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This paper presents the calculation of the bounce-averaged drift of trapped particles in a
near-axis framework for axisymmetric and quasisymmetric magnetic fields that possess
up-down and stellarator symmetry, respectively. This analytic consideration provides
important insight on the dependence of the bounce-averaged drift on the geometry and
stability properties of the field. In particular, we show that although the maximum-J
property is unattainable in quasisymmetric stellarators, one may approach it through
increased plasma β and triangular shaping, albeit going through a reduced precession
scenario with potentially higher particle losses. The description of trapped particles allows
us to calculate the available energy of trapped electrons analytically in two asymptotic
regimes, providing insight into the behaviour of this measure of turbulence. It is shown
that the available energy is intimately related to magnetohydrodynamics (MHD) stability,
providing a potential synergy between this measure of gyrokinetic turbulence and MHD
stability.
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1. Introduction

It has long been known that the bounce-averaged drift that a trapped particle experiences
is central to both linear and nonlinear stability of gyrokinetic trapped-particle modes
(Kadomtsev & Pogutse 1967; Rosenbluth 1968; Helander, Proll & Plunk 2013; Helander
2017). This motion of trapped particles can serve as an energy source or sink for various
instabilities, and thus their study is central to understanding their behaviour in any
plasma-field scenario.

The behaviour of trapped particles depends crucially on the class of fields considered.
In an effort to study stellarators, so-called omnigeneous fields (Hall & McNamara 1975;
Bernardin, Moses & Tataronis 1986; Cary & Shasharina 1997; Landreman & Catto 2012;
Helander 2014) are of particular interest. In such fields, composed of nested flux surfaces
on which field lines live, trapped particles have, by definition, a vanishing averaged drift
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2 E. Rodríguez and R.J.J. Mackenbach

in the direction normal to flux surfaces (i.e. radially). This restricts the dynamics of
trapped particles to an average drift within flux surfaces, often referred to as precession
and denoted by ωα. Many authors have investigated the behaviour of this quantity
(White & Chance 1984; Roach, Connor & Janjua 1995), and analytic expressions exist
for large-aspect ratio tokamaks with circular cross-sections and small non-axisymmetric
perturbations (Connor, Hastie & Martin 1983; Hegna 2015). For general omnigeneous
stellarators (and even more so, upon relaxing omnigeneity), expressions for ωα rarely allow
for analytical calculation (Velasco et al. 2023). This ends up impeding the dissection of
the underlying physics and effects.

This paper carries out such calculations in a more general scenario. To make the problem
tractable, we consider two main simplifications. First, we specialise to quasisymmetric
(Boozer 1983; Nührenberg & Zille 1988; Rodriguez, Helander & Bhattacharjee 2020)
and axisymmetric fields with stellarator symmetry (Dewar & Hudson 1998) and up-down
symmetry, respectively, two special sub-classes of the wider class of omnigenous systems.
The central feature of both of these classes is the symmetry of their magnetic field
magnitude, |B|. This reduces the complexity of the particle dynamics significantly,
especially in the region close to the magnetic axis (the centremost field line of the field,
around which flux surfaces accrue). This leads to the second simplifying consideration
in this paper: the asymptotic description near the axis. In this near-axis approach, the
field magnitude may be directly parametrised, and the framework developed by Garren &
Boozer (1991b) and Landreman & Sengupta (2019) may be employed directly. Both these
simplifying considerations enable an explicit description of the trapped particle motion,
whose construction and interpretation we present in §§ 2 and 3.

Once the particle precession is known, we next investigate its role on trapped-particle
mode stability. We do so by studying the available energy (Æ) of trapped electrons
(Helander 2020); that is, a measure of the available thermal energy that may be liberated
by appropriate rearrangements of the electron distribution function. We compute Æ
analytically in § 4, explicitly showing its dependence on various important parameters.
This enables a direct comparison with other physically relevant properties such as MHD
stability and flux surface shaping.

2. Asymptotic expression for the second adiabatic invariant

The description of the trapped particle precession requires the evaluation of the
bounce-averaged drift around flux-surfaces, denoted as ωα. To calculate such a quantity,
we must begin by appropriately defining flux surfaces and a notion of direction over them.
To this end, we first introduce the Clebsch representation (D’haeseleer et al. 2012) of the
magnetic field; namely, B = ∇ψ × ∇α, where ψ is the magnetic toroidal flux divided by
2π and α is an angular potential defined as α = θ − ιϕ. Here θ and ϕ are straight-field
line (D’haeseleer et al. 2012) poloidal and toroidal angular coordinates, respectively, and
ι is the rotational transform. The flux surfaces are assumed to be nested and correspond to
constant pressure surfaces, following a magnetic field that is in equilibrium, j × B = ∇p.
The angle α can be interpreted as a field line label within flux surfaces (following
B · ∇α = 0). Thus, we define the precession ωα as the rate at which trapped particles
change the field line within a flux surface, formally,

ωα = vD · ∇α. (2.1)

This is the common bounce-averaged binormal drift (Kadomtsev & Pogutse 1967; White
& Chance 1984; Helander 2014). Here, the overline operator denotes a bounce-averaging:
that is, a time average over the back-and-forth motion of the trapped particle along the
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field line (thus assuming a ‘thin-orbit’),

. . . =

∮ · · · d	
v‖∮ d	
v‖

, (2.2)

where v‖ is the parallel velocity, the arc-length along a magnetic field-line is parametrised
by 	 and the domain of integration is taken to be a simply connected region that satisfies
v‖(	) ≥ 0 (which is typically referred to as a bounce well). This is an integral at constant
ψ and α, but also particle energy H and first moment μ.

It is convenient to write the bounce-average drift in (2.1) in terms of derivatives of a
single scalar quantity, J‖ (Helander 2014). This scalar quantity is the so-called second
adiabatic invariant,

J‖=
∫

mv‖ d	, (2.3)

and is an approximately conserved quantity of trapped particles. Importantly, this quantity
serves as the Hamiltonian of the trapped-averaged dynamics of trapped particles, meaning,
as can be shown explicitly (Helander 2014; Calvo et al. 2017), that

ωα
·= −1

q

(
∂J‖/∂ψ

)
μ,H,α(

∂J‖/∂H
)
μ,ψ,α

= �α

τb
. (2.4)

Here q is the charge of the particle (which we shall take to be q = −1 for electrons), and
�α and τb have been defined as the total α-excursion and elapsed time in a particle bounce,
respectively.

Because J‖ encodes the dynamics of trapped particles in a single scalar expression (and
more generally, also allows one to calculate the radial drift), we shall explicitly calculate
the asymptotic expression for J‖ as a first step towards finding ωα.

2.1. Expanding the second adiabatic invariant
Let us write J‖ explicitly as a function of the field line following coordinate 	 (where we
have taken the particle mass m = 1),

J‖=
√

2H
∫ √

1 − λB̂(	) d	. (2.5)

Here we have introduced the pitch-angle λ = μB0/H (using for the first adiabatic invariant
μ = (2H − v2

‖)/B), which distinguishes between different trapped particles (deeper or
more shallowly trapped), and we have normalised the magnetic field by some reference
field strength B̂ = B/B0. The integral is taken between bounce points, i.e. between points
at which B̂ = 1/λ. We are assuming there is no electric field within each flux surface and,
as such, no electrostatic potential appears in (2.5).

It will prove convenient to express the field line following coordinate 	 in terms of
Boozer angles (Boozer 1981). We define for that purpose the helical angle,

χ
·= θ − Nϕ, (2.6)

where N is an integer that defines a helical angle, foreseeing the application to
quasisymmetric devices with a helical symmetry. Using this angular parametrisation, the
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Boozer-coordinate Jacobian J = Bα(ψ)/B2, where Bα = G + ιI (in the standard Boozer
notation (Boozer 1981; Helander 2014)), and defining ῑ = ι− N, the second adiabatic
invariant in these coordinates may now be written as

J‖=
√

2H
ῑ

Bα
B0

∫
1

B̂

√
1 − λB̂ dχ. (2.7)

It is crucial to note that J‖ depends directly on the magnetic field magnitude along a
field line, with minimal involvement of other geometric elements. This simplifies the
calculation of J‖ ostensibly when considering quasi- and axisymmetric configurations,
and makes them rather analogous.

To construct a representative B̂, we resort to the inverse-coordinate near-axis framework
(Garren & Boozer 1991b; Landreman & Sengupta 2019), in which the asymptotic form of
B̂ near the axis is rather simple. We will employ essential results from the near-axis theory
of quasisymmetric equilibrium fields as needed without re-deriving them and refer to the
literature for details (Garren & Boozer 1991b; Landreman & Sengupta 2019). That way,
and to second order in the distance from the magnetic axis, r = √

2ψ/B0, we write B̂,
following Garren & Boozer (1991b, (1)) or Landreman & Sengupta (2019, (2.15)), and
noting that this behaviour goes beyond the particular form of equilibrium assumed
(Rodríguez, Sengupta & Bhattacharjee 2022), as

B̂ = B̄ + δB(ϕ, χ), (2.8)

where we have separated
B̄ = 1 − rη cosχ (2.9)

and the second order

δB = r2 (B20 + BC
22 cos 2χ + BS

22 sin 2χ
)
. (2.10)

In the ideal quasi- or axisymmetric limit, all parameters (η, B20, BC
22 and BS

22) are constants
instead of functions of the toroidal angle ϕ, and for stellarator symmetry BS

22 = 0. From
here on, we shall assume that this condition is satisfied exactly. Note that in practice,
this condition is only achieved approximately: the near-axis expansion generally fails to
find exactly quasisymmetric solutions for equilibria at second order in r (unless exactly
axisymmetric fields are considered). This is commonly referred to as the Garren–Boozer
overdetermination problem (Garren & Boozer 1991a), and results from a clash between
the symmetry and the equilibrium (Rodriguez & Bhattacharjee 2021; Rodríguez et al.
2022). In that sense, the idealised framework is only an approximation, but it will prove
useful and, as we shall see, practical in approximating quasisymmetric configurations.
The constants that define |B| can then be interpreted as parameters that describe different
configurations. In fact, with these parameters together with a magnetic axis shape, the
field and flux surfaces may be constructed explicitly (Landreman & Sengupta 2019).
Thus, expressing the dependence of the second adiabatic invariant on these parameters
will provide a direct link to the configuration and its distinguishing features. A note of
caution: although we are considering the asymptotic limit in the distance to the magnetic
axis, we cannot approach it closer than the gyroradius-related ‘potato-orbit’ size (Helander
& Sigmar 2005, Ch. 7) without violating the ‘thin orbit limit’ of our J‖ calculation.1

1The back-of-the-envelope calculation is as follows. Simplify things by considering the tokamak notation η ∼
B0/G0 ∼ 1/R and q = 1/ι for the safety factor. The adiabatic invariant calculation is correct when, along the
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Trapped-particle precession and modes 5

The way that we have grouped the terms in (2.8) might be unexpected, given that
we have mixed asymptotically unequal terms: the constant on-axis field (r = 0) with the
first-order variation. However, since we are interested in trapped particles, variation in |B|
along the field line is necessary, otherwise trapped particles would not exist. Therefore, in
our perturbative description of the problem, we must take B̄ to constitute the leading order
magnetic field magnitude. It would then appear natural to write

J‖=
√

2H
Bα
ῑB0

∫ χ+
b

χ−
b

√
1 − λ(B̄ + δB)

B̄ + δB
dχ, (2.11)

where for every λ, the bounce points χ±
b (left and right) of the integral are given by

1
λ

= B̄(χ±
b )+ δB(χ±

b ), (2.12)

and attempt to expand it in powers of δB (i.e. expand around smallness of δB). There
are however two important sources of conflict in doing so. First, and formally, evaluating√

1 − λB̄ at the bounce points χ±
b can lead to imaginary contributions near these points

without additional careful consideration of the bounce points. Second, physically, there
are also issues related to the behaviour of classes such as barely trapped particles, which
under an infinitesimal perturbation may undergo a finite (non-infinitesimal) change. This
translates into diverging expressions in the perturbative construction.

To deal with these issues consistently, we start by defining a correction field δBb(λ),
defined to be the perturbed field δB(χ) evaluated, for a given particle class λ, at the
bouncing points, see (2.12). We shall assume, for simplicity, that the device is stellarator
symmetric about the bottom of the magnetic well (i.e. we ignore the BS

22 component),
so that δBb(λ) is unique (i.e. it does not have left and right values). Introducing this
correction, let us rewrite J‖ for a stellarator symmetric field in the following form:

I(ε) =
√

2H
Bα
ῑB0

∫ χb

−χb

√
1 − λ[(B̄ + δBb)+ ε(δB − δBb)]

B̄ + εδB
dχ, (2.13)

so that J‖ = limε→1− I(ε). Expressing the integral in this form ensures that the integrand
upholds positive definiteness for all ε ∈ [0, 1), evading the issue of the integrand becoming
imaginary. This furthermore circumvents the need to expand the bounce points of the
integral. Expressed in this form, the integral may now be Taylor expanded in ε,

I ≈ I(0)︸︷︷︸
·=J (0)

‖

+ε ∂I
∂ε

∣∣∣∣
ε=0︸ ︷︷ ︸

·=J (1)
‖

, (2.14)

where we shall take ε → 1 in the final answer so that J‖ ≈ J (0)
‖ + J (1)

‖ . If each of these
terms is evaluated to the right order, we shall retrieve a consistent expression for the
adiabatic invariant J‖.

bounce-orbit, the guiding centre approximately follows the field line. That is, the argument v‖ d	 should not change
significantly over the distance the particle drifts in a bounce time. As v‖ ∼ vt

√
ε/R, the argument changes d(v‖d	)/dr ∼

J‖/r. As the transit time is ω−1
t ∼ qR/vt and vd · ∇r ∼ vtρ/R, the error �J‖/J‖ ∼

√
q2ρ2R/r3. Thus, r 	 rp =

(q2ρ2R)1/3, where rp is the range where potato orbits come into play (Helander & Sigmar 2005).
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2.2. Leading order expression
Let us start by investigating the leading order term of the expansion in ε. Setting the
expansion parameter ε to zero results in the following integral:

J (0)
‖ =

√
2H

Bα
ῑB0

∫ √
1 − λ(1 + δBb − rη cosχ)

1 − rη cosχ
dχ. (2.15)

This integral is highly reminiscent of that occurring in the magnetic field of a
large-aspect-ratio tokamak with circular cross-section, which has been considered by
many authors before in various asymptotic regimes (Connor et al. 1983; Roach et al.
1995; Helander & Sigmar 2005; Hegna 2015) and, as such, the derivation closely mirrors
these calculations. One may refer to Appendix A for a complete derivation. The main step
required is to re-express the integral in terms of a trapping parameter k, which we define
as

k2 = sin2
(χb

2

)
, (2.16)

where χ = 0 is defined to be the magnetic well minimum. The most deeply trapped
particles reside here, and thus have k2 = 0. The most shallowly trapped particles reside
at the tops of the well, namely χb = π, and thus correspond to k2 = 1. The two trapped
particle classes are connected monotonically, in the sense that λ and k maintain the order
of trapped classes. With this definition, the integral may be expressed in terms of complete
elliptic integrals of the first and second kind (also known as Legendre’s integrals, see e.g.
Olver et al. 2020, § 19), which we define as

K(k) ·=
∫ π/2

0

dζ√
1 − k2 sin2 ζ

, (2.17a)

E(k) ·=
∫ π/2

0

√
1 − k2 sin2 ζ dζ. (2.17b)

With these definitions, one can express J (0)
‖ in closed form expanding I(0) around the

smallness of r. The result is, to order O(r5/2),

J (0)
‖ = 4

√
Hrη

Bα0

ῑ0B0

[
I1(k)+ rη

(
I1(k)

(
1
2

− k2

)
+ I2(k)

)
+ O(r2)

]
, (2.18)

where the functions I1 and I2 describe the behaviour of different trapped-particle classes
via k,

I1(k) = 2
[
(k2 − 1)K(k)+ E(k)

]
, (2.19a)

I2(k) = 2
3

[
(2k2 − 1)E(k)− (k2 − 1)K(k)

]
. (2.19b)

One can readily interpret the leading form of J (0)
‖ by referring back to its basic form

in terms of a parallel velocity and bounce distance, J‖ ∼ v‖	. The scaling with
√

Hrη is
directly related to the reduced parallel velocity that trapped particles must have for them to
be trapped.2 The factor Bα0/ῑ0B0 represents the changes in the ‘connection length’ along

2From energy conservation, one can readily show that mv2
‖/2 ≈ Hrη(2k2 − 1)B̂ and hence that v‖ ∼ √

Hrη.
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Trapped-particle precession and modes 7

the magnetic field line. In terms of geometric quantities and using Ampére’s law, one can
estimate this length scale to be Bα0/ῑ0B0 ∼ R0/(ι0 − N), where R0 is the major radius of the
device and N represents the helicity of the |B| symmetry determined by the shape
of the axis (Landreman & Sengupta 2019; Rodriguez, Sengupta & Bhattacharjee 2022b).
As the major radius increases, the total distance travelled by a trapped particle grows and so
does J‖. Similarly, decreasing ῑ increases the distance between bounce points, as field lines
become further misaligned with respect to |B| contours. Finally, we observe that I1, which
describes the trapped-particle class dependence of J‖ to leading order, monotonically
increases with k, as does the bounce distance. Under such a perspective, it is then clear
that it must vanish for the deeply trapped particles (i.e. I1(k = 0) = 0).

To provide a full description of J‖ to next order, it is important to note that although the
expression we found is correct to order O(r5/2), it does not correspond to the value of J‖
to that order. The expression is incomplete, as it is missing the contribution from J (1)

‖ .

2.3. The first-order correction
To evaluate the second-order term, we follow (2.14), for which we need the following
integral:

J (1)
‖ = −

√
2H

Bα
ῑB0

∫ χb

−χb

(
λ

2
δB − δBb√

1 − λ(B̄ + δBb)
+ δB

√
1 − λ(B̄ + δBb)

B̄2

)
dχ. (2.20)

The second term in the integrand is a factor r smaller than the first one (which may
be verified by writing expressions explicitly in terms of k) and hence, for our current
expansion, only the first term needs to be taken into account. This term requires rewriting
to involve the integration variable χ explicitly. Using the near-axis form of |B| for a quasi-
and stellarator symmetric field, (2.10),

δB − δBb = r2BC
22 (cos 2χ − cos 2χb) . (2.21a)

From this point, the procedure is analogous to the steps followed in the leading order case;
the details are given, once again, in Appendix A. We simply denote the central result here,
which is the expression for J (1)

‖ expanded to leading order in r,

J (1)
‖ ≈ −4

√
Hrη

Bα
ῑB0

rBC
22

η
IC

22(k), (2.22)

where the function IC
22(k) is defined to be

IC
22(k)

·= I2(k)− (2k2 − 1)I1(k). (2.23)

Combining this result with (2.18), we may complete the asymptotic form of the second
adiabatic invariant to order O(r5/2),

J‖ ≈ 4
√

Hrη
Bα0

ῑ0B0

{
I1(k)+ rη

[(
1
2

− k2

)
I1(k)+ I2(k)− BC

22

η2
IC

22(k)
]}
. (2.24)

3. Trapped particle precession

With the second adiabatic invariant constructed, we are in a position to evaluate
the bounce-average precession. We remind ourselves that we considered the exact
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8 E. Rodríguez and R.J.J. Mackenbach

quasisymmetric limit and stellarator symmetry3 (e.g. a tokamak with up-down symmetry)
when constructing J‖. Because of the idealised omnigeneous nature of the field, we
need not worry about the field-line dependence (i.e. α dependence), as the behaviour
is ‘identical’ in all field lines as far as the precession is concerned. This is apparent in
(2.24). The formalism presented could however be extended to incorporate a description of
said α dependence upon controlled deviations from omnigeneity. We present in Appendix
B an explicit estimation of the radial average drift in configurations that only achieve
quasisymmetry approximately, providing a previously lacking physically meaningful
measure of deviations from quasisymmetry within the near-axis framework, which could
aid as an optimisation target (Landreman 2022; Rodriguez, Paul & Bhattacharjee 2022a;
Rodriguez et al. 2022b).

Let us nevertheless return to the calculation of precession in our idealised scenario,
(2.4). We have almost all that is needed to compute ωα. The only remaining step is taking
partial derivatives of (2.24) with respect to ψ and the particle energy H. Acknowledging
the dependence of the trapped particle label k on both these variables, the result of this
calculation may be written as

ωα = ωα,0 + ωα,1 + O(r), (3.1)

where the leading term scales like 1/r and ωα,1 ∼ O(r0) (details of this derivation may be
found in Appendix C).

The leading order term ωα,0 is

ωα,0 = 2
Hη
rB0

(
E(k)
K(k)

− 1
2

)
·= Hη

rB0
G(k), (3.2)

which is precisely of the form found by Connor et al. (1983) for a large-aspect-ratio
tokamak, without magnetic shear or a pressure gradient. Elements of pressure and shaping
are involved in the present approach (although not explicitly) through the next order
correction, ωα,1,

ωα,1 = Hη
rB0

[
rηG(k)+ rB20

η
G20(k)+ rBC

22

η
GC

22(k)
]
, (3.3)

where the functions G may be expressed in terms of elliptic integrals,

G(k) ·= −4
(

E(k)
K(k)

)2

+ 2(3 − 2k2)
E(k)
K(k)

− (1 − 2k2), (3.4a)

G20(k)
·= −2, (3.4b)

GC
22(k)

·= −4

[(
E(k)
K(k)

)2

− 2k2 E(k)
K(k)

+
(

k2 − 1
2

)]
. (3.4c)

3.1. Leading order precession: a tokamak-like behaviour
Let us start by analysing the leading order precession of trapped particles focusing on ωα,0,
(3.2). The expression includes physics in two ways: the overall scaling factors in front

3It would in principle be straightforward to relax this condition. However, it would require treatment of left and
right parts of the well integrals separately. Thus, for brevity, we do not present said calculations and instead focus on the
relevant stellarator-symmetric case.
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Trapped-particle precession and modes 9

ARIESCS ESTELL GAR HSX NCSX QHS48 Precise QA Precise QH

ηR00 0.59 0.79 0.73 1.54 0.55 1.15 0.68 1.51

TABLE 1. Some η values for QS-optimised configurations. This table presents the values of η
for many quasisymmetric designs, normalised to have an axis whose average major radius is
R00 = 1. This is a form of comparing them on the same basis. The largest values of η correspond
to quasi-helically symmetric configurations (namely HSX, QHS48 and precise QH), although
there exist significant variations within these classes.

and the k dependence through G(k), which describes the behaviour of different classes of
trapped particles. We first investigate the former.

Precession is proportional to η, the parameter defined in (2.9) as a measure of the leading
order variation of |B| over flux surfaces. This variation is however intimately linked to the
near-axis elliptical shaping of cross-sections (see Garren & Boozer 1991a; Landreman
& Sengupta 2019; Rodríguez 2023). In fact, for up-down symmetric cross-sections, the
elongation along the horizontal axis (i.e. ratio of horizontal to vertical axes of the
cross-section) is E = (η/κ)2, where κ is the curvature of the magnetic axis at the point
where the cross-section is being assessed. Thus, for a fixed elongation, η ∼ κ . In the
special case of an axisymmetric field, this means that ωα ∼ √

E/R0, where R0 is the
major radius. Going back to ωα,0, for a fixed cross-sectional shape, increasing the major
radius reduces precession, a consequence of the field becoming more straight and the
gradients in |B| (and with it the drift) becoming smaller. In quasisymmetric fields, the local
curvature of the axis defines a ‘major radius’, which leads to strongly curved magnetic
axis shapes having increased precession. Quasi-helically symmetric fields require more
strongly shaped magnetic axes (for a fixed average major radius) and thus will tend to have
a stronger precession. This provides a qualitative separation between quasi-axisymmetric
(QA) and quasi-helically symmetric (QH) stellarators (Rodriguez et al. (2022b), see some
values of η in table 1).4

We finally take note of the divergent nature of ωα with the radial coordinate. The 1/r
behaviour may initially appear worrying, but it can be easily understood in the following
terms. From the form of the poloidal drift, we estimate vD · ∇θ ∼ v∇B|∇θ |, where v∇B
denotes the gradient drift driven by the radial variation of B. As ∇θ ∼ 1/r and the gradient
drift does not scale with r to leading order, the result is the 1/r dependence (the result of
a finite drift velocity over an ever shrinking surface).

We next shift our attention to the dependency on the trapped class dependence of
(3.2). A plot of G as a function of k is presented in figure 1(b). The plot shows that for
the vast majority of trapped particles, the drift of the electrons is positive. Physically,
positive values imply that the trapped particles precess in the direction of the diamagnetic
drift (see figure 1a), an important feature which will become relevant for the discussion
on trapped particle modes later. This behaviour only changes for the barely trapped
particle classes which end up spending a significant fraction of their bounce-time near the
maximum of |B|, where there is ‘good curvature’. The transition point occurs at k0, where
G(k0) = 0, roughly at k0 ∼ 0.9. Such a class of particles is, to leading order, stationary.

4In the language of Rodriguez et al. (2022b), the qualitative difference between the QA and QH configurations holds
for cases that live deep in their corresponding quasisymmetric phases. Close to phase transitions, i.e. axis shapes close to
having vanishing curvature points (and hence stronger flux surface shaping), these differences fade and, in particular, so
will any ‘distinct’ η-behaviour.
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(a) (b)

FIGURE 1. Precession of trapped particles near the magnetic axis. (a) Diagram of the main
drifts in a magnetic configuration with a dominant ∇B direction, such as in a tokamak. The
electron particle ∇B drift, v∇, and the diamagnetic drifts, v∗, are shown (the latter proportional
to −B × ∇p). Resonance between the two occurs on the outboard side (where the deeply trapped
particles live), defining the bad curvature region. (b) Plot showing the function G(k) as a function
of the trapped-particle class k, and thus the behaviour of precession as a function of trapped
particle class near the magnetic-axis.

The existence of these groups of trapped particles precessing in opposite directions proves
the impossibility of making quasisymmetric configurations exactly maximum-J . This
simply follows from the definition of maximum-J as the property of a field that guarantees
∂ψJ‖ < 0 for all trapped particles, which in terms of the electron precession is equivalent
to ωα(k) < 0 for all k. Of course, this is not to say that the behaviour of a quasisymmetric
field cannot become closer to maximum-J , as higher order shaping and equilibrium
parameters modify the leading order behaviour above. However, one may not achieve it
exactly everywhere and especially close to the axis. In practice, one may only get around
this issue at a finite radius if the higher order contributions are strong enough.

Comparing this result against previous investigation, we find, as we already pointed
out, the behaviour to be identical to that shown in the work by Connor et al.
(1983) for a large-aspect-ratio circular tokamak. That this, correspondence found in the
more general quasisymmetric case should not come as a surprise, given the existing
isomorphism between axisymmetric and quasisymmetric fields (Boozer 1983). We have,
however, gained generality beyond circular-shaped cross-sections as η allows for non-unity
ellipticity. We also note that the asymptotic considerations here and in the literature are in
many respects different. Many previous investigations have focused on employing radially
local solutions to the MHD equation (see e.g. Mercier & Luc 1974; Miller et al. 1998;
Hegna 2000) to discuss precession, which weakens the coupling between |B| and the
geometry of the field that exists in the near-axis treatment. We take that additional coupling
in the near-axis consideration to form part of a more globally consistent description of
the field. This results in higher order effects showing quantitative differences (though
qualitative trends are retained), as we shall now explore.

3.2. The higher order effects on precession
Let us now focus on the effect of second-order elements on precession. In the form
presented in (3.3), the order r correction on the leading order precession consists of three
different terms: an ‘intrinsic’ term (purely a consequence of consistency of the field with
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(a) (b)

(c)

FIGURE 2. Effect of second-order quantities on precession. (a) Plot showing the dependence
on the trapped particle class k of the three components of ωα,1. (b) Dependence of precession
on triangularity of an axisymmetric tokamak as a function of k for a number of values of α =
E2, where E is the elongation in the major radius direction. (c) Dependence of precession on
pressure gradient in an axisymmetric tokamak as a function of k for a number of values of
f = B2

0(1 + α)2/R2
0I2

2(α + 3).

its elliptical shape), a term that is proportional to B20 (and thus the radial increase of the
average B) and another proportional to BC

22. The behaviour of each one of these terms with
k is illustrated in figure 2(a).

From these three contributions, that coming from B20 (often called the magnetic well
term) is the simplest: a positive B20 pushes particles against the diamagnetic drift. That is,
deeply trapped particles decrease their precession rate, while barely trapped ones precess
even faster. This behaviour is a direct consequence of the influence of B20 on the gradient
∇B. The magnetic well term reinforces the outwards magnetic field gradient everywhere,
affecting all particles equally and in the direction opposed to the diamagnetic drift. More
precisely, the drift v∇B ∼ B × ∇(1/B) is driven by the gradient of 1/B and, thus, it is
the change in the gradient of 1/B that most directly affects precession. As ∂ψ(1/B) ∼
η2/2 − B20, this explains not only the B20 contribution, but also the ‘intrinsic’ G one.

The direct effect of B20 relates precession naturally to MHD stability. MHD stability
of interchange modes is improved by the enhancement of the so-called magnetic well
of the field (Greene 1997), which corresponds in the near-axis limit to increasing B20 (the
radial derivative of the average B) (Landreman & Jorge 2020; Kim, Jorge & Dorland 2021;
Rodríguez 2023). Thus, there is a natural synergy between improving MHD stability and
making particles precess in the direction opposite to the diamagnetic drift. This behaviour,
obvious from the B20 dependence of ωα,1, aligns with the general observation made in
Helander (2014, § 3.7) relating the ‘averaged’ behaviour of precession over a flux surface
and all particle classes to the magnetic well. However, the problem of MHD stability
is more subtle, as precession is also affected by the variation of the magnetic field BC

22
explicitly, and MHD stability is further influenced by pressure (as becomes clear when
considering the Mercier criterion (Mercier 1962, 1974; Greene & Johnson 1962; Bauer,
Betancourt & Garabedian 2012; Freidberg 2014) to assess it). We shall revisit this relation
on more solid grounds later.
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Setting B20 aside for now, the BC
22 contribution to precession introduces a richer

k dependence than considered so far at this order. This is so because different
trapped particles experience different modifications of the magnetic field through the χ
dependence of |B| ∼ BC

22 cos 2χ . Naturally, both the most deeply and shallowly trapped
particles, who live at χ = 0,π, respectively, feel the same effect, marked by GC

22(0) =
GC

22(1). In between these classes, particles perform an average of the gradient over their
bounce, leading to a maximum at k ∼ 0.8.

The components BC
22 and B20 have proven especially convenient to describe the higher

order effects on drifts. However, they do not provide a good sense for what the field
looks like in terms of its geometry or its equilibrium. A physical discussion requires us
to make this connection, which we shall do within the near-axis framework. To that end,
we introduce the pressure gradient supported by the field as p2 = (B0 dp/dψ |ψ=0)/2, as
well as the triangularity of cross-sections (normalised by r)5 as δ. These two parameters
can substitute BC

22 and B20 to write the precession explicitly in terms of p2 and δ.
The details of this linear mapping between parameters were presented by Rodríguez

(2023). We include in this paper only the key elements necessary to make that connection.
This is particularly important to make sense of what δ truly represents. For an up-down
symmetric cross-section, we define triangularity as the relative displacement of the vertical
turning points of a cross-section with respect to its centre-point along the symmetry line
normalised to its width (Rodríguez 2023, Appendix C), and δ, as its asymptotic form in r,
normalised by r. For simplicity, we define this triangularity in the near-axis, Frenet–Serret
frame. This makes the regular notion of triangularity in the lab frame (i.e. the triangularity
of the cross-section at a constant cylindrical angle) generally different by an offset when
the magnetic axis is not perpendicular to a constant cylindrical angle plane (see some
details in Appendix D). However, by changing δ, we are changing triangularity in the
lab frame by the same amount, although δ is generally not the triangularity there. The
axisymmetric case is an exception in which this correspondence is exact. We also pick the
sign of triangularity to be defined with respect to the direction of curvature of the axis; i.e.
positive triangularity, δ > 0, indicates a shift of the turning points in the direction of the
curvature.6

In the general quasisymmetric scenario, following this definition of δ, there appears
to be a multitude of ‘triangularities’. Each cross-section around the torus is generally
different (but for an N-fold symmetry), but it is sufficient to describe the triangularity of
any of its cross-sections to describe the field uniquely (given some choice of lower order
parameters and a pressure gradient).7 Once such a cross-section has been chosen, then
one should interpret δ as a measure of its triangularity in the Frenet–Serret frame and any
discussion about the effect of modifying triangularity should be interpreted as the effect
of changing the triangularity of that very cross-section. We shall conveniently choose an
up-down symmetric cross-section to represent the quasisymmetric stellarator and when it
comes to analysing real configurations, we shall take the most vertically elongated one
(often referred to as the bean-shaped cross-section Rodríguez 2023). We do so by analogy

5In fact, δ is also normalised by a factor of r. This is so because upon approaching the axis, the triangular shaping
disappears in favour of elliptical cross-sections, and thus triangularity clearly changes with r. Because the leading order
is proportional to r, we normalise it out.

6One must be careful with how the sign of η is defined in this paper and in the definition of δ. For the derivation of
the precession in this paper, we assumed η > 0, but used the unusual convention of writing B = B0(1 − rη cosχ), with
a minus sign. For the triangularity to have the meaning above, one must include a sign(η) to the definition presented by
Rodríguez (2023), which is defined assuming η > 0 in the opposite convention to that considered here.

7This statement is almost always true. There are some special cases in which, however, the triangularity is not the
most appropriate geometric feature to explicitly involve in the parametrisation of the field and, instead, the Shafranov
shift (Shafranov 1963; Wesson 2011; Rodríguez 2023) should be chosen. We do not consider this special case.
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with the axisymmetric scenario. As this cross-section is changed, the remainder of the
field must also change as a consequence of satisfying both equilibrium and quasisymmetry
simultaneously.

In short, the pressure gradient and the triangularity as defined above provide sufficient
information and a minimal second-order parametrisation for both axisymmetric and
quasisymmetric configurations.

3.3. Relation to geometric and equilibrium parameters
Let us then proceed to write and analyse the precession of trapped particles ωα,1 in terms
of triangularity, δ, and pressure gradient, p2. The details of how to do so are presented in
Appendix D and rely heavily on the work of Rodríguez (2023). The result reads

ωα,1 = Hη
B0r

[
rηG̃(k)− rμ0p2

|η|B2
0
Gp2(k)+ rδ

2
Gδ(k)

]
. (3.5)

The function Gp2 encodes the effect of the pressure gradient and Gδ that of the triangularity,
and their full explicit forms may be found in Appendix D. The function G̃ is a complicated
function of lower order quantities that we do not present explicitly and shall ignore for the
analysis in this paper. For a discussion on the form and meaning of the other contributions,
we specialise now to a generally shaped, up-down symmetric tokamak configuration.

In the axisymmetric limit, the functions become

Gaxi
p2

= −2

[
1 +

(
B0

R0I2

)2
(1 + ᾱ)2

ᾱ + 3

(
1 + GC

22(k)
4

)]
, (3.6a)

Gaxi
δ = −6

(
1 − ᾱ

3 + ᾱ

)
− 3 − ᾱ

3 + ᾱ
GC

22(k), (3.6b)

using the definitions in (3.4). Here the parameter ᾱ = (ηR0)
4 = E2 is the square of

the elongation of the flux surfaces along the major radial direction. To arrive at such
an expression, we used the relation ῑ0 = 2

√
ᾱG0I2/B2

0(1 + ᾱ), which holds true for a
tokamak, whose rotational transform must be fully driven by a toroidal plasma current.

Let us analyse the behaviour of the finite pressure term first. It is clear from (3.6a) that
Gaxi

p2
< −2 for all k and possible combinations of parameters, as GC

22 ≥ −2 and, therefore,
1 + GC

22/4 ≥ 1/2. This negative sign of Gaxi
p2

indicates that the usual peaked pressure profile
(i.e. p2 < 0 for the assumed sgn(ψ) = +1) leads to an increase in precession in the
direction opposite to the diamagnetic frequency; a direct consequence of the magnetic
well term discussed in the previous section. A finite β (at fixed triangularity) assists in
making the behaviour of trapped particles more maximum-J . This is a well-known effect
(Rosenbluth & Sloan 1971; Connor et al. 1983), referred to as the diamagnetic effect of the
toroidal field. In fact, we note that in the circular tokamak limit, the expression becomes
almost identical to the result of Connor et al. (1983), see the details in Appendix D.
Although maximum-J is being approached by increasing β and this is generally regarded
as a positive effect, at an intermediate stage, particle precession reaches ωα ∼ 0 for many
trapped particles. This slow precession scenario is generally associated with enhanced fast
particle losses (especially of deeply trapped particles) whenever deviations from QS exist
(Nemov et al. 2008; Bader et al. 2021; Velasco et al. 2021).

Different trapped particles are affected differently by pressure as a consequence of the
evolving Shafranov shift (Shafranov 1963; Wesson 2011; Rodríguez 2023), which perturbs
the field in a non-symmetric way. This underlying role of the Shafranov shift is clear
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from the contribution of the factor f = B2
0(1 + ᾱ)2/R2

0I2
2(ᾱ + 3), which shows an amplified

effect of pressure for low currents (i.e. or low rotational transform), larger horizontal
elongation or smaller major radius. All of these are known to increase the Shafranov-shift
effect and will enhance the counter-precession of particles with respect to the diamagnetic
drift (see figure 2).

Because, to leading order, deeply trapped particles co-rotate with the diamagnetic drift,
we may estimate when the plasma β is sufficient to reverse their direction. We interpret
the resulting as the critical plasma β for which the field becomes barely maximum-J .
Formally, this involves equating two different asymptotic orders, which goes against
the very nature of the asymptotic treatment. One may nevertheless interpret this as an
estimate of the precession at a ‘finite’ radius.8 This shows that one may try to increase
the maximum-J behaviour of a QS by enpowering some of the higher order contributions
(pressure and other shaping). In practice, the effective radius in which the leading order is
dominant may be small enough that we may refer to the field as maximum-J . As shown
in the examples of figure 4, this does not seem to be the natural tendency of QS fields and
certainly is not asymptotically.

Focusing on the behaviour of k = 0 (such deeply trapped particles are typically the
least maximum-J ), ωᾱ,0 = Hη/rB0 from (3.2) and for the pressure, we have ωα,1 =
−(H/B0)μ0|p2|(2 + f )/B2

0. Equating the two, we find

μ0|p2|
B2

0
∼ η

r(2 + f )
∼

√
E

R0r(2 + f )
. (3.7)

For a parabolic pressure profile, a2p2 = −p0, where a is the minor radius and p0 the
pressure on axis, one finds that the critical plasma β on axis is

βcrit
·= 2a2μ0p2

B2
0

∼ a2

R0r
2
√
E

2 + f
. (3.8)

We thus see that the most susceptible fields are those with a large-aspect ratio, vertical
elongation (small E) and lower current (large f ). As expected, these finite β effects become
more pronounced as we move away from the magnetic axis. For further illustration,
consider the scenario of a circular-shaped tokamak with a representative safety factor
of q = 2 and aspect ratio ∼ 3 for which, at the edge, βcrit ∼ (a/R0)/(1 + q2/2) ∼ 11 %.
Reversing the precession of deeply trapped particles is thus predicted to require a
significant plasma β.

The effects of triangularity are markedly more involved than those of pressure, which
prevents us from writing a parameter-insensitive bound like we did for the effect of
pressure (see figure 2). Depending on the value of elongation, ᾱ = E2, the precession
due to triangularity will tend to be in one direction or the other, a behaviour that also
changes depending on the particle class considered. There exists, though, a critical value
of ᾱ beyond which Gaxi

δ > 0 for all k. As GC
22 has a maximal value max(GC

22) ≈ 1.1, one
can find that this critical point occurs at

ᾱcrit >
6 + 3 max(GC

22)

6 + max(GC
22)

≈ 1.3. (3.9)

8One needs to be careful here, as increasing the pressure gradient will also increase the Shafranov shift and, with
it, the second-order magnetic field shaping. This will start to incur on our asymptotic ordering. Anyhow, equating the
different orders still results in a convenient measure.
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Thus, for tokamaks that are horizontally elongated (beyond some ∼ 14 %), negative
triangularity tends to make all particles precess against the diamagnetic drift. This
distinction regarding the effect of triangularity is reminiscent of the effects of triangularity
on MHD stability. In that case and describing stability through the Mercier criterion
Solov’ev & Shafranov 1970; Lortz & Nührenberg 1978; Shafranov 1983; Freidberg 2014;
Rodríguez 2023), one can show that for ᾱ > ᾱMHD = 1, negative triangularity contributes
positively to stability. Thus, MHD stability seems to align with precession against the
diamagnetic drift, at least for sufficiently horizontally elongated configurations. That is,
there is some synergy, which is the opposite to the changes due to plasma-β.

Most commonly, however, most tokamak fields are vertically elongated and thus have
ᾱ < 1 < ᾱcrit. In that usual scenario, different trapped particles respond differently, some
tending to precess in one direction and others in the opposite. The most deeply and
barely trapped particles are a special case, as taking k = 0, 1, Gδ = 4ᾱ/(3 + ᾱ) > 0 has
a maximum value (see figure 2). With a sign independent of elongation, one can conclude
that positive-triangularity tokamaks will always tend to make deeply and shallowly trapped
particles precess in the direction of the diamagnetic drift. Thus, only through negative
triangularity can this shaping be used to reverse the behaviour of deeply trapped particles.
In the vertically elongated regime, negative triangularity hampers MHD stability, thus
opposing the tendency to improve the maximum-J behaviour. As noted in the plasma
β scenario, as precession of particles is reduced, fast-ion confinement can be negatively
affected in an imperfect QS stellarator. The different behaviour of each trapped particle
makes an assessment of the overall effect complex.

It would be appropriate, as we did to illustrate the effect of plasma β, to introduce the
idea of a critical triangularity: a value of triangularity such that one expects precession of
deeply trapped particles to leading order to be significantly affected, i.e. rδGδ(k)/2 ∼ G(k)
for k = 0. Precisely as in the case of pressure,

(rδ)crit ∼ 3 + ᾱ

2ᾱ
. (3.10)

The interpretation of rδ as triangularity of the cross-section in the Frenet frame of
the magnetic axis (see Appendix D) is an asymptotic concept. As such, this geometric
interpretation of rδ ceases to be accurate upon approaching unity (especially as a
significant bean-shape is developed). This limit of large rδ is nevertheless a limit of
strongly shaped flux surfaces, which could even describe surfaces that self-intersect or
intersect with other flux surfaces (Landreman 2021; Rodríguez 2023). To make sense of
whether (rδ)crit is feasible in practice, we should compare this measure to the maximum
triangularity achievable without incurring into these geometric defects. The critical rc
was defined by Landreman (2021). In any case, (3.10) indicates that a very significant
triangularity (of order 1) is needed to significantly affect precession of deeply trapped
particles in a tokamak. Hence, we conclude that although triangular shaping may help in
achieving the maximum-J property together with finite β effects, achieving it via shaping
alone is more difficult in tokamaks.

Before concluding this section, let us briefly consider the full quasisymmetric
case, beyond the special case of axisymmetry, through some examples. Unlike in the
axisymmetric case, this general scenario preserves a measure of symmetry-breaking of the
geometry. The measure F̄ (Rodríguez 2023), for which explicit expressions are presented
in Appendix D, depends on the shape of the axis and modifies the effects of pressure and
triangularity. Reminding ourselves that in such a scenario, δ represents the triangularity
of the up-down symmetric cross-section with the largest binormal elongation, we show
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FIGURE 3. Effect of triangularity and pressure gradient in the precession of trapped electrons in
some QS configurations. The plot shows the values of Gδ and Gp2 for a number of quasisymmetric
configurations in the ideal quasisymmetric limit represented by their most vertically elongated
up-down symmetric cross-section (in some configurations, this occurs at ϕ = π/N rather than
ϕ = 0). The scatter plot corresponds to the values of both k = 0, 1 for different configurations,
while each segment represents the other k values. The near-axis models can be found in the
acknowledged repositories; further details, such as their QS quality, can be found in Appendix E.

in figure 3 the values of Gδ and Gp2 for a number of QS configurations.9 Each segment
consists of pairs (Gδ,Gp2) for different k for the same configuration, taking the ideal QS
limit of the configurations (which are only approximately so).

From the plot, it is clear that for those quasiymmetric configurations analysed, the effect
of a finite pressure gradient is the same as in the axisymmetric limit (i.e. an increase in
pasma β leads to precession in the direction opposite to the diamagnetic drift). The effect
of triangularity is analogous to a tokamak that is elongated in the horizontal direction,
where negative triangularity pushes particles against the diamagnetic drift. From the MHD
stability analysis of these configurations by Rodríguez (2023), one recovers the synergy

9Many of the configurations in figure 3 were analysed for their MHD behaviour by Rodríguez (2023), and thus
make them a suitable set for discussion. We note that in Rodríguez (2023, figure 5), the configuration named ‘2022 QA’
was represented through its less vertically elongated cross-section. This is not wrong per se, as one may represent the
configuration by any of its cross-sections (and in the framework in the paper, any up-down symmetric one). However,
for a discussion on the effect of bean shapes, as in said paper, it was not the appropriate choice, and we point that
out here (may it serve as erratum). That this inappropriate choice of a cross-section was made may be seen from an
analysis of its cross-sections (see Landreman 2022) or from the unusual value of F̄ in Rodríguez (2023, table 1). Here
we consistently consider its vertical cross-section (equivalently, the ϕ = 0 cross-section of the rotated configuration). All
other configurations are similarly represented by their most vertically elongated cross-section for consistency.
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of horizontally elongated tokamaks for quasisymmetric stellarators. Thus, the behaviour
is quite different from that of regularly shaped tokamaks.

An interpretation of the magnitudes of Gδ and Gp2 may be provided by considering the
critical β and rδ once more. As in the tokamak scenario, at the edge of the configuration,
βcrit ∼ 2a|η|/Gp2(0) and (rδ)crit ∼ 2/Gδ. A complete table for the configurations in figure 3
is included in Appendix E. We note here that in QA configurations, βcrit ∼ 5 %, while QH
stellarators generally exhibit a more resilient behaviour with βcrit ∼ 10–15 %. Reversing
the precession of deeply trapped particles via finite β effects thus appears to be a
possibility most easily in QA configurations. Given the simple form of (rδ)crit, it is
straightforward to see that O(1) triangularity is generally required to observe a significant
effect. In many of these configurations, such values are indeed achievable without
incurring in forbidden flux surface shapes (see Appendix E).

3.4. Verification of the expansion
In the preceding sections, we investigated the analytical behaviour of the trapped particle
precession. We derived these under two important assumptions: (i) exact quasisymmetry
(or symmetry) of the fields and (ii) the near-axis expansion. It is thus natural to wonder how
close trapped particle precession is to the idealised limit in realistic configurations, as these
assumptions become increasingly less accurate. We check this through three numerical
examples, in which we compare the bounce-averaged drift computed from a global MHD
code (in this case, VMEC (Hirshman & Whitson 1983), using numerical methods detailed
by Mackenbach et al. 2023a) against the analytical results. For this practical comparison,
we employ the definition of k in terms of the bounce point, (2.16), which we compute for
the numerical precession calculation. Note that upon significant deviations from QS, this
choice ceases to be convenient, especially when there exist differently shaped wells within
a flux surface.10

This comparison is shown in figure 4, where the bounce-averaged precession is plotted
as a function of k and for two radial locations, � ·= √ψ/ψedge. The correspondence
is excellent for all displayed � in the precise quasisymmetric configurations, recently
presented by Landreman & Paul (2022), which are characterised for having an excellent
degree of quasisymmetry. The theory works remarkably well even at larger radii, where
one would expect the near-axis expansion to falter, although this near-axis nature
of the configurations had been previously noticed (Rodriguez 2022) and could be a
feature necessary to achieve excellent global quasisymmetry. This numerical comparison
evidences that the second-order calculation is also appropriate. For HSX (Anderson et al.
1995), we see more significant deviations from the analytical result. This is mainly a
consequence of the breaking of QS (for a naive fitting of its near-axis behaviour, B20
variations are ∼ 4), and significant shaping beyond the near-axis behaviour (see � = 1).
Although the trends and magnitude seem correct, there are clear deviations from the
idealised limit.

4. Energy available for trapped particle modes

The preceding study of particle precession was strongly motivated by its central role
in driving trapped-particle modes (TPMs). In essence, TPM turbulence arises driven by
the trapped-particle precession when it resonates and destabilises the diamagnetic drift

10In the more general case, it is then more convenient to group precession through the class label λ, normalised as
by Roach et al. (1995), namely k2 = (1 − λBmin)Bmax/(Bmax − Bmin). This maintains the 0 and 1 values for deeply and
barely trapped particles, respectively. This definition is only equal to the natural near-axis definition to leading asymptotic
order. Thus, in that case, a comparison would require the alternative, yet asymptotically equivalent, definition of k in
(C1b), which defines it in terms of λ.
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(a)

(d )

(b)

(e) ( f )

(c)

FIGURE 4. A comparison between the analytical and numerical precession. The precession
ωα for three QS fields and two radial positions � = √ψ/ψedge is presented, normalised to
H/r

√
2B0ψedge, where a is the minor radius of the configuration, B0 the B on axis and 2πψedge

the total toroidal flux (and we have also normalised the charge out, which we remind the reader
was set to unity). There is good correspondence for the precisely quasisymmetric configurations
(Landreman & Paul 2022) and less so for HSX, which exhibits important deviations from QS.
The black and grey lines are the numerical result of precession for different field lines (black
corresponding to α = 0), whereas the dashed red and green lines are the first- and second-order
analytic precessions, respectively.

wave. Simply put, whenever the trapped particles co-drift with the diamagnetic drift
wave, energy may be transferred to the drift wave, driving the instability thereof. As
we have learnt, a special feature of axisymmetric and quasisymmetric fields is that ωα
has, to leading order, a zero crossing. That is, there always exists a subgroup of trapped
particles (which includes deeply trapped particles) that co-rotate with the drift wave and
thus potentially drive TPMs. To assess how the size of this group and the magnitude of
its precession feeds TPMs, a more qualitative treatment is necessary. To perform such
an analysis, we delve into the stability of TPMs by studying the available energy of the
trapped particles (Helander 2017, 2020).

Available energy (Æ) is an upper bound on the free energy available to the plasma after
a constrained rearrangement of the distribution function (called Gardner restacking, see
Kolmes, Helander & Fisch 2020), rearrangement that needs to conserve certain dynamical
quantities like J‖. Restricting ourselves to the available energy contained in trapped
particles, one obtains a proxy measure of nonlinear turbulent activity of TPMs (and
upon specialising to electrons, TEMs Proll et al. 2012). This is, nevertheless, a simplified
description of the turbulence, in the best of cases a bound, which does not include a
discussion of accessibility. That is, although energy may be available, it might not be
possible for a system to evolve to such lower energy state and access the available energy,
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thus the turbulence activity would be over-estimated. The Æ measure is nevertheless useful
(Mackenbach, Proll & Helander 2022) and it provides insight into TPMs.

The calculation of available energy for trapped electrons in a flux tube was recently
presented by Mackenbach et al. (2022, 2023c). For a flux tube of length L and elliptical
cross-section �α and �ψ in (ψ, α)-space (principal axes), the available energy in an
omnigeneous (ωψ = 0) field may be written as

A = 1
2
√

π

π�ψ�αL
B0

n0T0

∫∫ ∑
wells(λ)

e−zz5/2ω̂2
αR
[
ω̂T

∗
ω̂α

− 1
]

Ĝ1/2 dz dλ, (4.1)

where Ĝ1/2 = ∫ (1 − λB̂)−1/2 d	/L is the normalised bounce time, R is the ramp function
(indicating that only faster than the diamagnetic drift co-precessing particles contribute
to A) and the hats denote normalisation of the frequencies ω̂ = �ψ ω/H. The integral is
performed over z = H/T and λ, the combination of which constitute all trapped particle
energies and classes (the exponential in the integrand is a consequence of the chosen
distribution function of which the Æ is to be calculated, a Maxwellian). The sum over
wells simply indicates that the available energy is the result of adding the contributions
from every well along the flux tube, as trapped particles may be rearranged within each.

Of course, the amount of energy available depends on the size of the flux tube
considered; the measure is extensive. To construct an intensive measure, we normalise
it to the total thermal energy available in the tube. The total thermal energy in the flux
tube for a plasma of temperature T0 and density n0 is (using B · ∇	 = B)

Et =
∫

nT
B

dψ dα d	 ≈ n0T0
π�ψ�αL

B0

∫
1

B̂

d	
L
. (4.2)

Hence, the normalised Æ becomes

Â ≡ A
Et

=
(∫

2
√

π

B̂

d	
L

)−1 ∫∫ ∑
wells(λ)

e−zz5/2ω̂2
αR
[
ω̂T

∗
ω̂α

− 1
]

Ĝ1/2 dz dλ, (4.3)

where the normalising factor in front will henceforth be succinctly referred to as V =
2
√

π
∫

d	/LB̂. To make further progress, we realise that the integral over z is analytically
tractable if one splits up ω̂T

∗ as

ω̂T
∗ = ω̂T

∗,0/z + ω̂T
∗,z, (4.4)

where ω̂T
∗,z = −�ψ∂ψ ln T and ω̂T

�,0 = −�ψ(∂ψ ln n − 3
2∂ψ ln T). To ease the calculation

(although it may be extended to the more general case), we shall take the temperature
gradient to be zero and consider the limit of a peaked density profile (i.e. ∂ψ ln n is
negative for ψ > 0); we are specialising to density-driven trapped-particle instabilities.
This assumption makes the diamagnetic drift ω� particle-energy independent, leading to

Â = 1
V

∫
dλ
∑

wells(–)

(ω̂T
∗,0)

2Ĝ1/2F(c1)Θ(ω̂α), (4.5)

where

F
(

c1 = ω̂T
∗,0
ω̂α

)
= 2

√
c1 (15 + 4c1) exp(−c1)+ 3

√
π(2c1 − 5)erf(

√
c1)

8c2
1

, (4.6)

and the Θ function is a Heaviside function that vanishes for ωα(λ) < 0, which physically
represents the inability of counter-rotating particles to drive the TPM.
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FIGURE 5. Plot of the function weighing the contribution to Æ of various trapped particle
classes. Plot of F as a function of the diamagnetic to precession drifts c1. The dashed line
indicates the value c1 ≈ 3.9, which corresponds to the maximum of F and, in a sense, represents
the subset of particles that most vigorously resonate and drive the drift wave.

The function F , see figure 5, may be interpreted as a measure of the coupling of
different particle classes to the available energy (ignoring further contributions from the
normalised bounce time). With the energy dependence averaged out after the integral over
z, the comparison between the diamagnetic drift and precession is captured by c1. Both
trapped particles that are drifting too fast (i.e. |c1| � 1) and which are drifting too slow
(i.e. |c1| 	 1) as compared to the drift wave have a vanishing contribution to the Æ, as
F → 0. This is a formal statement of the resonance requirement for an effective drive of
the drift-wave instability, where the coupling is largest at c1 ≈ 3.9.

To proceed further, and since the expressions for the precession derived in the preceding
section depend on the trapping parameter k explicitly, it will be natural to write Æ in (4.5)
as an integral over k.

4.1. Leading order form of Æ
Let us begin the asymptotic analysis by considering the first-order expression of the
trapped-particle precession ωα ≈ ωα,0(k), defined in (3.2). To perform the integral in
(4.5), we need a number of ingredients. First of all, we must consider the integral
only over trapped-particle classes that co-rotate with ω̂T

∗,0 (i.e. the range allowed by the
Heaviside). The domain of integration thus runs from the most deeply trapped particles to
the transition point of ωα,0, i.e. k ∈ [0, k0] (with the definition of k0|ωα,0 = 0 from before).

The second ingredient that naturally arises is then the need to express the integration
variable λ in terms of k. The presence of c1 = ω̂T

∗,0/ω̂α,0(k) as a function of k inside
F makes the integral highly nested and, thus, appears to make it difficult to approach
analytically. However, given the form of the precession, c1 is asymptotically small in
the sense that c1 ∼ r. This appears to offer a way to proceed by expanding F in the
small c1 limit. However, that would be wrong, as it would neglect the most important
contribution to Æ. Recall that the particle precession vanishes at k0 and, thus, near this
value of k, the function c1 cannot be considered small. This resonant behaviour is, in the
asymptotic limit, the principal contributor. The integral is significant only in a narrow
region �k ∼ r, close to k0, where c1 ∼ O(1) (see a clarifying sketch in figure 6). This
teaches us that in this asymptotic limit, the most important class of particles are those with
relatively small precession, as in this limit,ωα tends to be much larger than the diamagnetic
drift. The evaluation of the integral may then be carried out analytically considering a
local approximation of the integrand in this contributing narrow band (correct down to
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(a) (b)

FIGURE 6. Schematic of the contribution to available energy. (a) Diagram showing a narrow
band of trapped particles near k0 (the trapped-particle class with vanishing precession)
contributing to the available energy. The broken line indicates k0 in the limit of r → 0, as
the vertical direction denotes different classes of particles with the leading order magnetic well
structure shown by the black curve. The plot of F[c1(k)] is shown to the right for rωT

∗,0/η = 0.1
as an example. (b) A numerical calculation showing the distribution of Æ across the magnetic
well, normalisedby the total Æ. Plotted for the precise QA device at a minor radial coordinate of
r = 10−3. The points where ωα = 0 is denoted by a green dashed line and ω̂n = 0.1.

a correction O(r1/2) on the leading contribution), the details of which are presented in
Appendix F.

Before writing the result for the Æ out, one last consideration is required. In this case,
one needs to make an explicit assumption regarding the width of the flux tube �ψ , on
which the Æ will depend. This width should be interpreted as the ‘length’ over which
density gradients may be flattened by the turbulence to extract energy. Following the steps
taken by Mackenbach et al. (2022, 2023c), we estimate such a flattening length scale to be
the correlation length and to be of the order of the Larmor radius ρ. As such, we write

�ψ = B0r�r = B0rCrρ, (4.7)

where Cr may formally be dependent on other equilibrium parameters (e.g. the rotational
transform ι or the flux expansion |∇ψ |). We shall nevertheless take Cr to be a constant,
assuming that the flattening length scale providing free energy to the TPMs is simply
proportional to the Larmor radius.

It is customary to define a minor radius a for the field configuration so that the radial
coordinate may be normalised as � = r/a. This way, we define the density gradient ω̂n ≡
−a∂r ln n = −∂� ln n, which scales like � for a quadratic (in �) density profile. In terms of
these variables, the Æ becomes

Âw ≈ 2
√

2
9π

C2
rρ

2
∗

(
ω̂n

�

)3
�3√�√

aη
, (4.8)

where the common gyrokinetic expansion parameter is defined as ρ∗
·= ρ/a.

The leading order expression for Âw includes important information regarding the
behaviour of the available energy near the axis. We highlight various scalings here.

(i) One observes a strong scaling with the distance from the axis �, whose origin may
be presented in simple terms as follows (see the integral expression in (4.5) for
reference). One factor of �1/2 may be accounted for due to the trapping fraction
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of particles, which leaves one with an overall �3 scaling. In this scenario, the
energy scale is set by the diamagnetic drift (as only precessing particles with speeds
analogous to those of the diamagnetic drift contribute to the available energy), which
goes like ω̂n ∝ � near the axis. Thus, two powers of � can be argued to come from
the kinetic drive of the diamagnetic drift. The final power of � comes from the small
fraction of trapped particles that contribute to the available energy, as the band near
k0 scales with �.

(ii) Another scaling of interest in (4.8) is its dependency on the stellarator shaping
parameter η. Increased η leads to a more restricted access to energy and, thus, a
reduced TPM activity (as measured by Æ). Thus, horizontally elongated shapes
would seem to favour stability and, in the context of quasisymmetric stellarators,
quasi-helically symmetric configurations. In tokamak terms, aη ∼ a

√
E/R0 ∼ ε

√
E ,

where ε is the inverse aspect ratio. Thus, Âw ∼ 1/(E1/4√ε). Hence, the available
energy increases with aspect ratio keeping the minor radius fixed. This dependency
becomes even stronger if one chooses ρ∗ε = ρ/R0 to be constant.

(iii) One finally observes a scaling with (Crρ∗)2, which is the square of the assumed
length scale over which energy is available. Importantly, we note that an
implicit magnetic-field-strength dependency arises here (for fixed minor radius
and Cr), as ρ ∼ 1/B0. Hence, in terms of Æ, it is beneficial to have a strong magnetic
field so that the length scale over which energy is available decreases as Âw ∼ 1/B2

0.

As noted before, a full interpretation of these scalings for a comparison between
different configurations would have to take into account the form of Cr that most
closely describes the volume that is accessible to the rearrangement of energy. This
may be particularly important when proceeding to a comparison between highly different
configurations. The normalisation with Cr being a constant appears to provide a reasonable
description in Æ as a measure of heat transport in practice (see Mackenbach et al. 2022).11

4.2. A strongly driven finite-radius asymptotic regime
In the derivation above, it was key to consider the contribution to available energy from a
narrow band of trapped particles with ‘slow’ precession. As such, the particular form of
the expression in (4.8) is only valid in the regime where ωT

�,0/ωα can be considered small,
that is, when the trapped particle drifts are (as a group) much faster than the diamagnetic
drift. As these roles revert, either because the turbulence becomes strongly driven (i.e.
large density gradient) or the precession diminishes, the ‘weak’ approach presented before
will cease to provide us with a good approximation to the available energy.

As the precession becomes smaller relative to the diamagnetic drift, we however find
another tractable limit, which we refer to as the ‘strongly driven’ limit. That is, we still
consider a near-axis description of the magnetic field and precession, but at the same time,
order the diamagnetic drift to be large, i.e. vigorously driven.12 Although this might appear
inconsistent, it is not, as any ordering assumption about ωn only affects the evaluation of
the Æ integral, but not the particle precession itself. From the set-up, it should be clear

11An appealing alternative to this constant value would perhaps be to consider the poloidal Larmor radius instead
of the Larmor radius as the appropriate scale of the flux tube. In that case, we would have an additional factor of aspect
ratio and rotational transform, which would change the comparison of behaviour between different fields. Which form is
most appropriate is not a closed question.

12Note that there might be some issues of independence here. We assume the density gradient to be independent
from the field, which we know is not true, as the field must satisfy force balance and the pressure gradient has a density
gradient component to it. The large density gradient limit will thus, to an extent, bring second-order |B| into the picture.
However, we may formally proceed in this form.
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(a) (b)

FIGURE 7. Schematic of the contribution to available energy. (a) Diagram showcasing
contribution of F to the Æ integrand. The broken line satisfies ωα(k0) = 0 to leading order.
The plot of F[c1(k)] is shown to the right for rωT

∗,0/η 	 1 as an example. (b) A numerical
calculation showing the distribution of Æ across the magnetic well for the precise QA device at
a minor radial coordinate of r = 10−3. The points where ωα = 0 are denoted by a green dashed
line and ω̂n = 104.

that this ‘strongly driven’ regime gains relevance away from the magnetic axis, where the
precession of trapped electrons decreases and the diamagnetic drift increases.13

In this new scenario, the integral for available energy may be recomputed (see
Appendix F) using standard methods, as there no longer exists a narrow contributing band
(see figure 7). All in all, one finds that the integral reduces to

Âs ≈ 1.1605
C2

rρ
2
∗

π
√

2

ω̂n

�
(aη)3/2�3/2. (4.9)

A different regime brings a different scaling with � and ω̂n, in both cases with weaker
dependencies than in the narrow-band regime. These changes are a result of: (i) the particle
precession that serves as energy source contributing directly to Æ, and thus introducing
a 1/�ω̂n factor compared with the weak regime (simply because, on average, particles do
not quite reach the diamagnetic drift) and (ii) the contributing trapped particle fraction
corresponding to the whole population with a positive precession, which no longer is
a narrow band and thus does not contribute with an additional ω̂n� factor. Importantly,
the scaling with η inverts compared with the weak regime, Âw. Using the same tokamak
estimation for η as there, one finds Âs ∼ ε3/2E3/4, suggesting that a large-aspect-ratio
tokamak which is vertically elongated reduces Æ. Once again, this is under the assumption
of keeping the minor radius a fixed. The behaviour will change depending on which
features of the equilibrium are kept constant.

The existence of these two different regimes of available energy naturally defines a
transition. One can calculate this transition point by equating Âw ≈ Âs, denoting the
‘critical’ transition gradient as −a∂r ln n|crit = a/Ln|crit. We find

a
Ln

∣∣∣∣
crit

≈ 1.61591aη. (4.10)

13This is an important point. In the asymptotic sense, the weakly driven regime will always hold sufficiently close to
the axis. However, for a finite radius description, this may become quickly unimportant.
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(a) (b)

FIGURE 8. A comparison of the numerical calculation of Æ against the analytical result. (a)
Comparison of the Æ in the two asymptotic regimes in the precise QA configuration as a
function of �. The red dashed and dotted lines denote the analytic asymptotic results in the
strongly and weakly driven regime, respectively. The critical radial coordinate �crit is shown
by a blue dash-dotted line. The crosses are numerical evaluations of the Æ using the near-axis
equilibrium of the precise QA configuration of Landreman & Jorge (2020). The plot has been
generated with a gradient value of ω̂n/� = 103 for visualisation purposes. (b) Correlation of the
numerical and analytic result in the weakly driven regime for a wide number of quasisymmetric
devices (Landreman 2022). The ordinates correspond to the numerically evaluated Â, whereas
the abscissa corresponds to the asymptotic result of (4.8), Âw. For this plot, ω̂n/� = 1. A close
correspondence can be seen across many orders of magnitude. Both plots have been generated
using the pyQSc code, which does not have a notion of minor radius and, as such, they have
� = r.

For a quadratic density profile (ω̂n/� ≈ 2), the radial position � at which this critical
transition occurs is

�crit ≈ 0.80795aη. (4.11)

Using some typical tokamak values, we estimate aη ∼ ε
√
E ∼ 0.3 and thus �crit ∼ 0.2.

Hence, in a standard tokamak, one can transition to the strongly driven regime fairly close
to the axis and we expect the strongly driven regime description to be most suitable for
most of its volume.

We conclude this leading order Æ analysis by presenting a numerical verification in
figure 8, where we compare both asymptotic regimes in one device and the weakly
asymptotic regime across multiple devices.14 We observe excellent agreement in the
asymptotic behaviour between the found results and the numerical calculation.

4.3. Additional dependence of Æ
To learn anything about how triangularity of flux surfaces and pressure may affect this
available energy, and thus how TPMs may be affected by them, we need to proceed to
higher order in the calculation of Â. We show how to do this to obtain the dependence of
Â on p2 and δ to leading order at the end of Appendix F.15 After such considerations, we
may write Â ≈ Â0 + Â1 + . . ., where Â0 is the leading order expression and Â1 the pressure
and triangularity dependent piece. As before, for the discussion in the text, we specialise

14The code is freely available on https://github.com/RalfMackenbach/AEpy.
15Note that to do so, it is not necessary to compute the whole next order correction to Â, but only the pieces concerned

with the second-order parameters directly.
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to the generally shaped up-down symmetric tokamak. Full expressions that apply to the
quasisymmetric case may be found in Appendix F.

In the weakly driven regime, one finds

Â1

Â0

∣∣∣∣∣
weak

≈ R20

(
− r
η

μ0p2

B2
0

[
1 + 4

√
ᾱ

(ᾱ + 3)

(
ηBα0

B0 ῑ0

)2
]

+ 3
2

1 − ᾱ

3 + ᾱ
rδ

)
, (4.12)

where R20 ≈ 1.37.
It follows from this that, regardless of the choice of parameters, increasing the pressure

gradient always leads to an increase in the available energy. Note that this is the case
even if the density gradient, here controlled by the diamagnetic frequency ω̂n, is fixed.16

To picture what is happening, we resort to the discussion on precession presented before.
As we increase the pressure gradient, we learnt that the trapped-electron precession goes
against the diamagnetic drift, which means that the trapped population is brought further
away from resonance. However, from this behaviour, one would expect the drive of the
instability to decrease and with it, Æ to do so. So, how is getting further away from the
diamagnetic resonance making things worse?

To figure this out, it is illuminating to formally assess the origin of the sign of R20. The
sign is, to a large extent, a result of the correction to the integral measure dk/dc1 needed
when writing the Æ integral in c1 (as it is necessary for the weak regime calculation,
see Appendix F). This piece of the integral measures the number of trapped particles
that exist with a precession that is similar to the resonant one. The question is then how
this population fraction changes as the precession slows down. The answer is that the
population that has a near-vanishing precession grows, as most directly seen in the smaller
gradient of ωα with k (see figure 1b). Because this fraction of the population is the only
one that may contribute to the total available energy, the result is the increase of Æ with
plasma β. This is an important feature of available energy, which not only assigns value to
the magnitude of ωα(ωT

∗,0 − ωα), but also to the number of particles with a particular value
for its precession. As a consequence, we expect this behaviour to change in the strongly
driven regime, which we will visit later.

The effect of triangularity, δ, in (4.12) depends critically on whether cross-sections
are elongated vertically or horizontally, as we saw MHD stability to do in the
preceding discussion. In the most common case of vertically elongated cross-sections,
negative triangularity is seen to reduce the Æ (which increases the precession of the
trapped-particle class at k0). Thus, the effect is not synergistic with MHD stability, as
triangularity has precisely the opposite effect there. This anti-correlation holds also in the
more general case of quasisymmetric configurations, which is readily seen by comparing
(F26) for Rδ directly to Rodríguez (2023, (4.2)) for Tδ. This intimate relation between
MHD stability and what may be interpreted as TPM activity has been observed on many
occasions (in fact, could be interpreted as the driver for many reverse triangularity studies
in advance tokamak scenarios). Here we have formally proven in the weak asymptotic
regime that a compromise between the two properties is needed in this regime. This
opposed behaviour is not shared by plasma β, which acts in a detrimental form on both
MHD and TPM activity.

Performing a similar analysis in the strongly driven regime, we find Â1/Â0|strong ≈
−2.85Â1/Â0|weak, which presents the opposite sign to the weak regime. That is, an
increased plasma β (in the form of pressure gradient) always decreases the Æ and

16The change in pressure without a change in the density gradient may appear impossible, but it may be achieved
straightforwardly by keeping the density gradient fixed and increasing the ion temperature.
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in a standard tokamak with ᾱ < 1, positive triangularity becomes TEM-stabilising. In
the strongly driven regime, reducing precession brings the zero-crossing point closer
to k = 0, thus reducing the total k-space available to drive TEMs. In that limit, with
both precession and accessible population decreasing with increased pressure gradient
and positive triangularity, we expect available energy to decrease and, regarding fast
particle confinement due to non-QS behaviour, to momentarily grow before eventually
decreasing as precession grows in the direction of maximum-J . The details will
depend on how different trapped particles are affected and how important is their
contribution to confinement. Unlike in the weak regime, the whole trapped population
becomes important and not just a narrow band, figure 6. In the strongly driven
regime, there is a synergy between MHD stability and TEM activity with respect to
the triangular shaping of cross-sections, but opposed in the effect of plasma β. The
expected behaviour of a stellarator will thus depend critically on the particular regime
considered.

In addition to the sign, there is also a difference in magnitude of roughly a factor 3
between the relative effects of triangularity and plasma β in the strong regime compared
with the weak regime. For the discussion following, we focus on the strongly driven
regime. This effect can be quantified as we did in the discussion of precession, which we
do as follows. When the first-order correction significantly affects the available energy,
i.e. Â1/Â0 ∼ 1, we state that we have a critical scenario. At the edge, the critical β
becomes βÆ

crit ∼ 2a|η|/R20(1 + f ), with f as defined before (with its QS generalisation,
which may be found in (D5a)). This shows that plasma β becomes effective in significantly
changing Æ in the strong regime for QAs in the regime of βÆ

crit ∼ 2–3 %, while QH βÆ
crit ∼

4–7 %. Finite β QA equilibria appear, therefore, to significantly affect the behaviour of
TPM-like behaviour, while QHs remain more resilient, as expected from the behaviour
of precession. As far as triangularity is concerned, the expression in (3.10) may be used
for Æ with Gδ = 3[(3 + ᾱ)− (ᾱ + 1)F̄]/[(1 − ᾱ)+ (1 + ᾱ)F̄] there. The values for QS
configurations may be found in Appendix E in the range (rδ)crit ∼ 0.4–1.5, which is a
significant triangularity, nevertheless consistently achievable in many configurations (see
Appendix E). Note that in the circular tokamak limit, triangularity has no effect on Æ
(only a very small one in the weak regime from RC

22).
Given the changes in the weak and the strong regime, the critical transition gradient also

changes and may be computed by

a
Ln

∣∣∣∣
crit

≈ a
Ln

∣∣∣∣
crit,0

[
1 − 2.6389 ×

(
− r
η

μ0p2

B2
0

[
1 + 4

√
ᾱ

(ᾱ + 3)

(
ηBᾱ0

B0 ῑ0

)2
]

+ 3
2

1 − ᾱ

3 + ᾱ
rδ

)]
.

(4.13)

This means that the critical gradient decreases for an increased pressure gradient (as the
factor multiplying the pressure is always positive) and increases for negative triangularity
tokamaks which are vertically elongated.

To close the paper, we make a comparative study of the insight and results presented
in this paper with the literature. The comparison to a recent numerical analysis of the Æ
for tokamak equilibria described by a Miller (Miller et al. 1998) geometry (Mackenbach
et al. 2023b) is most straightforward. One can see that many of the trends found there are
recovered in the current paper on an analytical basis; in particular, negative triangularity
decreases the Æ for vertically elongated tokamaks only if the gradient is sufficiently small
and the gradient threshold has the same dependencies as derived here. Of course, our
work sheds light on the origin of such behaviour and can be applied beyond axisymmetric
configurations.
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The comparison to other turbulent study results and experiments requires us to carefully
discern between the two distinct regimes where we have shown the Æ exhibits. Depending
on which regime a given scenario is in, the beneficial or detrimental nature of various
equilibrium shaping parameters may change. In general and bearing this important
caveat in mind, the strongly driven regime is most often entered fairly close to the
magnetic axis (as argued before). It is also, in magnitude, the principal contributor to
Æ and the very character of the weak regime may make it numerically elusive (as
the narrow Æ band would have to be resolved in simulations). As such, it is natural
to take the Æ in the strongly driven regime as indicative of overall behaviour of a
configuration to TPM mediated transport. In terms of leading order effects, the prediction
that increasing the vertical elongation in tokamaks improves transport agrees with existing
knowledge (Chu, Ott & Manheimer 1978; Qi et al. 2019). Concerning higher order
effects, the beneficial nature of a pressure gradient on the trapped electron mode has
been noted by many authors (Rosenbluth 1968; Connor et al. 1983; Li & Kishimoto
2002). The effect of triangularity on Æ, however, is more paradoxical. In experiments,
it has been shown that negative triangularity exhibits improved confinement whilst
remaining in L-mode (Marinoni et al. 2019). The current model, however, would predict
an increase in the Æ in such a scenario and hence more unfavourable transport. Part
of this discrepancy may be explained by the role of magnetic shear, which is positive
and significant near the edge of the tokamak, but we have not explicitly considered it
here. The trapped particle precession increases with increasing magnetic shear, which
may push one to a more weakly driven regime in which negative triangularity is
beneficial.

However, the discrepancy may also come from the consideration that behaviour within
the strongly driven regime may not be the most adequate to describe the turbulent
performance of a configuration. To illustrate this, take a scenario in which Æ is large.
Turbulence is expected to be virulent in such a scenario, which will enhance transport
and ultimately limit the attainable density gradient (as a maximum transport may be
supported). This limiting factor to the gradient naturally leads to consider profile stiffness
(Garbet et al. 2004); profiles are stuck to the maximal sustainable gradient values, which
are fixed by the point at which a regime of increased turbulence is accessed. Under
such a prism, it is not that important what occurs within the strong and weak turbulent
regimes, but rather what happens to the transition point. In such a context, support of
larger gradients is seen as beneficial, as higher central densities and higher confinement
times can be achieved. The key is then to understand the behaviour of this threshold.
In practice, this transition point is found through gyrokinetic simulations (Dimits et al.
2000) to find when a steep decrease in the nonlinear heat flux is seen when the gradient
value is decreased below some threshold value. Recognising an analogous behaviour in
Æ, where Âw ∼ ω̂3

n below criticality and Âs ∼ ω̂n above it, one may postulate that the
behaviour in (4.13) is similar to that which one would observe for the common conception
of critical gradient. As a consequence of this threshold behaviour, one would then expect
that the attained gradient in experiments is the one which we have calculated in (4.13): the
system would reside on the weak-to-strong Æ boundary. We do not attempt to verify this
relationship here, which for a consistent consideration would require consistent plasma
profiles based on (estimated) heat fluxes, which would feedback onto the geometry (e.g.
Shafranov shifts). We make no attempt of solving this problem here and leave it to a future
investigation, but merely note similarities in the behaviour of our transition threshold and
Merlo et al. (2015) and Merlo & Jenko (2023) in the increase of gradient thesholds with
negative triangularity tokamaks.
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5. Conclusions and outlook

In this paper, we explored the trapped-particle precession and its effects on the available
energy to trapped particle modes in axisymmetric and quasisymmetric fields. We do
so by considering a near-axis description of the fields, in which the magnitude of the
magnetic field is directly prescribed and interlinked to other geometric and equilibrium
features. As such, this may be regarded as an extension or alternative to previous local
considerations (Connor et al. 1983; Roach et al. 1995; Hegna 2015). The precession of
trapped particles is constructed explicitly, and analytic expressions are given to leading
order and the first-order correction. This allows us to prove the impossibility of the
maximum-J property in such fields to leading order, as follows from Boozer (1983). The
role of a pressure gradient in helping to attain this property at a finite radius is presented.
Investigating the effect of triangularity in axisymmetric devices, we find that negative
triangularity may aid in attaining the maximum-J property, but the influence on different
classes of trapped particles is generally different. In the full quasisymmetric case, closed
forms are also provided and some practical examples discussed.

The influence of such precession on density-gradient driven trapped particle modes
in the system is then analysed by assessing its effect on the available energy (Helander
2017, 2020; Mackenbach et al. 2023c). Two different asymptotic regimes naturally arise
in the form of ‘weakly’ and ‘strongly’ driven regimes, each with a different behaviour
and physical mechanism, which furthermore allows one to define a critical transition
density gradient. In the weakly driven regime, a narrow band (in λ-space) of the trapped
particle population is responsible for the available energy, whilst in the strongly driven
regime, all resonating trapped particles contribute. This physical difference between the
two asymptotic regimes leads to a difference in the dependencies of Æ on the field.

This is certainly true for the effects of pressure gradient and triangularity: its beneficial
nature depends on the asymptotic regime considered. Interestingly, we find that the
dependence of Æ on triangularity is of the same form as that in Mercier’s criterion for
MHD stability, up to a sign that changes depending on the driving regime. In the strongly
driven regime, a synergy is found between improving MHD stability and lowering energy
available to the trapped particles through triangularity, meaning that improving one will
improve the other (the opposite being true of plasma β). The reduction in precession
of deeply trapped particles behind this behaviour will, whenever deviations from ideal
QS exist, lead to increased fast particle losses, at least until a regime of significant
precession in the direction of maximum-J is reached. The synergy between MHD and
turbulent activity through triangularity inverts in the weakly driven regime, where it is
under plasma β that this synergy is observed. This difference in behaviour affects the
critical-gradient estimate for the transition between the two regimes. This gradient grows
with negative triangularity, which could align with some of the existing observations in
advanced tokamak scenarios.

All in all, one finds that the near-axis framework is a convenient model to assess
properties of trapped particles in quasisymmetric magnetic fields. The notions of
maximum-J , omnigeneity (through the bounce-averaged radial drift) or Æ, for which
analytical expression may be found, allows one to readily evaluate several aspects of
performance of different stellarator configurations at negligible computational cost (as
measured by Æ). This may be helpful as a proxy for turbulence optimisation. Finally,
though we have specialised to quasisymmetric configurations, many of the techniques
presented may be applied to other contexts (such as quasi-isodynamic fields or Miller
geometry models) allowing one to make similar statements. For the quasi-isodynamic
case, such an investigation is currently being undertaken and an even more distinct case in

https://doi.org/10.1017/S0022377823001125 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823001125


Trapped-particle precession and modes 29

which the bounce-averaged radial drift may play a significant role could also benefit from
the current framework.

Supplementary material

Supplementary material is available at the Zenodo repositories with DOI/URL
10.5281/zenodo.8344200 and 10.5281/zenodo.8199904.
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Appendix A. Calculation of the second adiabatic invariant

In this appendix, we write out the full derivation of the second adiabatic invariant J‖.
Our starting point is the leading order integral given in (2.15) after a straightforward
expansion in the ordering parameter ε, defined in the main text.

To make progress with this integral, start by defining a so-called trapping parameter k,
which relates to the pitch-angle parameter λ via

λ = 1
1 + rη(2k2 − 1)+ δBb

. (A1)

Such a definition gives k ∈ [0, 1], with the limits corresponding to deeply and barely
trapped particles, respectively. It must be noted that despite its simple appearance, this
definition hides complexity in the trapped particle class dependence of δBb, (2.12, the
field perturbation at the bouncing point. With this definition, we rewrite the integral

J (0)
‖ =

√
2H

Bα
ῑB0

√
rηλ︸ ︷︷ ︸

·=J̄

∫ √
2k2 − 1 + cosχ
1 − rη cosχ

dχ. (A2)

This integral can be cast into a form close to the one required for elliptic integrals by
employing the double-angle identity cosχ = 1 − 2 sin2(χ/2), with which the integral
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reduces to

J (0)
‖ = 2

√
2J̄
∫ √

k2 − sin2 χ̄

1 − rη(1 − 2 sin2 χ̄)
dχ̄ , (A3)

where the integration variable has been set to χ̄ = χ/2. The final subtlety that one needs
to take into account is that the limits of integration are currently set by the zeros of the
argument of the numerator in the integrand (namely, the bouncing points), which also
gives an intuitive (and equivalent) definition of the trapping parameter k,

k2 = sin2
(χb

2

)
, (A4)

where we remind the reader that χb denotes the bounce angle. This shows, as did (A1),
that k includes some of the higher order corrections to B. This arises naturally from the
integration and, importantly, preserves the meaning of deeply and barely trapped particles
at k = 0, 1, regardless of the perturbation.

A final substitution puts the integral into the standard form required for elliptic integrals.
Define

k sin ζ = sin χ̄ =⇒ dχ̄ =
√

k2 − sin2 χ̄√
1 − sin2 χ̄

dζ, (A5)

in which case, the bounce points simply become ζ = ±π/2, independent of k. This
transformation is well defined because k ∈ [0, 1]. The leading order contribution to the
second adiabatic invariant is now equal to

J (0)
‖ = 2

√
2J̄
∫ π/2

−π/2

1
1 − rη(1 − 2k2 sin2 ζ )

k2 cos2 ζ√
1 − k2 sin2 ζ

dζ. (A6)

As part of the asymptotic near-axis treatment, r is to be considered small and we may thus
expand the non-singular denominator of the integrand in powers of r. Including terms up
to the first order,17 we find

J (0)
‖ = 2

√
2J̄
[
I1(k)+ I2(k)rη + O(r2)

]
, (A7)

where we have introduced

I1 =
∫ π/2

−π/2

(
k2 − 1√

1 − k2 sin2 ζ
+
√

1 − k2 sin2 ζ

)
dζ

= 2
[
(k2 − 1)K(k)+ E(k)

]
I2 =

∫ π/2

−π/2

k2 cos2 ζ
(
1 − 2k2 sin2 ζ

)√
1 − k2 sin2 ζ

dζ

= 2
3

[
(2k2 − 1)E(k)− (k2 − 1)K(k)

]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A8)

17If one wants to include higher order effects into the presented calculation, the Boozer Jacobian must be treated
with some care. The reason is that, after all, the Jacobian represents the geometry of flux surfaces and, thus, the form of
the Jacobian itself depends on how the near-axis expansion is interpreted. If the near-axis expansion is treated as a model
that is truncated at second order to construct flux surfaces, then the Jacobian is actually not equal to Bα/B2 beyond the
first order. The integral at second order would need to be reconsidered. A comment in this regard may be found from
Landreman (2021).
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and define complete elliptic integrals of the first and second kind (Olver et al. 2020, § 19),

K(k) ·=
∫ π/2

0

(√
1 − k2 sin2 ζ

)−1

dζ, (2.17a)

E(k) ·=
∫ π/2

0

√
1 − k2 sin2 ζ dζ. (2.17b)

Our final step is to expand J̄ to the required order in r. This expansion is readily done and
one can show that, neglecting terms of order O(r2), this reduces to

J̄ ≈
√

2Hrη
Bα0

ῑ0B0

[
1 + rη

(
1
2

− k2

)
+ O(r2)

]
. (A9)

Collecting all the terms of order O(r) in J (0)
‖ ,

J (0)
‖ = 4

√
Hrη

Bα0

ῑ0B0

[
I1(k)+ rη

(
I1(k)

(
1
2

− k2

)
+ I2(k)

)
+ O(r2)

]
. (A10)

We now turn to the next order correction in ε following (2.14),

J (1)
‖ = −

√
2H

Bα
ῑB0

∫ χb

−χb

(
λ

2
δB − δBb√

1 − λ(B̄ + δBb)
+ δB

√
1 − λ(B̄ + δBb)

B̄2

)
dχ. (A11)

The second term in the integrand is a factor r smaller than the first and, hence, for
our current expansion, only the first term needs to be taken into account. To perform
that remaining integral, we ought to express the integrand explicitly as a function of the
integration variable χ . Using the near-axis expansion form of B for a quasi- and stellarator
symmetric fields, we know that

δB − δBb = r2BC
22 (cos 2χ − cos 2χb) , (A12a)

1 − λ(B̄ + δBb) = rη(2k2 − 1 + cosχ)
1 + rη(2k2 − 1)+ δBb

. (A12b)

With these, introducing the trapping parameter, using double angle identities, and
employing ζ as the integration parameter (like in the previous order), the integral reduces
to

J (1)
‖ ≈ J̄ rBC

22

η
×

√
2
∫ π/2

0

cos 4χ̄b − cos 4χ̄√
1 − k2 sin2 ζ

dζ

≈ −4
√

Hrη
Bα
ῑB0

rBC
22

η
IC

22(k), (A13)

where we have kept leading order terms in r. The function describing the behaviour of
different trapped particle classes is IC

22(k), which we have defined as

IC
22(k)

·= I2(k)− (2k2 − 1)I1(k). (A14)

Expanding to order r2 and combining the first- and second-order result, (2.14), gives us
our final expression for the second adiabatic invariant,

J‖ ≈ 4
√

Hrη
Bα0

ῑ0B0

{
I1(k)+ rη

[(
1
2

− k2

)
I1(k)+ I2(k)− BC

22

η2
IC

22(k)
]}
. (2.24)
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FIGURE 9. Residual between numerical J‖ and analytic approximation. The plot shows, in log
scale, the difference between the numerically computed J‖ and the analytic expression, (2.24),
for O(r1/2) (solid line) and O(r3/2) (broken line). The dotted line shows a reference ∼ r5/2

scaling, which agrees with the broken line as predicted by the theory. This particular case was
run for an artificial ideal second-order near-axis |B| profile with η = 1, B20 = 1, BC

22 = 3 and
k = 0.5.

Figure 9 shows the comparison of this analytic expression with the numerical
calculation of J‖.

Appendix B. Integral expressions for the radial drift

In this section, we use the near-axis framework to find expressions for the
bounce-averaged radial drifts to leading order in the near-axis expansion. Of course, only
if the system is not exactly quasisymmetric will the radial drift be non-vanishing. We will
assume that quasisymmetry is broken at second order in the near-axis expansion.

As is well known, it is generally not possible to guarantee the symmetry of |B|
to second order in the expansion. Thus, generally, to form a consistent description to
second order, one formally allows B20 to be a function of ϕ, rather than a constant.
This is the conventional choice and keeps the other pieces of |B| constant. Let us then
consider here a field that is quasisymmetric to first order, but at second order, has B2 =
B20(ϕ)+ BC

22 cos 2χ , which retains stellarator symmetry for an even B20(ϕ). Including the
contributions from the other terms if their ϕ-independence was relaxed would also be
straightforward.

Let us then consider the α derivative of the second adiabatic invariant needed for
assessing the averaged radial drift explicitly,

∂αJ‖=
√

2H
Bα
B0 ῑ
∂α

[∫ √
1 − λB̂

B̂
dχ

]
. (B1)

The integrand vanishes at the bouncing points by construction and, therefore, by Leibniz’s
rule, the boundary terms may be dropped when enacting the derivative of the integral.
This is not completely true for barely and deeply trapped particles, as their bounce points
may change in a non-smooth way as we move from field line to field line. To picture this,
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think of a top of a magnetic well coming down on one side of the well as we move to
a different field line. The original barely trapped particle ‘leaks’, undergoing a sudden
change in behaviour, leading to a new class of trapped particle. Such a behaviour cannot
be appropriately captured in a perturbative sense, but the importance of this particle
‘leak’ may be assessed by constructing a measure of the leaked particle fraction fleak =
maxα[|B20((π − α)/ῑ)− B20((π + α)/ῑ)|]/(Bmax − Bmin), where we assumed stellarator
symmetry (i.e. B20(−ϕ) = B20(ϕ) at second order).

With this in mind, and ignoring this fringing case, we may pull the derivative through
inside the integral. The integral is taken along field lines (i.e. at constant α), which means
that the Boozer toroidal angle ϕ = −(α − χ)/ῑ0 becomes a function of both α and χ . That
means that ∂αf (ϕ) = −∂ϕf /ῑ0, which, keeping the leading order near-axis term and using
the same notation as in Appendix A, gives

∂αJ‖ = −
√

2H
Bα
B0 ῑ

λ

2

∫
∂αB̂√

1 − λB̂
dχ (B2)

=
√

2H
Bα

B0 ῑ
2
0

r
η

√
ηr
2

·=I20,α︷ ︸︸ ︷∫ π/2

−π/2

B′
20[ϕ(χ̄, α)]√
1 − k2 sin2 ζ

dζ , (B3)

where the prime indicates the derivative with respect to the only argument of B20, ϕ. The
integration variable is ζ and one should interpret χ̄ (ζ, k) = arcsin(k sin ζ ).

The integral may be readily evaluated using standard numerical methods. To find ωψ ,
the bounce-averaged radial drift, we need to evaluate the leading order bounce time, τb.
Using the expression for J (1)

‖ , the bounce time is equal to

τb = ∂HJ‖≈ Bα0

B0 ῑ0

2K(k)√
Hrη

. (B4)

Hence, the bounce-averaged radial drift to leading order can readily be found to be

ωψ = −Hr2

ῑ0

I20,α(k, α)
2K(k)

. (B5)

The averaged radial-drift ωψ serves as a physically meaningful measure of the
quasisymmetry quality of a configuration in this near-axis construction, vanishing when it
is omnigeneous. The expression for ωψ is however a function of both α and k and, thus,
for a single scalar measure that characterises the radial drift performance of a field at a
given flux surface, we must reduce it. Note that given the periodicity of B20, the average of
ωψ over all field lines (i.e. α) vanishes. This might suggest that there is no net detrimental
effect to having this radial drift, as on average, there is the ‘same’ amount of particles
going one way or the other. However, the neoclassical transport in the low collisionality
limit as measured by εeff is insensitive to the sign of ωψ . To find a single measure of its
magnitude, we attempt to find an upper bound for ωψ .

Note that the denominator in the integrand of I20,α is an always positive function within
the integration domain

I20,α ≤ 2B′
20,maxK(k). (B6)

Thus,

ωψ ≤ r2H
ῑ0

B′
20,max, (B7)
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(a) (b)

FIGURE 10. Radial drift of precise QH in the near-axis description. (a) Plot showing the B20
function of the precise QH near-axis construction as a function of ϕ and (b) the bounce-average
radial drift ωψ as a function of α and k. The maximum bounce-average radial drift ωψ occurs
for the deeply trapped population at the field line where the largest gradient of B20 aligns with
the minimum of the well.

with the equality only holding when the field line label α makes the largest gradient B′
20,max

match the bottom of the well and deeply trapped particles are considered (see figure 10).
Only in this limit, the particle samples the largest non-QS value of B′

20. Any other value
will necessarily be smaller.

This bound provides a simple relation between the derivative of B20 and the radial
drift of particles. The derivative of B20 is thus a more physical form of measuring
quasisymmetry breaking within the near-axis framework compared with simply using the
peak-to-peak B20 variation as is customary (Landreman & Sengupta 2019; Landreman
2022; Rodriguez et al. 2022b).

Appendix C. Full expressions for the particle precession

In this appendix, we present some key elements and expression for the calculation of the
precession of trapped particles, ωα = ∂ψJ‖/∂HJ‖. Obtaining such expressions from the
asymptotic form of J‖ is straightforward, but it requires taking care of partial derivatives
appropriately.

To that end, let us remind ourselves of the set of independent variables: ψ , α, H and μ.
Because we are using the toroidal flux over 2π as our flux surface label,

∂r
∂ψ

= ∂ψ

(√
2ψ
B0

)
= 1

B0r
. (C1a)

Furthermore, as shown in Appendix A, the pitch angle is related to the trapping parameter
via

λ = 1
1 + rη(2k2 − 1)+ δBb

. (C1b)
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We thus require expressions for δBb, which may readily be computed as

δBb = r2 (B20 + BC
22 cos 2χb

)
= r2 [B20 + BC

22

(
1 − 8k2 + 8k4)] . (C1c)

With this expression at hand, it is straightforward to compute the radial derivative of k (at
constant μ and H, and thus constant λ),

∂k
∂r

≈ 1 − 2k2

4kr
+ BC

22 − B20

2kη
. (C1d)

Similarly, the derivative with respect H can be found as

∂k
∂H

≈ 1
4kHrη

+ (2k2 − 1)(η2 − 4BC
22)

4kHη2
. (C1e)

The particle class label k changes both with radius and particle energy, as it follows from
the change in |B|.

We first use the above expressions to find the total bounce-averaged excursion in α,
�α = ∂ψJ‖. Using the chain rule and keeping the leading two non-zero orders,

�α =
√

Hη
r

Bα0

ῑ0B0

1
B0r

{
2 [2E(k)− K(k)]

+ rη
[
(2 − 4k2)E(k)+ (1 + 2k2)K(k)

]
−4rB20

η
K(k)+ 4rBC

22

η

[
(2k2 − 1)E(k)+ (1 − k2)K(k)

]}
. (C2)

Next, the bounce time τb = ∂HJ‖ is

τb = Bα0

B0 ῑ0

1√
Hrη

{
2K(k)

+rη
[
4E(k)+ (2k2 − 3)K(k)

]+ 4rBC
22

η

[
E(k)− k2K(k)

]}
. (C3)

The trapped-particle precession is now readily found by taking the ratio of �α/τb and
expanding to include the leading-order and the first correction terms. Doing the expansion,
one finds this to be equal to

ωα = Hη
B0r

{
2

E(k)
K(k)

− 1

+ rη

[
−4
(

E(k)
K(k)

)2

+ 2(3 − 2k2)
E(k)
K(k)

+ (2k2 − 1)

]

−2rB20

η
+ 2rBC

22

η

[
−2
(

E(k)
K(k)

)2

+ 4k2 E(k)
K(k)

+ (1 − 2k2)

]
+ O(r2)

}
, (C4)

which is equivalent to (3.1).
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Appendix D. Precession in terms of triangularity and pressure gradient

In the main text and Appendix C, we showed how to get an expression for the
precession of trapped particles at second order in the near-axis expansion. This involved
the parameters BC

22 and B20, natural parameters in the near-axis expansion which directly
describe the shape of |B|. Although most natural in the calculations of trapped-particle
precession, they do however not offer a clear connection to the physical nor geometric
features of the field.

Within the near-axis framework, such a connection can be made. At second order in the
near-axis expansion of an exactly quasisymmetric, stellarator-symmetric configuration,
BC

22 and B20 can be re-expressed as linear combinations of pressure gradient, p2, and
triangularity of an up-down cross-section, δ. The latter two can then be used as the
independent parameter choices at second order in the expansion of the field.

The definition of pressure gradient is straightforward as the flux derivative of the
pressure on axis, p2 = (B0/2) dp/dψ . The notion of triangularity, δ, requires additional
care. We will define δ as the relative displacement of the vertical turning points of
the cross-section to the width of the cross-section along the up-down symmetry line
(normalised by r), and do so in the (κ, τ ) Frenet frame. That is, in the plane orthogonal
to the magnetic axis where the cross-section is up-down symmetric. Asymptotically, and
in terms of the near-axis expansion quantities (Landreman & Sengupta 2019; Rodríguez
2023),

δ = 2sign(η)
(

YS
22

YS
11

− XC
22

XC
11

)
. (D1)

Here the X and Y expansion parameters describe the flux surface shape in the Frenet–Serret
frame, and details on them may be found from Landreman & Sengupta (2019). Note
that dimensionally, the definition in (D1) has units of inverse length. This is so because
δ is defined not as triangularity, but rather as 1/r times triangularity, which accounts
for the fact that close to the magnetic axis, where cross-sections are elliptical, the
triangularity vanishes. This notion of normalised triangularity in the plane normal to the
axis, as explained by Rodríguez (2023), is generally different to the common definition of
triangularity in the lab frame, δlab. That is, it is not equivalent to the triangularity of the
cross-section that results from making a cut of the configuration at a constant cylindrical
angle. If the magnetic axis has a relative tilt with respect to the cylindrical coordinate
system, then δlab = δ +Λ, where Λ is a term that depends only on the axis shape and
first-order near-axis shaping.18 In the special case of an axisymmetric field, this geometric
transformation term Λ vanishes. In general, varying δlab or δ is equivalent, with all other
near-axis features kept constant.

With the notions of triangularity and pressure gradient in place, the equilibrium field of
a quasisymmetric configuration can be uniquely defined at second order (Rodríguez 2023).
In the axisymmetric limit, this is evident following the behaviour of the Grad–Shafranov
equation and the set-up of its solutions. In the general quasisymmetric configuration,
this is more subtle, as the cross-section shapes change around the torus driven by the
asymmetry of the magnetic axis. Specifying the triangularity of a single cross-section
might then appear insufficient to describe uniquely the whole field, but the conditions
of quasisymmetry and equilibrium are sufficient to grant this uniqueness. Schematically,
one may picture the situation as a kind of initial value problem, in which the single

18We note that the expression in Rodríguez (2023, (C2)) for Λ is incorrectly simplified, as it assumes certain
symmetry that does generally not exist. The correct expression will be presented in a future publication, but makes
no difference to the discussion in the present paper.
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cross-section is the initial value and the axis-shape describes the flow of evolution. There
are therefore different ways of describing the very same field, as different cross-sections
may be chosen.

It should appear clear that the shape of the axis thus plays a crucial role in the problem,
especially through its asymmetry. Described by its curvature, κ , and torsion, τ , it is natural
to construct a measure of said asymmetry like F̄, introduced by Rodríguez (2023), and
defined to be

F̄ = 2

[
(I2 − B0τ)/κ

2∫ 2π

0 dϕ(I2 − B0τ)/κ2

∫ 2π

0 dϕ(1 + σ 2 + η4/κ4)

1 + η4/κ4
− 1

]
, (D2)

where I2 is the toroidal current and σ is a measure of up-down asymmetry, a solution
to the Riccati σ equation (see Landreman & Sengupta 2019), and thus not a degree of
freedom. The measure F̄ must be evaluated at the location of an up-down symmetric
cross-section. As we are assuming stellarator symmetry, there are at least two such distinct
positions (in the axisymmetric limit, an infinite number of them, but F̄ = 0 in that case).
This emphasises the freedom mentioned before about the description of stellarator fields;
there are two naturally simple ways of identifying the very same field, depending on
with which up-down symmetric cross-section is chosen to identify the configuration.
Depending on this choice, the meaning of the ‘effects of changing the cross-section’ (and,
in particular, triangularity) will of course change and, with it, the conclusions derived.
One must interpret it as the effects of changing the shape of that very cross-section,
modifying the remaining of the configuration in a consistent way, keeping the axis and
profiles fixed. For consistency and analogy with the typical axisymmetric case, we shall
choose to identify configurations with their most vertically elongated, up-down symmetric
cross-section, which often exhibit a bean-shape.

With the definitions above, the magnetic parameters B20 and BC
22 may be written

explicitly in terms of the pressure gradient p2 and the triangularity δ (defined to be positive
in the direction of the normal curvature) of the cross-section at ϕ = 0,

B20 = −μ0p2

B2
0

[
1 + 4

√
ᾱ

(ᾱ + 3)− (ᾱ + 1)F̄

(
ηBα0

B0 ῑ0

)2
]

− 3
2
|η|(1 − ᾱ)+ (ᾱ + 1)F̄
(ᾱ + 1)F̄ − (3 + ᾱ)

δ + · · · ,
(D3a)

BC
22 = −2μ0p2

B2
0

√
ᾱ

(ᾱ + 1)F̄ − (ᾱ + 3)

(
ηBᾱ0

B0 ῑ0

)2

− |η|
2
(3 − ᾱ)+ (ᾱ + 1)F̄
(3 + ᾱ)− (ᾱ + 1)F̄

δ + · · · ,
(D3b)

where ᾱ = (η/κ(0))4 and the dots denote terms independent of second-order choices on
which we shall not focus.

With these expressions in place, we may then rewrite the effects of second order on
the trapped-particle precession (noting that we assumed η > 0 in the adiabatic invariant
calculation in this paper),

ωα,1 = Hη
B0

[
ηG̃ − μ0p2

ηB2
0
Gp2 + δ

2
Gδ
]
, (D4)
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and write

Gp2 = G20(k)+
(
ηBα0

B0 ῑ0

)2 2
√
ᾱ

(ᾱ + 3)− (ᾱ + 1)F̄
[2G20(k)− GC

22(k)], (D5a)

Gδ = 3(1 − ᾱ)G20(k)− (3 − ᾱ)GC
22(k)

(3 + ᾱ)− (ᾱ + 1)F̄
+ (ᾱ + 1)[3G20(k)− GC

22(k)]F̄
(3 + ᾱ)− (ᾱ + 1)F̄

. (D5b)

These two expressions describe the effect of the pressure gradient and the cross-section
triangularity on the trapped-particle precession as a function of the class of trapped
particle. Note that G̃ is independent of both the pressure gradient and triangularity. As
such, when investigating dependencies on these parameters (at fixed η and axis), we may
safely ignore contributions of G̃. The derivation may be checked with computer algebra,
as provided in the repository associated with this paper.

D.1. Relation to the large-aspect ratio circular tokamak limit
Here we relate the found results to the large-aspect ratio tokamak limit investigated by
Connor et al. (1983). Let us start comparing the pressure dependence of precession and,
as such, let us define αp = −4μ0rp2/|η|B2

0 ῑ
2
0. One may then write

−μ0rp2

|η|B2
0
Gp2 = αp ῑ

2
0

4
Gp2

= −αp ῑ
2
0

2
+ αp

2

(
ηBα0

B0

)2 4
√
ᾱ

(ᾱ + 3)− (ᾱ + 1)F̄

(
−1 − GC

22

4

)
. (D6)

Specialising to the circular tokamak case (i.e. ᾱ = 1 and F̄ = 0), we find

−μ0rp2

|η|B2
0
Gp2 = −αp ῑ

2
0

2
− 2αp · 1

4

[
E(k)
K(k)

(
2k2 − E(k)

K(k)

)
+ 3

2
− k2

]
︸ ︷︷ ︸

·=Gα,p(k)

. (D7)

In the circular limit, we may write

ωα,circle = Hη
B0r

(
G(k)− αp ῑ

2
0

2
− 2αpGα,p(k)

)
, (D8)

acknowledging that we are mixing terms of different order in r and not keeping all relevant
terms consistently to the right order.

This expression has a similar form to Connor et al. (1983, (9)). The first two terms are
exactly identical, while the latter is a different from,

Gα,Connor(k) = 2
3

(
E(k)
K(k)

(
2k2 − 1

)+ 1 − k2

)
. (D9)

We thus see that, though the functional form is similar, it is not the same, especially
near deeply trapped particles. These differences correspond to the difference between
the models considered and the meaning of changing a certain parameter thereof. In the
approach of Connor, the field is being constructed in a way that locally, at finite radius,
equilibrium is satisfied (as explicitly shown byRoach et al. 1995). Such a method requires
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the shape of the flux surface and radial variations of various geometric and equilibrium
quantities to fully specify the local equilibrium conditions. Furthermore, many of these
parameters are treated independently, and one requires subsidiary assumptions to set these
values (in particular, the ‘artifice’ (Connor et al. 1983) of ordering the pressure in a
particular form). Though this does allow one to investigate the effect of such parameters
independently, it is not guaranteed that there exists a global solution adhering to the set of
local conditions. The near-axis approach presented, although asymptotic in nature, is valid
in some region near the axis and, as such, can perhaps be thought of as a ‘more global’
solution. This translates into a larger degree of coupling between the geometry and the
magnitude of the field (due to the singular nature of the axis) compared with the radially
local approach, which ends up reducing the number of free parameters while it retains
realism.

The difference is especially noticeable in the involvement of the magnetic shear, which
appears explicitly in the work of Connor et al. (1983), but becomes a higher order effect
in the current treatment. In fact, we may formally obtain a sense of the involvement of
the magnetic shear by considering the next order in the expansion for the precession and,
focusing on the variation of the field line length due to the change in ι when taking the
derivative of J‖ with respect to ψ , it can straightforwardly be shown to give

ωα,shear = − 4
Hη
B0r

r∂r ῑ

ῑ0

(
E(k)
K(k)

+ (k2 − 1)
)

·= 4s
Hη
B0r

(
E(k)
K(k)

+ (k2 − 1)
)

︸ ︷︷ ︸
·=Gs(k)

, (D10)

where we have defined the magnetic shear as s = −r∂r ῑ/ῑ0 and the term is clearly a
second-order effect. This term has precisely the same form as that reported by Connor
et al. (1983). To arrive at such a term, we considered the magnetic shear separate from
other elements in the model (an independence that is partially correct given the freedom
in the toroidal current profile), but hides connections to higher order considerations within
the near-axis framework (Rodríguez et al. 2022), especially its ties to the third-order
harmonics of |B|, which we would expect to modify this dependence at least partially.

Appendix E. Critical value estimates for plasma β and triangularity

In the main text, we presented some estimates for the magnitude of plasma β and
cross-section triangularity that made their effect on precession of deeply trapped particles
and available energy significant. In this appendix, we present the values for these estimates
for the sample near-axis QS configurations in figure 3.

Table 2 includes the following parameters. First, the critical plasma β for reversal of the
deep-particle precession at the edge of the configuration, (3.8),

βcrit = a|η| 2
Gp2(0)

, (E1)

with a the minor axis and taking r = a. The second is the critical beta but for the available
energy (see Appendix F and § 4),

βAE
crit = −a|η| 2

R20(Gp2(0)+ 1)
, (E2)

where the denominator is given in (4.12).
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PQA PQAw PQH PQHw 22QA 22QH2 22QH3v 22QH3b 22QH4l 22QH4w

βcrit 0.06 0.05 0.14 0.12 0.05 0.06 0.10 0.11 0.11 0.11
βAE

crit 0.02 0.02 0.07 0.06 0.02 0.02 0.04 0.05 0.05 0.06
(rδ)crit 0.96 1.09 1.47 1.42 1.05 0.99 1.22 1.32 1.40 1.36
(rδ)AE

crit 0.47 0.61 1.43 1.25 0.57 0.50 0.81 1.00 1.19 1.09
rcδ 2.02 3.46 1.60 2.23 3.64 0.09 1.08 −0.29 1.18 5.13
�QS 0.06 0.20 0.34 0.99 0.18 0.51 0.001 0.16 0.09 0.0003

22QH4m 22QH7 ARIESCS GAR HSX∗ QHS48

βcrit 0.16 0.14 0.06 0.05 0.15 0.11
βAE

crit 0.06 0.05 0.03 0.02 0.07 0.06
(rδ)crit 0.78 1.44 1.02 0.87 1.40 1.51
(rδ)AE

crit 0.33 1.30 0.53 0.40 1.19 1.57
rcδ −0.91 0.13∗ 0.47 1.90 0.04 0.48
�QS 0.02 0.0005 0.70 0.53 8.05 0.05

TABLE 2. Critical plasma β and triangularity in QS configurations. The table gathers critical
plasma β, triangularity rδ and QS measure �QS values for a number of near-axis QS
configurations, configurations used in figure 3. The short names for the configurations follow
straightforwardly from their full labels in figure 3. The starred triangularity corresponds to the
triangularity for an aspect ratio 10 consideration (as there is difficulty in computing rc). An
aspect ratio of 10 was assumed to evaluate the βcrit values. One should take the case of HSX
sceptically, as the near-axis description is far from being quasisymmetric (as clearly indicated by
�QS; in fact, it also has a very small rc, hence the small value of attainable triangularity). One
could attempt to modify the near-axis configuration to make it more quasisymmetric and a better
description, but we shall not do this here.

For the critical triangularity, the value of (rδ) to revert the precession of deeply trapped
particles, we consider the definition in (3.10),

(rδ)crit = 2
Gδ(0)

. (E3)

Similarly, for the available energy, we shall use the same expression but for the
reinterpretation of Gδ with

GAE
δ = 3R20

(1 − ᾱ)+ (1 + ᾱ)F̄
(3 + ᾱ)− (ᾱ + 1)F̄

, (E4)

which follows directly from (4.12). Finally, for a reference, we shall compare this
critical triangularity to rcδ, the maximum attainable triangularity in a given near-axis
configuration without incurring unphysical flux surface shapes.

Finally, to include a sense of the QS quality, we introduce the QS measure motivated by
Appendix B, (B7),

�QS =
∣∣∣∣B′

20,max

ῑ0

∣∣∣∣ , (E5)

where a vanishing value indicates an exactly QS configuration to second order. This
measure shows that some near-axis configurations (especially that of HSX) lie far from
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ideal QS. In the special case of HSX, the near-axis model is constructed to reproduce the
leading harmonic content of |B|; small variations can however lead to significant effects
especially at second order in the near-axis expansion (that is, where we assess QS or
compute triangularity). Because we are using these as illustrating examples, we do not
however consider a further refinement of these configurations.

The values in Table 2 show that physically relevant finite beta effects can have significant
effect on the leading order behaviour of both deeply trapped particle precession and Æ.
This effect is stronger in quasi-axisymmetric configurations and, we should remind
ourselves, on the outermost surface. As the magnetic axis is approached, the critical β
needed will grow. Interestingly, Æ is more susceptible than the precession itself. The
case of triangularity shows that a significant degree of shaping is required to affect either
precession or Æ. This level of shaping is in many configurations present or exceeded, as
the relative comparison of the critical rδ to rcδ shows. Once again, these effects become
strongest as the outer surface is approached.

Appendix F. Details of asymptotic available energy integral

In this appendix, we provide mathematical and algebraic details concerning the
asymptotic evaluation of Æ in the two considered regimes. Note that these considerations
may be extended simply to other approximation schemes, such as a large aspect ratio
model.

F.1. The weakly driven regime
To perform the available energy integral in this regime, we showed how it is the population
of trapped particles that have an almost vanishing precession that contribute. Thus, we first
re-define the zero crossing of the trapped particle precession, k0,

G(k0) = 0. (F1)

To make further progress with the integral, we ought to transform the integration variable
λ into k and, thus, require dλ/dk. Details of this derivation are included in Appendix C
and, to leading order, it reduces to

dλ
dk

≈ −4rηk. (F2)

The final component needed for the integral is the normalised bounce time Ĝ1/2 ≈ ∫ (1 −
λB̂)−1/2d	/L, for which the leading order expression reduces to

Ĝ1/2(k) = 2
√

2K(k)√
rη

Bα0

B0 ῑ0L
, (F3)

which may be calculated analytically or verified via the expressions for the bounce time
given in Appendix C.

To exploit the existence of a narrow contributing band, we will then make a local
approximation of the integrand about k0. The region can be shown to be small,

ω̂α ≈ �ψη

rB0
G′(k0)(k − k0) ∼ O(1) =⇒ (k − k0) ∼ r, (F4)

so that conveniently using c1 as integration variable,

k = ω̂T
∗,0

�ψη

rB0
G′(k0)c1

+ k0 −→ dk
dc1

= − 1
c2

1

rB0ω̂
T
∗,0

�ψηG′(k0)
, (F5)
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the remaining integral becomes ∫ ∞

0

F(c1)

c2
1

dc1 =
√

π

6
. (F6)

In doing so, we approximated the integration domain c1 ∈ (ω̂T
∗,0B0r/�ψη|G′(k0)|k0,∞]

as (0,∞]. Doing so only introduces an error of order
√

r on the integral, which is the
asymptotic value of F at small argument.

Collecting all the factors involved, the leading order expression of the Æ simply
becomes

Â ≈ 4
√

2π

3V
Bα0Nwells

B0 ῑL
k0K(k0)

|G′(k0)|
(
ω̂T

∗,0
)3 rB0

�ψ

√
r
η
. (F7)

Computing the dimensionless factor V to leading order,

V =
∫

2
√

π

B̂

d	
L

≈ 4π3/2 Bα0Nwells

B0 ῑ0L
, (F8)

and easing notation by approximating

k0K(k0)

|G′(k0)| = 0.666834 · · · ≈ 2
3

± 0.03 %, (F9)

we find the result

Â ≈ 2
√

2
9π

(
ω̂T

∗,0
)3 rB0

�ψ

√
r
η
. (F10)

One may now retrieve the result stated in the main text by imposing that�ψ = CrrB0ρ,
� = r/a, ρ∗ = ρ/a and −∂� ln n = ω̂n, resulting in

Â ≈ 2
√

2
9π

C2
rρ

2
∗

(
ω̂n

�

)3
�3√�√

aη
. (F11)

This concludes the analysis of the weakly driven asymptotic regime.

F.2. The strongly driven regime
The integral in the strongly driven regime is straightforward. Our starting point is the full
integral given in (4.5),

Â = (ω̂T
∗,0)

2

V

∫
dλ
∑

wells(–)

Ĝ1/2F(c1)Θ(ωα). (4.5)

We again employ the fact that dλ/dk ≈ −4krη to write

Â = 2
√

2
π3/2

(
ω̂T

∗,0
)2 √

rη
∫

kK(k)F (c1)Θ(ω̂α) dk. (F12)
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In the strongly driven limit, the main assumption is that c1 	 1 for all k, and thus we may
replace F with its asymptotic form for large c1. Using (Olver et al. 2020, §§ 7.2, 7.12),
F(c1) ≈ 3

√
π/4c1, which yields

Â = 3�r

π
√

2
(ω̂T

∗,0)η
√

rη
∫ k0

0
kK(k)G(k) dk. (F13)

One can numerically evaluate the integral to find

∫ k0

0
kK(k)G(k) dk ≈ 0.386842. (F14)

Introducing the dimensionless variables as we did in the weak regime, we find

Â = 1.1605
(Crρ∗)2

π
√

2
ω̂n(aη)3/2

√
�, (F15)

which is our final result.

F.3. Dependence of Æ on B20 and BC
22

Before concluding this appendix, we show how to proceed to assess the effect of BC
22

and B20 on the expression of available energy. The main idea here is that we would like
to evaluate these contributions without having to evaluate all the consistent asymptotic
dependence of Æ. For instance, we are not interested in the order r1/2 correction to the
weak Â in (4.8) due to the finite extent of F . To see how to proceed, let us write the
relevant parts of the available energy integral (setting overall factors aside for simplicity
of notation),

Â ∼
∑
wells

∫
dc1

dλ
dk

dk
dc1

τbF(c1). (F16)

To evaluate higher order corrections to the integral in the weak regime, we remind the
reader first that the calculation involves the local expansion of the integrand. In that spirit,
the changes due to second order on the first factor in the integral is straightforward,
and may be simply be read off (C1b). It gives as a correction on the leading order
integral

R1 = 4rBC
22

η
(2k2

0 − 1), (F17)

where we have evaluated it at the original k0 to leading order. A similarly simple correction
arises from the corrections to the bounce time τb, which may simply be read off (C3),

R2 = 2rBC
22

η

(
E(k0)

K(k0)
− k2

0

)
. (F18)
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The contributions left come from the c1-dependent terms, F(c1) dk/dc1. Here the change
in the zero-crossing of precession due to second-order corrections on |B| contribute to the
available energy. We must thus assess where is the new zero. With the precession defined
as ωα = ωα,0 + ωα,1, (3.1), we rewrite it as

ωα = (η/rB0)[G(k)+ (r/η)Ĝ(k)], (F19)

ignoring every term that does not depend on B20 or BC
22, and recalling that Ĝ = B20G20 +

BC
22G2c, (3.4). Then, define the new ωα(k�) = 0 point with k� = k0 + rδk, so that

δk ≈ − Ĝ(k0)

ηG′(k0)
. (F20)

With this ‘displaced’ k�, we may assess the change in the available energy by simply
considering the perturbation of the leading order k0 dependence, namely k0K(k0)/G′(k0),
noting that the denominator comes from ω′

α and thus it has an additional contribution.
Thus, the third correction may be written as

R3 = − r
η

1
G′(k0)

[(
1 + K ′(k0)

K(k0)
− G′′(k0)

G′(k0)

)
Ĝ(k0)+ Ĝ ′(k0)

]
. (F21)

Evaluating all these terms numerically,19 the total correction due to BC
22 and B20 is

R =
∑

i

Ri ≈ r
η
(1.36782B20 − 0.0316789B2c) , (F22)

where this factor should be understood to be a relative modification of the leading order
available energy Â = Â0(1 + R). That is, the correction to available energy due to B20 and
BC

22, which we denote as Â1, is equal to

Â1 = Â0
r
η

(
R20B20 − RC

22BC
22

)
, (F23)

where R20 ≈ 1.37 and RC
22 ≈ 0.03.

In the case of the strongly driven scenario, the integrals are over the whole k-space, but a
term by term analysis can be performed in an analogous way to that above and the various
terms numerically evaluated. The result of the calculation is

Â1 = −Â0Rs
20

rB20

η
, (F24)

where Rs
20 = 3.91. Astonishingly, the BC

22 contribution completely drops out. In terms of
dependence on BC

22, the two limits of the Æ are not that different, considering that R20 	
RC

22 for the former case (dropping it makes approximately ∼ 2 % error). For the remaining
analysis, we shall thus only consider dependence on B20.

As was the case in the discussion of the trapped electron precession, it is most physical
to express these effects at second order in terms of the triangularity of a cross-section

19There is a closed form for the numerical factor in this correction. However, this is a complicated function of k0 and
elliptic integrals, and thus we do not present the expression which does not add much to the picture.
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and the pressure gradient. This is explained in more detail in Appendix D. Splitting B20
up as

B20 ≈ −μ0p2

B2
0
P + δ|η|

2
T , (F25)

where we define

P =
[

1 + 4
√
ᾱ

(ᾱ + 3)− (ᾱ + 1)F̄

(
ηBα0

B0 ῑ0

)2
]
, (F26a)

T = 3
(1 − ᾱ)+ (ᾱ + 1)F̄
(3 + ᾱ)− (ᾱ + 1)F̄

, (F26b)

the correction in the weakly driven regime reduces to

Â1

Â0

∣∣∣∣∣
weak

= R20

(
− r
η

μ0p2

B2
0
P + rδ

2
T
)
, (F27)

and in the strongly driven regime,

Â1

Â0

∣∣∣∣∣
strong

= −Rs
20

(
− r
η

μ0p2

B2
0
P + rδ

2
T
)
, (F28)

which are in the form presented in the main text.
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