)|Sp(k, q)| |O±(2n − 2k, q)|,

Bk = 2qk(k+1)/2+(k−1)(2n−2k)−1qk−1|Sp(k − 2, q)| |Sp(2n − 2k, q)|,

Ck = 2qk(k−1)/2+(k−1)(2n−2k)|Sp(k − 1, q)| |Sp(2n − 2k, q)|.

(1) The number of involutions in O+(2n, q) is equal to

i(O+(2n, q)) =

n∑
k=0

k even

|O+(2n, q)|
A+

k
+

n∑
k=2

k even

|O+(2n, q)|
Bk

+

n∑
k=1

k odd

|O+(2n, q)|
Ck

.
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(2) The number of involutions in O−(2n, q) is equal to

i(O−(2n, q)) =

n−1∑
k=0

k even

|O−(2n, q)|
A−k

+

n∑
k=2

k even

|O−(2n, q)|
Bk

+

n∑
k=1

k odd

|O−(2n, q)|
Ck

.

Note that in the Ak sum in part (2), k only ranges from 0 to n − 1, and that the values
of Bk and Ck are the same in parts (1) and (2).

For the next result, we use Lemma 2.1 and the ideas used to prove Proposition 4.7.
We note that these results can also be concluded from [9, Section 8].

Proposition 4.8. Let q be even, and let A±k , Bk, and Ck be as in Proposition 4.7.

(1) The number of involutions in Ω+(2n, q) is equal to

i(Ω+(2n, q)) =

n∑
k=0

k even

|O+(2n, q)|
A+

k
+

n∑
k=2

k even

|O+(2n, q)|
Bk

.

(2) The number of involutions in Ω−(2n, q) is equal to

i(Ω−(2n, q)) =

n−1∑
k=0

k even

|O−(2n, q)|
A−k

+

n∑
k=2

k even

|O−(2n, q)|
Bk

.

(3) The number of involutions in O±(2n, q) \Ω±(2n, q) is equal to

i(O±(2n, q) \Ω±(2n, q)) =

n∑
k=1

k odd

|O±(2n, q)|
Ck

.

Proof. In the proof of Proposition 4.7 given in [11, Theorem 5.6], the authors prove
that any involution in O±(2n, q) with q even is conjugate to an element g, given in
block form as

g =

 I 0 h
0 I 0
0 0 I

 .
If we define k = rank(h), then the expressions in Proposition 4.7 count the involutions
by considering the possible values for k. By Lemma 2.1, the involution g is in Ω±(2n,q)
if and only if rank(1 + g) = rank(h) is even. So, to count the involutions in Ω±(2n, q),
we only include the sums with k even from Proposition 4.7, which gives (1) and (2).
The expression in (3) is the remaining sum. �

5. Results on indicators

5.1. SO±(2n, q) with q odd. It is a result of Gow [16] that for any n ≥ 1 and q odd,
the group O±(n,q) is totally orthogonal, as is the group SO±(4m,q) for q odd and m ≥ 1.
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We expand these results to certain twisted indicators for the groups SO±(4m + 2, q)
with q odd. We first need the following result, which essentially follows from the
results of Wonenburger [38] along with the description of conjugacy classes in finite
orthogonal groups due to Wall [37]. A slightly stronger version of the following result
is proved in [30, Lemma 4.7], and statement (i) is proved by Gal’t [13, Theorem 1], but
the statements in the proposition below are also implied by the more general results of
Knüppel and Thomssen [23].

Proposition 5.1. Let q be odd, n ≥ 1, G = O±(2n, q), and H = SO±(2n, q).

(i) Let n = 2m, m ≥ 1, so H = SO±(4m, q). Then H is a strongly real group.
(ii) Let n = 2m + 1, m ≥ 0, so G = O±(4m + 2, q) and H = SO±(4m + 2, q). For any

h ∈ H, there exists an element t ∈ G \ H such that tht−1 = h−1 and t2 = 1.

We apply Proposition 5.1 to prove the following result. The result that SO±(4m, q)
is totally orthogonal, already proved by Gow, is included to show how it fits into the
general framework.

Theorem 5.2. Let q be odd, n ≥ 1, G = O±(2n, q) and H = SO±(2n, q). Fix an
involution s ∈ G \ H, and define ι on H by ιh = shs−1.

(i) Let n = 2m so H = SO±(4m, q). Then ε(ψ) = 1 and ει(ψ) ≥ 0 for all ψ ∈ Irr(H).
(ii) Let n = 2m + 1 so H = SO±(4m + 2, q). Then ει(ψ) = 1 and ε(ψ) ≥ 0 for all

ψ ∈ Irr(H). In particular, the character degree sum
∑
ψ∈Irr(H) ψ(1) is given by the

expression in Proposition 4.3.

Proof. As already mentioned, if q is odd, n ≥ 1, and G = O±(2n,q), it is a result of Gow
[16, Theorem 1] that ε(χ) = 1 for all χ ∈ Irr(G). In case (i), since H is a real group
(in fact, strongly real) by Proposition 5.1(i), and G = H〈s〉, Lemma 2.3(i) implies
statement (i).

To prove statement (ii), it suffices to prove that for all h ∈ H, ιh is H-conjugate to
h−1, by Lemma 2.3(ii). Given h ∈ H, we apply Proposition 5.1 to ιh ∈ H, so there
is some t ∈ G \ H such that t2 = 1 and t(ιh)t = ιh−1 = sh−1s. Conjugating by s on
both sides yields (st)ιh(st)−1 = h−1, and since s, t ∈ G \ H, we have st ∈ H and ιh is
H-conjugate to h−1. By Lemma 2.2, we have∑

ψ∈Irr(H)

ψ(1) = #{h ∈ H | shs−1 = h−1}.

Note that since s ∈G \ H, we have sh ∈G \ H, and shs−1 = h−1 if and only if (sh)2 = 1.
That is, the character degree sum is equal to the number of involutions in G \ H, which
is given by Proposition 4.3. �

5.2. O±(2n, q) and Ω±(2n, q) with q even. We now consider the groups Ω±(4m, q)
with q even, which we suspect to be totally orthogonal. It is further suspected that
the groups O±(2n, q) with q even are totally orthogonal, since they are known to be
strongly real groups [10, 15], and when q is odd all of the groups O±(N, q) are known
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to be totally orthogonal [16]. Next we relate the total orthogonality of the groups
O±(2n, q) with q even to indicators of the groups Ω±(2n, q). Note the resemblance to
the case where q is odd given in Theorem 5.2.

Lemma 5.3. Let q be even, n ≥ 1, G = O±(2n, q) and H = Ω±(2n, q). Fix an involution
s ∈ G \ H, and define ι on H by ιh = shs−1.

(i) Let n = 2m so G = O±(4m, q) and H = Ω±(4m, q). If ε(ψ) = 1 for all ψ ∈ Irr(H),
then ε(χ) = 1 for all χ ∈ Irr(G) and ει(ψ) ≥ 0 for all ψ ∈ Irr(H).

(ii) Let n = 2m + 1 so G = O±(4m + 2, q) and H = Ω±(4m + 2, q). If ει(ψ) = 1 for all
ψ ∈ Irr(H), then ε(χ) = 1 for all χ ∈ Irr(G) and ε(ψ) ≥ 0 for all ψ ∈ Irr(H).

Proof. Since [G : H] = 2 and G = H〈s〉, we may apply Lemma 2.3. It is proved by
Gow [15] and by Ellers and Nolte [10] that G = O±(2n,q) is a strongly real group when
q is even, and, in particular, G is a real group. In the case where n = 2m, statement (i)
follows from Lemma 2.3(iii), and in the case where n = 2m + 1, statement (ii) follows
from Lemma 2.3(iv). �

Using direct computation, we get the following results for Ω±(2n, q) and O±(2n, q)
with n small.

Theorem 5.4. Let q be even. Fix an involution s ∈ O±(2n, q) \ Ω±(2n, q), and define ι
on Ω±(2n, q) by ιh = shs−1.

(i) If n = 2m, and H = Ω±(4m, q) with m ≤ 3, or H = Ω+(16, q), then ε(ψ) = 1 (and
ει(ψ) ≥ 0) for all ψ ∈ Irr(H), so H is totally orthogonal and Theorem 3.2 holds
for these groups when they are simple.

(ii) If n = 2m + 1, and H = Ω±(4m + 2, q) with m ≤ 3, then ει(ψ) = 1 (and ε(ψ) ≥ 0)
for all ψ ∈ Irr(H).

(iii) If G = O±(2n, q) with n ≤ 7, or G = O+(16, q), then ε(χ) = 1 for all χ ∈ Irr(G), so
G is totally orthogonal.

Proof. In (i), by Lemma 2.2 we have ε(ψ) = 1 for all ψ ∈ Irr(H) if and only if the
sum of the character degrees of H is the number of involutions of H = Ω±(4m, q), an
expression for which is given in Proposition 4.8(1) and (2). In (ii), also by Lemma 2.2,
we have ει(ψ) = 1 for all ψ ∈ Irr(H) if and only if the character degree sum of H is
the number of h ∈ H such that h ιh = 1. From the definition of ι, we have h ιh = (hs)2,
where hs ∈ O±(4m + 2,q) \Ω±(4m + 2,q). Thus the number of h ∈ H such that h ιh = 1
is the number of involutions in O±(4m + 2, q) \Ω±(4m + 2, q), an expression for which
is given in Proposition 4.8(3).

We again apply the data of Lübeck [25], who has computed all of the character
degrees of Ω±(2n, q) when q is even and 4 ≤ n ≤ 7, and for Ω+(16, q) when q is even,
which are the groups Dn(q)SO (for Ω+(2n, q)), and 2Dn(q)SO (for Ω−(2n, q)) for q ≡ 0
mod 2 in Lübeck’s data. When 1 ≤ n ≤ 3, we apply small-rank group isomorphisms
and known results.

When n = 1, we have by [22, Proposition 2.9.1(iii)] that O±(2, q) is isomorphic to
the dihedral group of order 2(q ∓ 1), and Ω±(2, q) is isomorphic to the cyclic subgroup
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of rotations of order q ∓ 1. The number of involutions in O±(2, q) \ Ω±(2, q) is thus
q ∓ 1, corresponding to the reflections of the dihedral group, which is also the sum
of the degrees of the cyclic group of order q ∓ 1. When n = 2, we have by [22,
Proposition 2.9.1(iv) and (v)] that Ω+(4, q) � SL(2, q) × SL(2, q) (noting that q is even)
and Ω−(4,q) � SL(2,q2). It is known that SL(2,q) is totally orthogonal when q is even,
for example by [15, Lemma 7] and [32, Lemma 6.4], and so the statement follows for
Ω−(4, q). The property of being totally orthogonal is preserved under taking direct
products (see [26, Lemma 2.2], for example), and it follows that Ω+(4, q) is also
totally orthogonal. When n = 3, we have Ω+(6, q) � SL4(q) and Ω−(6, q) � SU4(q),
from [22, Proposition 2.9(vii)], noting that Z(SL4(q)) = Z(SU4(q)) = 1 when q is even.
In this case, we may compute the number of involutions in O±(6,q) \Ω±(6,q) given by
Proposition 4.8(3) and match this to the character degree sums of SL4(q) and SU4(q),
respectively, where these character degrees are given by Lübeck’s data for the groups
A3(q)sc and 2A3(q)sc for q even.

For 4 ≤ n ≤ 8, we compute the relevant number of involutions given in
Proposition 4.8, and match this with the character degree sums obtained from Lübeck’s
data. The polynomial in q we obtain in each case for 2 ≤ n ≤ 8 is given in the table
of the Appendix. In particular, we get the statements in (i) and (ii) that ε(ψ) = 1
or ει(ψ) = 1 for all ψ ∈ Irr(H). The second claims in (i) and (ii) that ει(ψ) ≥ 0 or
ε(ψ) ≥ 0 for all ψ ∈ Irr(H), and the statement in (iii) that the groups O±(2n, q) are
totally orthogonal, both follow from Lemma 5.3. �

6. Generating functions

In this section we give generating functions for the numbers of involutions found in
Section 4. We use the following standard notation:

(x; y)n =

n∏
i=1

(1 − xyi−1), (x; y)∞ =
∏
i≥1

(1 − xyi−1) if |y| < 1.

Then we can write

|O(2n + 1, q)| = 2q2n2+n(1/q2; 1/q2)n, for q odd,

|Sp(2n, q)| = q2n2+n(1/q2; 1/q2)n, for q even,

|O±(2n, q)| =
2q2n2

qn ± 1
(1/q2; 1/q2)n, for any q.

From the above expression for |O−(2n, q)|, and for the purposes of convenience in
power series coefficients, we will adopt the convention that 1/|O−(0, q)| = 0.

6.1. Groups over fields of odd characteristic. We begin with finding generating
functions for the number of involutions in the groups SO±(2n, q) for q odd. These
essentially follow from computations made in [11]. We note that in this section and in
Section 6.2, all radii of convergence are obtained by applying the quoted computations
from [11], with the exception of Theorem 6.5.
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Theorem 6.1. For q odd and |u| < 1/q,

(1) ∑
n≥0

i(SO±(2n, q))
|O±(2n, q)|

qn2
un

=
1
2

[∏
i≥1(1 + u/q2(i−1))2∏
i≥1(1 − u2/q2(i−2))

±

∏
i≥1(1 + u/q2i−1)2∏

i≥1(1 − u2/q2(i−1))

]
,

(2) ∑
n≥0

i(SO(2n + 1, q))
|O(2n + 1, q)|

qn2
un =

1
2

1
1 − u

∏
i≥1(1 + u/q2i)2∏
i≥1(1 − u2/q2i)

.

Proof. In [11, Case 1, Proof of Theorem 2.15], it is proved that

S +
1 :=

∑
n≥0

unqn2
n∑

R=0

1
|O+(2R, q)||O+(2n − 2R, q)|

=
1
4

[ (−u/q; 1/q2)2
∞

(u2; 1/q2)∞
+ 2

(−u/q; 1/q2)∞(−u; 1/q2)∞
(qu2; 1/q2)∞

+
(−u; 1/q2)2

∞

(q2u2; 1/q2)∞

]
,

and in [11, Case 3, Proof of Theorem 2.15] it is proved that

S +
3 :=

∑
n≥0

unqn2
n−1∑
R=1

1
|O−(2R, q)||O−(2n − 2R, q)|

=
1
4

[ (−u/q; 1/q2)2
∞

(u2; 1/q2)∞
− 2

(−u/q; 1/q2)∞(−u; 1/q2)∞
(qu2; 1/q2)∞

+
(−u; 1/q2)2

∞

(q2u2; 1/q2)∞

]
.

By Proposition 4.2(1) and the above, we have

∑
n≥0

i(SO+(2n, q))
|O+(2n, q)|

qn2
un = S +

1 + S +
3 =

1
2

[ (−u; 1/q2)2
∞

(q2u2; 1/q2)∞
+

(−u/q; 1/q2)2
∞

(u2; 1/q2)∞

]
=

1
2

[∏
i≥1(1 + u/q2(i−1))2∏
i≥1(1 − u2/q2(i−2))

+

∏
i≥1(1 + u/q2i−1)2∏

i≥1(1 − u2/q2(i−1))

]
.

In [11, Case 1, Proof of Theorem 2.16], it is proved that

S −1 :=
∑
n≥0

unqn2
n−1∑
R=0

1
|O+(2R, q)||O−(2n − 2R, q)|

=
1
4

[ (−u; 1/q2)2
∞

(q2u2; 1/q2)∞
−

(−u/q; 1/q2)2
∞

(u2; 1/q2)∞

]
.
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From this and Proposition 4.2(2), we have∑
n≥0

i(SO−(2n, q))
|O−(2n, q)|

qn2
un = 2S −1 =

1
2

[ (−u; 1/q2)2
∞

(q2u2; 1/q2)∞
−

(−u/q; 1/q2)2
∞

(u2; 1/q2)∞

]
=

1
2

[∏
i≥1(1 + u/q2(i−1))2∏
i≥1(1 − u2/q2(i−2))

−

∏
i≥1(1 + u/q2i−1)2∏

i≥1(1 − u2/q2(i−1))

]
,

which gives the result in (1).
For (2), it follows from [11, Theorem 2.17] and Proposition 4.1(3) that∑

n≥0

i(O(2n + 1, q))
|O(2n + 1, q)|

qn2
un =

1
1 − u

∏
i≥1(1 + u/q2i)2∏
i≥1(1 − u2/q2i)

.

Since i(SO(2n + 1, q)) = 1
2 i(O(2n + 1, q)) from Proposition 4.2(3), the generating

function in (2) follows. �

From the result of Gow stated in Theorem 5.2(1) that SO±(4m, q) is totally
orthogonal when q is odd, the character degree sum of SO±(4m, q) is |O±(4m, q)|/q4m2

times the coefficient of u2m of the generating function in Theorem 6.1(1). By
Theorem 5.2(2), the character degree sum of the groups SO±(4m + 2, q) is |O±(4m +

2, q)|/q(2m+1)2
times the coefficient of u2m+1 in the generating function given in the next

theorem.

Theorem 6.2. For q odd and |u| < 1/q, we have the generating function∑
n≥0

i(O±(2n, q) \ SO±(2n, q))
|O±(2n, q)|

qn2
=

uq
2

∏
i≥1(1 + u/q2(i−1))2∏
i≥1(1 − u2/q2(i−2))

.

Proof. From [11, Theorems 2.15 and 2.16], we have for q odd and |u| < 1/q,∑
n≥0

i(O±(2n, q))
|O±(2n, q)|

qn2
un =

1
2(1 − uq)

∏
i≥1(1 + u/q2(i−1))2∏
i≥1(1 − u2/q2(i−1))

±
1
2

∏
i≥1(1 + u/q2i−1)2∏

i≥1(1 − u2/q2(i−1))
.

The result is obtained by taking the difference of this and the generating function in
Theorem 6.1(1). �

Generating functions for the number of involutions in Ω±(n, q) with q ≡ 1 mod 4
also follow quickly from calculations in [11], because of the convenient formula for
the number of involutions in this case, given in Proposition 4.5.

Theorem 6.3. For q ≡ 1 mod 4 and |u| < 1/q, we have the generating functions

(1) ∑
n≥0

i(Ω+(2n, q))
|O+(2n, q)|

qn2
un =

1
4

[∏
i≥1(1 + u/q2(i−1))2∏
i≥1(1 − u2/q2(i−2))

+
2
∏

i≥1(1 + u/qi−1)∏
i≥1(1 − u2/q2i−3)

+

∏
i≥1(1 + u/q2i−1)2∏

i≥1(1 − u2/q2(i−1))

]
,
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(2) ∑
n≥0

i(Ω−(2n, q))
|O−(2n, q)|

qn2
un

=
1
4

[∏
i≥1(1 + u/q2(i−1))2∏
i≥1(1 − u2/q2(i−2))

−

∏
i≥1(1 + u/q2i−1)2∏

i≥1(1 − u2/q2(i−1))

]
,

(3) ∑
n≥0

i(Ω(2n + 1, q))
|O(2n + 1, q)|

qn2
un

=
1
4

[ (1 + u)
∏

i≥1(1 + u/q2i)2∏
i≥1(1 − u2/q2(i−1))

+

∏
i≥1(1 + u/qi)∏

i≥1(1 − u2/q2i−1)

]
.

Proof. For (1), as in the proof of Theorem 6.1, it was proved in [11] that∑
n≥0

unqn2
n∑

R=0

1
|O+(2R, q)||O+(2n − 2R, q)|

=
1
4

[ (−u/q; 1/q2)2
∞

(u2; 1/q2)∞
+ 2

(−u/q; 1/q2)∞(−u; 1/q2)∞
(qu2; 1/q2)∞

+
(−u; 1/q2)2

∞

(q2u2; 1/q2)∞

]
.

The result follows by simplifying this expression, noting that

(−u/q; 1/q2)∞(−u; 1/q2)∞ =
∏
i≥1

(1 + u/q2i−1)
∏
i≥1

(1 + u/q2i−2)

=
∏
i≥1

(1 + u/qi−1),

together with Proposition 4.5(1).
The generating function in (2) follows directly from Proposition 4.5(2) and

Theorem 6.1(1), since i(Ω−(2n, q)) = 1
2 i(SO−(2n, q)) in the case where q ≡ 1 mod 4.

For (3), we use the identity proved in [11, Case 1, Proof of Theorem 2.17] that∑
n≥0

unqn2
[ n∑

R=0

1
|O+(2R, q)||O(2n + 1 − 2R, q)|

]
=

1
4

[ (−u/q2; 1/q2)∞(−u; 1/q2)∞
(u2; 1/q2)∞

+
(−u/q2; 1/q2)∞(−u/q; 1/q2)∞

(u2/q; 1/q2)∞

]
=

1
4

[∏
i≥1(1 + u/q2i)

∏
i≥1(1 + u/q2(i−1))∏

i≥1(1 − u2/q2(i−1))

+

∏
i≥1(1 + u/q2i)

∏
i≥1(1 + u/q2i−1)∏

i≥1(1 − u2/q2i−1)

]
=

1
4

[ (1 + u)
∏

i≥1(1 + u/q2i)2∏
i≥1(1 − u2/q2(i−1))

+

∏
i≥1(1 + u/qi)∏

i≥1(1 − u2/q2i−1)

]
.

The result follows by Proposition 4.5(3). �
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The last case we deal with in this section, which is for Ω±(n, q) with q ≡ 3 mod 4,
does not immediately follow from calculations made in [11]. We apply the q-binomial
theorem and a slight variant, in the following form. A proof of the first statement is in
[1, page 17], and the second statement is [11, Corollary 2.3].

Lemma 6.4. If |y| < 1, then

(1)
∑
n≥0

(A; y)n

(y; y)n
xn =

(Ax; y)∞
(x; y)∞

, if |x| < 1, and

(2)
∑
n≥0

y(n
2)

(y; y)n
xn =

1
(−x; y)∞

.

We may now compute the following generating function.

Theorem 6.5. Let q ≡ 3 mod 4.

(1) For |u| < 1/q, we have the generating function∑
n≥0

i(Ω±(2n, q))
|O±(2n, q)|

qn2
un

=
1
4

[∏
i≥1(1 + u/q2(i−1))2∏
i≥1(1 − u2/q2(i−2))

+

∏
i≥1(1 + (−1)i−1u/qi−1)∏

i≥1(1 + u2/q2i−3)

±

∏
i≥1(1 − (−1)i−1u/qi−1)∏

i≥1(1 + u2/q2i−3)
±

∏
i≥1(1 + u/q2i−1)2∏

i≥1(1 − u2/q2(i−1))

]
.

(2) For |u| < 1, we have the generating function∑
n≥0

i(Ω(2n + 1, q))
|O(2n + 1, q)|

qn2
un

=
1
4

[ (1 + u)
∏

i≥1(1 + u/q2i)2∏
i≥1(1 − u2/q2(i−1))

+

∏
i≥1(1 + (−1)iu/qi)∏
i≥1(1 + u2/q2i−1)

]
.

Proof. For (1), by Proposition 4.6(1) and (2), we must find generating functions for

∑
n≥0

unqn2
[ n∑

R=0
R even

1
|O+(2R, q)||O+(2n − 2R, q)|

+

n−1∑
R=1

R odd

1
|O−(2R, q)||O−(2n − 2R, q)|

]

and

∑
n≥0

unqn2
[ n−1∑

R=0
R even

1
|O+(2R, q)||O−(2n − 2R, q)|

+

n∑
R=1

R odd

1
|O−(2R, q)||O+(2n − 2R, q)|

]
.
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Consider first the sum

S1 :=
∑
n≥0

unqn2
n∑

R=0
R even

1
|O+(2R, q)||O+(2n − 2R, q)|

=
∑
n≥0

unqn2
bn/2c∑
R=0

1
|O+(4R, q)||O+(2n − 4R, q)|

=
∑
n≥0

unqn2
bn/2c∑
R=0

(q2R + 1)(qn−2R + 1)
4q8R2 (1/q2; 1/q2)2R q2(n−2R)2 (1/q2; 1/q2)n−2R

=
∑
R≥0

∑
n≥0

unqn2 (q2R + 1)(qn−2R + 1)
4q8R2 (1/q2; 1/q2)2R q2(n−2R)2 (1/q2; 1/q2)n−2R

.

Now replace n by n + 2R to obtain

S1 =
∑
R≥0

∑
n≥0

un+2Rq(n+2R)2 (q2R + 1)(qn + 1)
4q8R2 (1/q2; 1/q2)2R q2n2 (1/q2; 1/q2)n

=
∑
R≥0

∑
n≥0

un+2R q4nR(qn+2R + qn + q2R + 1)
4q4R2 (1/q2; 1/q2)2R qn2 (1/q2; 1/q2)n

=
∑
R≥0

u2R

4q4R2 (1/q2; 1/q2)2R

·

(∑
n≥0

q2R(uq4R)n + (uq4R)n + q2R(uq4R−1)n + (uq4R−1)n

q2(n
2)(1/q2; 1/q2)n

)
.

Now apply Lemma 6.4(2) with y = 1/q2 to each of the terms in the summation over n.
This gives

S1 =
∑
R≥0

u2R (−uq4R; 1/q2)∞(q2R + 1) + (−uq4R−1; 1/q2)∞(q2R + 1)
4q4R2 (1/q2; 1/q2)2R

.

We apply the identities

(−uq4R; 1/q2)∞ = u2Rq4R2+2R(−1/uq2; 1/q2)2R(−u; 1/q2)∞,

(−uq4R−1; 1/q2)∞ = u2Rq4R2
(−1/uq; 1/q2)2R(−u/q; 1/q2)∞,
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to rewrite S1 as

(−u; 1/q2)∞
4

∑
R≥0

(u2q2)2R(−1/uq2; 1/q2)2R + (u2q)2R(−1/uq2; 1/q2)2R

(1/q2; 1/q2)2R

+
(−u/q; 1/q2)∞

4

∑
R≥0

(u2q)2R(−1/uq; 1/q2)2R + (u2)2R(−1/uq; 1/q2)2R

(1/q2; 1/q2)2R
. (6.1)

Now we consider the sum

T1 :=
∑
n≥0

unqn2
n−1∑
R=1

R odd

1
|O−(2R, q)||O−(2n − 2R, q)|

=
∑
n≥1

unqn2
b(n−1)/2c∑

R=0

1
|O−(4R + 2, q)||O−(2n − 4R − 2, q)|

=
∑
R≥0

∑
n≥1

unqn2
[ q2R+1 − 1
4q2(2R+1)2 (1/q2; 1/q2)n−2R−1

·
qn−2R−1 − 1

q2(n−2R−1)2 (1/q2; 1/q2)n−2R−1

]
.

Replace n with n + 2R + 1 to rewrite T1 as

T1 =
∑
R≥0

∑
n≥0

un+2R+1q(n+2R+1)2

·

( (q2R+1 − 1)(qn − 1)
4q2(2R+1)2 (1/q2; 1/q2)2R+1q2n2 (1/q2; 1/q2)n

)
=

∑
R≥0

u2R+1

4q(2R+1)2 (1/q2; 1/q2)2R+1

·
∑
n≥0

q2R+1(uq4R+2)n − (uq4R+2)n − q2R+1(uq4R+1)n + (uq4R+1)n

q2(n
2)(1/q2; 1/q2)n

.

As we did with S1, we apply Lemma 6.4(2) with y = 1/q2 to each term in the
summation over n, and we obtain

T1 =
∑
R≥0

u2R+1 (−uq4R+2; 1/q2)∞(q2R+1 − 1) − (−uq4R+1; 1/q2)∞(q2R+1 − 1)
4q(2R+1)2 (1/q2; 1/q2)2R+1

.

Now apply the identities

(−uq4R+2; 1/q2)∞ = u2R+1q(2R+1)(2R+2)(−1/uq2; 1/q2)2R+1(−u; 1/q2)∞,

(−uq4R+1; 1/q2)∞ = u2R+1q(2R+1)2
(−1/uq; 1/q2)2R+1(−u/q; 1/q2)∞
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to rewrite T1 as

T1 =
(−u; 1/q2)∞

4

∑
R≥0

(u2q2)2R+1(−1/uq2; 1/q2)2R+1

(1/q2; 1/q2)2R+1

+
(−u; 1/q2)∞

4

∑
R≥0

(−u2q)2R+1(−1/uq2; 1/q2)2R+1

(1/q2; 1/q2)2R+1

+
(−u/q; 1/q2)∞

4

∑
R≥0

(−u2q)2R+1(−1/uq; 1/q2)2R+1

(1/q2; 1/q2)2R+1

+
(−u/q; 1/q2)∞

4

∑
R≥0

(u2)2R+1(−1/uq; 1/q2)2R+1

(1/q2; 1/q2)2R+1
. (6.2)

By combining (6.1) and (6.2) as even and odd terms, we have

S1 + T1 =
(−u; 1/q2)∞

4

∑
R≥0

(−1/uq2; 1/q2)R

(1/q2; 1/q2)R
[(u2q2)R + (−u2q)R]

+
(−u/q; 1/q2)∞

4

∑
R≥0

(−1/uq; 1/q2)R

(1/q2; 1/q2)R
[(−u2q)R + (u2)R].

Now apply Lemma 6.4(1) to each term in the summations over R, with y = 1/q2,
A = −1/uq2,−1/uq and x = u2q2,−u2q,−u2, to obtain

S1 + T1 =
1
4

[ (−u; 1/q2)2
∞

(u2q2; 1/q2)∞
+

(−u; 1/q2)∞(u/q; 1/q2)∞
(−u2q; 1/q2)∞

+
(u; 1/q2)∞(−u/q; 1/q2)∞

(−u2q; 1/q2)∞
+

(−u/q; 1/q2)2
∞

(u2; 1/q2)∞

]
, (6.3)

where |u| < 1/q is the smallest radius of convergence coming from Lemma 6.4(1).

Next consider

S2 :=
∑
n≥0

unqn2
n−1∑
R=0

R even

1
|O+(2R, q)||O−(2n − 2R, q)|

=
∑
n≥0

b(n−1)/2c∑
R=0

unqn2

|O+(4R, q)||O−(2n − 4R, q)|

=
∑
R≥0

∑
n≥0

unqn2 (q2R + 1)(qn−2R − 1)
4q8R2 (1/q2; 1/q2)2R q2(n−2R)2 (1/q2; 1/q2)n−2R

.
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We note that this is the same expression we obtained for S1, except for the qn−2R − 1
factor instead of qn−2R + 1 in the numerator. Repeating the same calculations made for
S1, while keeping track of the sign change, gives

S2 =
(−u; 1/q2)∞

4

∑
R≥0

(u2q2)2R(−1/uq2; 1/q2)2R + (u2q)2R(−1/uq2; 1/q2)2R

(1/q2; 1/q2)2R

−
(−u/q; 1/q2)∞

4

∑
R≥0

(u2q)2R(−1/uq; 1/q2)2R + (u2)2R(−1/uq; 1/q2)2R

(1/q2; 1/q2)2R
. (6.4)

Similarly, we consider

T2 :=
∑
n≥0

unqn2
n∑

R=1
R odd

1
|O−(2R, q)||O+(2n − 2R, q)|

=
∑
n≥1

∑
R≥0

unqn2

|O−(4R + 2, q)||O+(2n − 4R − 2, q)|

=
∑
R≥0

∑
n≥1

unqn2
[ q2R+1 − 1
4q2(2R+1)2 (1/q2; 1/q2)n−2R−1

·
qn−2R−1 + 1

q2(n−2R−1)2 (1/q2; 1/q2)n−2R−1

]
.

We again have an expression that is almost exactly the same as T1, except for the
qn−2R−1 + 1 factor in the numerator instead of qn−2R−1 − 1. Following the calculation
for T1 and making the appropriate sign changes yields

T2 =
(−u; 1/q2)∞

4

∑
R≥0

(u2q2)2R+1(−1/uq2; 1/q2)2R+1

(1/q2; 1/q2)2R+1

+
(−u; 1/q2)∞

4

∑
R≥0

(−u2q)2R+1(−1/uq2; 1/q2)2R+1

(1/q2; 1/q2)2R+1

−
(−u/q; 1/q2)∞

4

∑
R≥0

(−u2q)2R+1(−1/uq; 1/q2)2R+1

(1/q2; 1/q2)2R+1

−
(−u/q; 1/q2)∞

4

∑
R≥0

(u2)2R+1(−1/uq; 1/q2)2R+1

(1/q2; 1/q2)2R+1
. (6.5)

From (6.4) and (6.5) we have

S2 + T2 =
(−u; 1/q2)∞

4

∑
R≥0

(−1/uq2; 1/q2)R

(1/q2; 1/q2)R
[(u2q2)R + (−u2q)R]

−
(−u/q; 1/q2)∞

4

∑
R≥0

(−1/uq; 1/q2)R

(1/q2; 1/q2)R
[(−u2q)R + (u2)R].
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Applying Lemma 6.4(1) for each term, we obtain

S2 + T2 =
1
4

[ (−u; 1/q2)2
∞

(u2q2; 1/q2)∞
+

(−u; 1/q2)∞(u/q; 1/q2)∞
(−u2q; 1/q2)∞

+
−(u; 1/q2)∞(−u/q; 1/q2)∞

(−u2q; 1/q2)∞
−

(−u/q; 1/q2)2
∞

(u2; 1/q2)∞

]
, (6.6)

when |u| < 1/q. Finally, expressions (6.3) and (6.6) simplify to the generating function
claimed in (1), after noticing that

(∓u; 1/q2)∞(±u/q; 1/q2)∞ =
∏
i≥1

(1 ± u/q2(i−1))(1 ∓ u/q2i−1)

=
∏
i≥1

(1 ± (−1)i−1u/qi−1).

For (2), by Proposition 4.6(3) we need the generating function for∑
n≥0

unqn2
[ n∑

R=0
R even

1
|O+(2R, q)||O(2n + 1 − 2R, q)|

+

n∑
R=1

R odd

1
|O−(2R, q)||O(2n + 1 − 2R, q)|

]
.

We proceed as we did in (1), and we first consider

S3 : =
∑
n≥0

unqn2
n∑

R=0
R even

1
|O+(2R, q)||O(2n + 1 − 2R, q)|

=
∑
n≥0

bn/2c∑
R=0

unqn2

|O+(4R, q)||O(2n + 1 − 4R, q)|

=
∑
R≥0

∑
n≥0

unqn2
(q2R + 1)

4q8R2 (1/q2; 1/q2)2R q2(n−2R)2+(n−2R)(1/q2; 1/q2)n−2R
.

We replace n with n + 2R and simplify to obtain

S3 =
∑
R≥0

∑
n≥0

un+2Rq(n+2R)2
(q2R + 1)

4q8R2 (1/q2; 1/q2)2Rq2n2+n(1/q2; 1/q2)n

=
∑
R≥0

u2R

4q4R2 (1/q2; 1/q2)2R

∑
n≥0

q2R(uq4R−2)n + (uq4R−2)n

q2(n
2)(1/q2; 1/q2)n

.

By applying Lemma 6.4(2) to each term in the summation over n, we have

S3 =
∑
R≥0

u2R(q2R + 1)(−uq4R−2; 1/q2)∞
4q4R2 (1/q2; 1/q2)2R

,
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and from the identity

(−uq4R−2; 1/q2)∞ = u2Rq2R(2R−1)(−1/u; 1/q2)2R(−u/q2; 1/q2)∞,

we have

S3 =
(−u/q2; 1/q2)∞

4

∑
R≥0

(u2)2R(−1/u; 1/q2)2R + (u2/q)2R(−1/u; 1/q2)2R

(1/q2; 1/q2)2R
. (6.7)

Next we consider

T3 :=
∑
n≥0

unqn2
n∑

R=1
R odd

1
|O−(2R, q)||O(2n + 1 − 2R, q)|

=
∑
n≥1

b(n−1)/2c∑
R=0

unqn2

|O−(4R + 2, q)||O(2n − 1 − 4R, q)|

=
∑
R≥0

∑
n≥1

unqn2
(q2R+1 − 1)

4q8R2 (1/q2; 1/q2)2R q2(n−2R)2+(n−2R)(1/q2; 1/q2)n−2R
.

We replace n with n + 2R + 1, and rewrite the expression to obtain

T3 =
∑
R≥0

u2R+1

4q(2R+1)2 (1/q2; 1/q2)2R+1

∑
n≥0

q2R+1(uq4R)n − (uq4R)n

q2(n
2)(1/q2; 1/q2)n

.

Apply Lemma 6.4(2) again for each term in the summation over n to get

T3 =
∑
R≥0

u2R+1(q2R+1 − 1)(−uq4R; 1/q2)∞
4q(2R+1)2 (1/q2; 1/q2)2R+1

.

Now use the identity

(−uq4R, 1/q2)∞ = u2R+1q2R(2R+1)(−1/u; 1/q2)2R+1(−u/q2; 1/q2)∞
to rewrite T3 as

T3 =
(−u/q2; 1/q2)∞

4

∑
R≥0

(u2)2R+1(−1/u; 1/q2)2R+1

(1/q2; 1/q2)2R+1

+
(−u/q2; 1/q2)∞

4

∑
R≥0

(−u2/q)2R+1(−1/u; 1/q2)2R+1

(1/q2; 1/q2)2R+1
. (6.8)

From (6.7) and (6.8), we have

S3 + T3 =
(−u/q2; 1/q2)∞

4

∑
R≥0

(u2)R(−1/u; 1/q2)R + (−u2/q)R(−1/u; 1/q2)R

(1/q2; 1/q2)R
.

Apply Lemma 6.4(1) y = 1/q2, A = −1/u and x = −u2,−u2/q to the terms in the sum
above to obtain

S3 + T3 =
1
4

[ (−u/q2; 1/q2)∞(u; 1/q2)∞
(−u2; 1/q2)∞

+
(−u/q2; 1/q2)∞(u/q; 1/q2)∞

(−u2/q; 1/q2)∞

]
,

for |u| < 1, which simplifies to the desired generating function. �
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6.2. Groups over fields of characteristic 2.

Theorem 6.6. For q even and |u| < 1/q,

∑
n≥0

i(Ω±(2n, q))
|O±(2n, q)|

qn2
un =

1
2

[ ∏
i≥1(1 + u/q2(i−1))∏

i≥1(1 − u2/q2(i−2))
±

∏
i≥1(1 + u/q2i−1)∏

i≥1(1 − u2/q2(i−1))

]
.

Proof. Let A±k and Bk be as in Proposition 4.7. By the computations made in [11, Proof
of Theorem 2.18],

∑
n≥0

unqn2
n∑

k=2
k even

1
Bk

=
∑
n≥0

unqn2
·

n∑
k=0

k even

1
2qk(k+1)/2+(k−1)(2n−2k)−1|Sp(k − 2, q)||Sp(2n − 2k, q)|

.

By substituting 2R + 2 for k and using |Sp(2n, q)| = q2n2+n(1/q2; 1/q2)n, an application
of [11, Lemma 2.5] yields

∑
n≥0

unqn2
n∑

k=2
k even

1
Bk

=
q4

2

∑
n≥0

unqn2
b(n−2)/2c∑

R=0

q8R−2n

q4nR−6R2 q2R2 (1/q2; 1/q2)R

·
1

q2(n−2R−2)2 (1/q2; 1/q2)n−2R−2

=
u2q2

2
(−u; 1/q2)∞

(u2q2; 1/q2)∞
=

u2q2

2

∏
i≥1(1 + u/q2(i−1))∏

i≥1(1 − u2/q2(i−2))
.

Next, we have

∑
n≥0

unqn2
n∑

k=0
k even

1
A+

k

=
∑
n≥0

unqn2
n∑

k=0
k even

1
qk(k−1)/2+k(2n−2k)|Sp(k, q)||O+(2n − 2k, q)|

.
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Again, following [11, Proof of Theorem 2.18], we use the fact that |O+(2n, q)| =
(2q2n2

/qn + 1)(1/q2; 1/q2)n and substitute 2R for k to obtain∑
n≥0

unqn2
n∑

k=0
k even

1
A+

k

=
1
2

∑
n≥0

unqn2−n
bn/2c∑
R=0

q2n−2R + qn

q4nR−6R2 q2R2 (1/q2; 1/q2)R q2(n−2R)2 (1/q2; 1/q2)n−2R
.

Applying [11, Lemma 2.5] twice, once for each term in the numerator, yields∑
n≥0

unqn2
n∑

k=0
k even

1
A+

k
=

1
2

(−u; 1/q2)∞
(u2; 1/q2)∞

+
1
2

(−u/q; 1/q2)∞
(u2; 1/q2)∞

=
1
2

∏
i≥1(1 + u/q2(i−1))∏

i≥1(1 − u2/q2(i−1))
+

1
2

∏
i≥1(1 + u/q2i−1)∏

i≥1(1 − u2/q2(i−1))
.

For the case of A−k terms, we use the convention that 1/|O−(0, q)| = 0 so that we can
apply the same computations as above, which gives

∑
n≥0

unqn2
n−1∑
k=0

k even

1
A−k

=
∑
n≥0

unqn2
n∑

k=0
k even

1
A−k

=
1
2

∑
n≥0

unqn2−n
bn/2c∑
R=0

q2n−2R − qn

q4nR−6R2 q2R2 (1/q2; 1/q2)R q2(n−2R)2 (1/q2; 1/q2)n−2R

=
1
2

(−u; 1/q2)∞
(u2; 1/q2)∞

−
1
2

(−u/q; 1/q2)∞
(u2; 1/q2)∞

=
1
2

∏
i≥1(1 + u/q2(i−1))∏

i≥1(1 − u2/q2(i−1))
−

1
2

∏
i≥1(1 + u/q2i−1)∏

i≥1(1 − u2/q2(i−1))
.

From all of the above, Proposition 4.8(1) and (2), and the fact that

u2q2

2

∏
i≥1(1 + u/q2(i−1))∏

i≥1(1 − u2/q2(i−2))
+

1
2

∏
i≥1(1 + u/q2(i−1))∏

i≥1(1 − u2/q2(i−1))

=
u2q2

2

∏
i≥1(1 + u/q2(i−1))∏

i≥1(1 − u2/q2(i−2))
+

1 − u2q2

2

∏
i≥1(1 + u/q2(i−1))∏

i≥1(1 − u2/q2(i−2))

=
1
2

∏
i≥1(1 + u/q2(i−1))∏

i≥1(1 − u2/q2(i−2))
,

the claimed generating function follows. �

We note that the results in Theorem 5.4 hold for all n if and only if the character
degree sum of Ω±(4m, q) is |O±(4m, q)|/q4m2

times the coefficient of u2m of the
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generating function in Theorem 6.6, and the character degree sum of Ω±(4m + 2, q) is
|O±(4m + 2, q)|/q(2m+1)2

times the coefficient of u2m+1 in the generating function stated
in the next theorem.

Theorem 6.7. For q even and |u| < 1/q, we have the generating function∑
n≥0

i(O±(2n, q) \Ω±(2n, q))
|O±(2n, q)|

qn2
un =

uq
2

∏
i≥1(1 + u/q2i−1)∏

i≥1(1 − u2/q2(i−2))
.

Proof. From [11, Theorems 2.18 and 2.19] and Proposition 4.7, we have for q even
and |u| < 1/q,∑

n≥0

i(O±(2n, q))
|O±(2n, q)|

qn2
un

=
1

2(1 − uq)

∏
i≥1(1 + u/q2(i−1))∏

i≥1(1 − u2/q2(i−1))
±

1
2

∏
i≥1(1 + u/q2i−1)∏

i≥1(1 − u2/q2(i−1))
.

The result is obtained by taking the difference of this and the generating function in
Theorem 6.6. �

7. Asymptotics on involutions

In this section, we compute the asymptotic behavior of the number of involutions in
the groups SO±(n, q) and Ω±(n, q) when q is fixed and n grows. The main tool we use
is the following result of Darboux, which is the same method used in [11], and which
may be found in [27]. The idea is to treat the generating functions in the previous
section as analytic functions, and then equate coefficients of power series. If f (u) is a
power series in u, then we denote by [un] f (u) the coefficient of un in this power series.

Lemma 7.1. Suppose for some r > 0 that f (u) is analytic on |u| < r and has a finite
number of simple poles on |u| = r, denoted by w j. Suppose we may write f (u) =∑

j (g j(u)/1 − u/w j) with g j(u) analytic in a neighborhood of w j. Then we have

[un] f (u) =
∑

j

g j(w j)
wn

j
+ o(1/rn).

The following result is implicit in [11], and follows directly from Lemma 7.1. We
state it here for convenience, as it is used repeatedly.

Corollary 7.2. If f satisfies the assumptions of Lemma 7.1 with r > 1, then

lim
n→∞

[un] f (u) = 0.

Since the proofs of the results in this section are very similar to each other, we give
all details in the first proof, and give fewer details for the proofs that follow.
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7.1. Groups over fields of odd characteristic.

Theorem 7.3. If q is odd and fixed, then

lim
m→∞

i(SO±(4m, q))
q(2m)2 =

1
2

(∏
i≥1

(1 + 1/q2i−1)2 +
∏
i≥1

(1 − 1/q2i−1)2
)

and

lim
m→∞

i(SO±(4m + 2, q))
q(2m+1)2 =

1
2

(∏
i≥1

(1 + 1/q2i−1)2 −
∏
i≥1

(1 − 1/q2i−1)2
)
.

Proof. First replace u by u/q in the generating function in Theorem 6.1 to obtain∑
n≥0

i(SO±(2n, q))
|O±(2n, q)|

qn2−nun

=
∑
n≥0

un i(SO±(2n, q))
2qn2 (1 ∓ 1/qn)(1 − 1/q2) · · · (1 − 1/q2(n−1))

(7.1)

=
1
2

[ ∏
i≥1(1 + u/q2i−1)2∏

i≥1(1 − u2/q2(i−1))
±

∏
i≥1(1 + u/q2i)2∏
i≥1(1 − u2/q2i)

]
. (7.2)

We now consider the limit as n→∞ of the coefficient of un in both (7.1) and (7.2).
In (7.2), first note that the second quotient of products is analytic for |u| < q, where
q > 1. It follows from Corollary 7.2 that the limit as n→ ∞ of the coefficient of
un in this expression is 0. The first quotient of products in (7.2) is analytic in the
unit disk, and has simple poles at u = 1 and u = −1 (which we take as w1 and w2 in
applying Lemma 7.1 here). By factoring out 1/(1 − u2), we may rewrite this quotient
of products as

1
4

∏
i≥1(1 + u/q2i−1)2∏

i≥1(1 − u2/q2i)

[ 1
1 + u

+
1

1 − u

]
,

where the quotient of products outside the brackets is analytic in neighborhoods of 1
and −1 (and this expression is g1(u) and g2(u) in Lemma 7.1). By Lemma 7.1, the
coefficient of un is

1
4

(∏
i≥1(1 + 1/q2i−1)2 + (−1)n ∏

i≥1(1 − 1/q2i−1)2∏
i≥1(1 − 1/q2i)

)
+ o(1).

If we take either n = 2m or n = 2m + 1, this gives the limit as m→∞ of the coefficient
of un in (7.2) as

1
4

(∏
i≥1(1 + 1/q2i−1)2 ±

∏
i≥1(1 − 1/q2i−1)2∏

i≥1(1 − 1/q2i)

)
, (7.3)

where we take + if n = 2m and − if n = 2m + 1.
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If we take either n = 2m or n = 2m + 1, we compute the limit of the coefficient of
un in (7.1) as

lim
m→∞

i(SO±(2n, q))
2qn2 (1 ∓ 1/qn)(1 − 1/q2) · · · (1 − 1/q2(n−1))

=
1

2
∏

i≥1(1 − 1/q2i)
lim

m→∞

i(SO±(2n, q))
qn2 (1 ∓ 1/qn)

=
1

2
∏

i≥1(1 − 1/q2i)
lim

m→∞

i(SO±(2n, q))
qn2 . (7.4)

Equating the expressions in (7.3) and (7.4) gives the result. �

From Theorem 7.3 and the asymptotics for the number of involutions in Sp(2n, q)
computed in [11, Theorem 5.2], we have the following interesting result that the
numbers of involutions in SO±(2n, q) and Sp(2n, q) are asymptotically equal for q
odd, although the numbers of involutions in these groups are not equal in general. We
note that in the case where n is odd, this result follows by dividing both sides of [11,
Theorem 5.2(2)] by q.

Corollary 7.4. If q is odd and fixed. Then

lim
n→∞

i(SO±(2n, q))
i(Sp(2n, q))

= 1.

The following is a quick result, and we include it for the sake of completeness.

Theorem 7.5. If q is odd and fixed, then

lim
n→∞

i(SO(2n + 1, q))
qn2+n

=
∏
i≥1

(1 + 1/q2i)2.

Proof. We have i(SO(2n + 1, q)) = 1
2 i(O(2n + 1, q)) from Proposition 4.1(3). We also

have from [11, Theorem 6.3] that

lim
n→∞

i(O(2n + 1, q))
qn2+n

= 2
∏
i≥1

(1 + 1/q2i)2,

and the result follows. �

We note the sign switch in the following result, in comparison with Theorem 7.3,
and its relation to indicators of these groups in Theorem 5.2.

Theorem 7.6. If q is odd and fixed, then

lim
m→∞

i(O±(4m, q) \ SO±(4m, q))
q(2m)2

=
1
2

(∏
i≥1

(1 + 1/q2i−1)2 −
∏
i≥1

(1 − 1/q2i−1)2
)
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and

lim
m→∞

i(O±(4m + 2, q) \ SO±(4m + 2, q))
q(2m+1)2

=
1
2

(∏
i≥1

(1 + 1/q2i−1)2 +
∏
i≥1

(1 − 1/q2i−1)2
)
.

Proof. This follows from Theorem 7.3 and the result [11, Theorem 6.2] that when q is
odd and fixed,

lim
n→∞

i(O±(2n, q))
qn2 =

∏
i≥1

(1 + 1/q2i−1)2,

by taking the difference. �

In the next two results, we note that the asymptotics we obtain are independent
of the value of q modulo 4 and the type of defining quadratic form, even though the
generating functions for these cases are quite different.

Theorem 7.7. If q is odd and fixed, then

lim
m→∞

i(Ω±(4m, q))
q(2m)2 =

1
4

(∏
i≥1

(1 + 1/q2i−1)2 +
∏
i≥1

(1 − 1/q2i−1)2
)

and

lim
m→∞

i(Ω±(4m + 2, q))
q(2m+1)2 =

1
4

(∏
i≥1

(1 + 1/q2i−1)2 −
∏
i≥1

(1 − 1/q2i−1)2
)
.

Proof. We first replace u by u/q in each of the generating functions in
Theorems 6.3(1), 6.3(2), and 6.5(1). After this substitution, all products of quotients
have poles with magnitude greater than 1 (with the largest in magnitude of the others
being ±q, ±

√
q, and ±

√
−q), except for the term

1
4

∏
i≥(1 + u/q2i−1)2∏

i≥1(1 − u2/q2(i−1))
=

1
8

∏
i≥1(1 + u/q2i−1)2∏

i≥1(1 − u2/q2i)

[ 1
1 + u

+
1

1 − u

]
,

which is analytic on |u| < 1. If f (u) is any of the generating functions of interest, then
we obtain from Lemma 7.1 and Corollary 7.2 that if n = 2m or n = 2m + 1, then

lim
m→∞

[un] f (u) =
1
8

(∏
i≥1(1 + 1/q2i−1)2 ±

∏
i≥1(1 − 1/q2i−1)2∏

i≥1(1 − 1/q2i)

)
, (7.5)

where we take + if n = 2m and − if n = 2m + 1.
This expression is equal to the coefficient of un as n→∞ of∑
n≥0

i(Ω±(2n, q))
|O±(2n, q)|

qn2−nun =
∑
n≥0

un i(Ω±(2n, q))
2qn2 (1 ∓ 1/qn)(1 − 1/q2) · · · (1 − 1/q2(n−1))

. (7.6)

Taking n = 2m or n = 2m + 1, the limit of the coefficient of un as m→∞ of this is
1

2
∏

i≥1(1 − 1/q2i)
lim

m→∞

i(SO±(2n, q))
qn2 . (7.7)

Equating (7.5) and (7.7) gives the result. �
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Theorem 7.8. If q is odd and fixed, then

lim
n→∞

i(Ω(2n + 1, q))
qn2+n

=
1
2

∏
i≥1

(1 + 1/q2i)2.

Proof. We consider the power series∑
n≥0

i(Ω(2n + 1, q))
|O(2n + 1, q)|

qn2
un =

∑
n≥0

un i(Ω(2n + 1, q))
2qn2+n(1 − 1/q2) · · · (1 − 1/q2n)

, (7.8)

which is also given by the generating functions in Theorems 6.3(3) and 6.5(2). In both
of those generating functions, the first product of quotients term, given by

1
4

(1 + u)
∏

i≥1(1 + u/q2i)2∏
i≥1(1 − u2/q2(i−1))

=
1
4

1
1 − u

∏
i≥1(1 + u/q2i)2∏
i≥1(1 − u2/q2i)

,

has a simple pole at u = 1 and is analytic in |u| < 1. The second product of quotients
in each of those generating functions has pole of smallest magnitude given by ±

√
q

and ±
√
−q, respectively. It follows from Lemma 7.1 and Corollary 7.2 that the limit

as n→∞ of the coefficient of un in each of these generating functions is given by

1
4

∏
i≥1(1 + 1/q2i)2∏
i≥1(1 − 1/q2i)

. (7.9)

Meanwhile, the limit as n→∞ of the coefficient of un in (7.8) is

1
2
∏

i≥1(1 − q2i)
lim
n→∞

i(Ω(2n + 1, q))
qn2+n

. (7.10)

Equating (7.9) and (7.10) gives the result. �

While we do have i(Ω−(2n, q)) = 1
2 i(SO−(2n, q)) when q ≡ 1 mod 4, in general

Ω±(n, q) does not have half of the number of involutions of SO±(n, q). However,
we do have this asymptotically in the following corollary, which follows from
Theorems 7.3, 7.5, 7.7, and 7.8.

Corollary 7.9. For any fixed odd q, we have

lim
n→∞

i(Ω±(n, q))
i(SO±(n, q))

=
1
2
.

One might expect a similar result to hold for i(SO±(n, q))/i(O±(n, q)). However, it
follows from Theorem 7.3 and [11, Theorem 6.2] that when n is even, the limit of this
expression is dependent on q.

7.2. Groups over fields of characteristic 2. In our remaining two asymptotic
results, we note the similarity to the results in Theorems 7.3 and 7.6.
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Theorem 7.10. If q is even and fixed, then

lim
m→∞

i(Ω±(4m, q))
q(2m)2 =

1
2

(∏
i≥1

(1 + 1/q2i−1) +
∏
i≥1

(1 − 1/q2i−1)
)

and

lim
m→∞

i(Ω±(4m + 2, q))
q(2m+1)2 =

1
2

(∏
i≥1

(1 + 1/q2i−1) −
∏
i≥1

(1 − 1/q2i−1)
)
.

Proof. We replace u by u/q in Theorem 6.6 to obtain∑
n≥0

i(Ω±(2n, q))
|O±(2n, q)|

qn2−nun

=
∑
n≥0

un i(Ω±(2n, q))
2qn2 (1 ∓ 1/qn)(1 − 1/q2) · · · (1 − 1/q2(n−1))

(7.11)

=
1
2

[ ∏
i≥1(1 + u/q2i−1)∏

i≥1(1 − u2/q2(i−1))
±

∏
i≥1(1 + u/q2i)∏

i≥1(1 − u2/q2i)

]
. (7.12)

The second quotient of products in (7.12) is analytic when |u| < q, where q > 1, and
so by Corollary 7.2 the limit of the coefficient of un in this expression as n→∞ is 0.
The first quotient of products is analytic in the unit disk with simple poles at u = 1 and
u = −1. We rewrite this quotient of products as

1
4

∏
i≥1(1 + u/q2i−1)∏
i≥1(1 − u2/q2i)

[ 1
1 + u

+
1

1 − u

]
,

where the quotient of products outside the brackets is analytic in neighborhoods of
1 and −1. If we take either n = 2m or n = 2m + 1, then by Lemma 7.1, the limit as
m→∞ of the coefficient of un in (7.12) to be

1
4

(∏
i≥1(1 + 1/q2i−1) ±

∏
i≥1(1 − 1/q2i−1)∏

i≥1(1 − 1/q2i)

)
, (7.13)

where we take + if n = 2m and − if n = 2m + 1.
If we take either n = 2m or n = 2m + 1, we compute the limit of the coefficient of

un in (7.11) as
1

2
∏

i≥1(1 − 1/q2i)
lim

m→∞

i(Ω±(2n, q))
qn2 . (7.14)

Equating the expressions in (7.13) and (7.14) gives the result. �

Theorem 7.11. If q is even and fixed, then

lim
m→∞

i(O±(4m, q) \Ω±(4m, q))
q(2m)2 =

1
2

(∏
i≥1

(1 + 1/q2i−1) −
∏
i≥1

(1 − 1/q2i−1)
)
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and

lim
m→∞

i(O±(4m + 2, q) \Ω±(4m + 2, q))
q(2m+1)2

=
1
2

(∏
i≥1

(1 + 1/q2i−1) +
∏
i≥1

(1 − 1/q2i−1)
)
.

Proof. This follows directly from Theorem 7.10, and the result [11, Theorem 6.7] that
for q even and fixed,

lim
n→∞

i(O±(2n, q))
qn2 =

∏
i≥1

(1 + 1/q2i−1),

by taking the difference of the expressions. �

Appendix

The following table gives the number of involutions in either Ω±(2n, q) or
O±(2n, q) \ Ω±(2n, q) (using Proposition 4.8), and the character degree sum (using
[25]) of Ω±(2n, q), for q even and the values of n needed for the proof of Theorem 5.4.
In the following table, the first column is the group whose character degree sum is
computed. The second column lists the set of which the number of involutions is
counted. The third column contains the expressions in terms of q.

Ω±(4, q) Ω±(4, q) q4

Ω±(6, q) O±(6, q) \Ω±(6, q) q9 ∓ q6

Ω±(8, q) Ω±(8, q) q16 + q12 − q4

Ω±(10, q) O±(10, q) \Ω±(10, q) q25 + q21 ∓ q20 ∓ q16 − q13 ± q8

Ω±(12, q) Ω±(12, q) q36 + q32 + q30 + q28 − q22 −

q20 − q18 − q16 + q10

Ω±(14, q) O±(14, q) \Ω±(14, q)

q49 + q45 + q43 ∓ q42 + q41 ∓

q38 ∓ q36 − q35 ∓ q34 − q33 −

q31 − q29 ± q28 ± q26 ± q24 +

q23 ± q22 ∓ q16

Ω+(16, q) Ω+(16, q)
q64 + q60 + q58 + 2q56 + q54 +

q52 − q46 − 2q44 − 2q42 − 2q40 −

q38 − q36 + q30 + q28 + q26
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