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Abstract

We investigate the regular or chaotic nature of orbits of stars moving in the meridional plane (R, z) of an axially symmetric
galactic model with a dense, massive spherical nucleus and a dark matter halo component. In particular, we study the
influence of the fractional portion of the dark matter, by computing in each case the percentage of chaotic orbits, as well
as the percentages of orbits of the main regular resonant families. In an attempt to distinguish between regular and chaotic
motion, we use the fast Lyapunov indicator method to extensive samples of orbits obtained by integrating numerically
the equations of motion as well as the variational equations. Furthermore, a technique which is based mainly on the field
of spectral dynamics that utilises the Fourier transform of the time series of each coordinate is used for identifying the
various families of regular orbits and also to recognise the secondary resonances that bifurcate from them. Two cases are
studied in our work: (i) the case where we have a disk galaxy model and (ii) the case where our model represents an
elliptical galaxy. A comparison with early related work is also made.
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1 INTRODUCTION
From time immemorial, the movements of stars have at-
tracted the interest of the first astronomers. Several decades
have been past, since astronomers have turned their interest
to the kinematics of stars in galaxies and in galaxy clusters
in general. Undoubtedly, galaxies are the basic units of the
Universe. An interesting task is to determine the amount of
matter in galaxies and, consequently, the amount of matter
of the Universe. In particular, there are two key events that
are closely associated with this interesting endeavour. The
first is the pioneer research of J. Oort who studied the motion
of stars in the neighbourhood of the Sun and realised that in
fact the stars were pulled by forces stronger than those that
would be caused only by the visible matter (Oort 1924). On
the other hand, the astronomer F. Zwicky discovered that the
fast motion of galaxies in clusters cannot be justified only
by the visible mass (Zwicky 1933). In other words, clus-
ters of galaxies should be scrapped unless the their mass
was much greater. The existence of dark matter is the most
acceptable scenario to resolve these concerns. Things were
clarified when Rubin & Ford (1970) presented observational
evidence supporting the existence of dark matter in galaxies.

Knowing the rate ratio between luminous and dark matter
in galaxies (disk or ellipticals), as well as the relations con-

necting the fundamental quantities which characterise both
components is of great importance, since it allow us to un-
derstand how galaxies born and evolve and also how dark
matter influences these procedures. Today, it is widely ac-
cepted that dark matter is the dominant element in galaxies,
taking into account that the vast majority of the total matter
of the Universe, 80% according to today measurements, is
indeed dark. Dark matter seems to interact through gravity.
Moreover, apart from gravitational, no other type of dark
matter interaction has been observed. This strongly indicates
that dark matter interactions should be very weak, probably
much more weaker than the particle physics weak interac-
tions. The basic proposed candidates corresponding to dark
matter are: (i) neutrinos (hot dark matter), (ii) warm dark
matter, (iii) cold dark matter (CDM) and finally (iv) weak
interactive massive particles.

A strong indication for the presence of dark matter in
galaxies is derived from their flattened rotation curves at
large radii. Using Kepler’s third law, we have �(R) =√

GM(R)/R, where � is the rotational velocity at a radius R,
G is the gravitational constant, while M(R) is the total mass
within radius R. Conducting observations at large galactocen-
tric distances, where no luminous galactic component was
present, astronomers found that, instead of declining at the
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expected rate �(R)�R−1/2, which is true if only M = const.,
the velocity curves �(R) appear to be flattened. However,
�(R) = const. implies that M(R)�R. This strongly suggests
that the mass of galaxies continues to grow, even when there
is no luminous component to account for this increase. More-
over, the profiles of the velocity curves indicate that the dis-
tribution of light does not match the distribution of mass.
In other words, in each galaxy the mass-to-light ratio (M/L)
increases with the radius R. The circular velocity needed
for the construction of the rotation curve is obtained, as
usually, by measuring the 21-cm emission line from neu-
tral hydrogen H i (Rubin, Ford, & Thonnard 1980; Bosma
1981; Clemens 1985; Persic & Salucci 1995; Honma & Sofue
1997).

The existence of dark matter in elliptical galaxies has been
confirmed using observational data derived either from hot
gas or their X-ray emission (e.g. Loewenstein & White 1999;
Humphrey et al. 2006; Johnson et al. 2009; Das et al. 2010) or
even using strong lensing methods (e.g. Rusin & Kochanek
2005; Gavazzi et al. 2007; Koopmans et al. 2009; Faure et al.
2011). On the other hand, for the disk galaxies there is a
plethora of scenarios describing the formation and the evolu-
tion of disk galaxies in correlation with dark matter (e.g. Dal-
canton, Spergel, & Summers 1997; Firmani, Avila-Reese, &
Hérnandez 1997; Avila-Reese, Firmani, & Hernández 1998;
van de Bosch 1998; Avila-Reese & Firmani 2000). A large
number of measurements of luminous and dark matter have
become available over the last years (e.g. Cappellari et al.
2006, 2012; Wegner et al. 2012). Using these data in combi-
nation with dynamically modelling, we can reconstruct and
therefore study the orbital structure of galaxies.

Today, we know that galaxies contain large amounts of
dark matter and, therefore, a further study could provide im-
portant information about this invisible matter. A simple way
to do this is to construct models of galaxies containing dark
matter. The study of the dynamical properties of these models
will provide interesting and useful information, which com-
bined with data from observation will aid significantly in
finding a solution for the problem of dark matter. The reader
can find interesting information in the field of fitting mass
models to the kinematics of disk and elliptical galaxies in a se-
ries of papers (see e.g. Barnes, Sellwood, & Kosowsky 2004;
Chaktabarty 2007; de Blok et al. 2008; Gebhardt & Thomas
2009). Another important point that needs to be emphasised
is the difference between the distribution of dark matter in
galaxies and clusters. Observational data (e.g. Sahni 2004)
suggest that dark matter increases as we move away from
the centre to the outer parts of the galaxies. On the contrary,
in galaxy clusters the dark matter distribution decreases with
increasing distance from the galactic centre.

Even today, dark matter is still an open and controversial
issue in astronomy. This is true because the standard model
of cosmology seems to be incompatible with a large amount
of data derived from extragalactic observations and modified
gravity theories. The reader can find more interesting and
detailed information regarding this issue in Kroupa (2012).

Taking into account all the above, there is no doubt that
dark matter plays an important role in the dynamical be-
haviour of galaxies. On this basis, it seems of particular in-
terest to build an analytical dynamical model describing the
motion of stars both in disk and elliptical galaxies containing
dark matter and then study how the presence and the amount
of dark matter affects the regular or chaotic nature of orbits
as well as the behaviour of the different families of orbits.

The present article is organised as follows. In Section 2,
we present in detail the structure and the properties of our
gravitational galactic model. In Section 3, we describe the
computational methods we used in order to determine the
character of orbits. In the following section, we investigate
how the parameter corresponding to the fractional portion
of the dark matter in galaxies influences the character of the
orbits, in both disk and elliptical galaxy models. Our paper
ends with Section 5, where the discussion and the conclusions
of this research are presented.

2 DESCRIPTION OF THE GALACTIC MODEL

In order to study the dynamical properties of galaxies, as-
tronomers often construct galactic models. A galactic model
is usually a mathematical expression giving the potential or
the mass density of the galaxy, as a function of the distance.
The reader can find interesting models, describing motion
in galaxies, in Binney & Tremaine (2008). Potential density
pairs for galaxies were also presented by Vogt & Letelier
(1996). Over the years, many galactic models have been
proposed in order to model the orbital properties in axially
symmetric systems. A simple yet realistic axisymmetric log-
arithmic potential was introduced in Binney (1981) for the
description of galactic haloes at which the mass density drops
like R−2 (see also Evans 1993). However, the most well-
known model for CDM haloes is the flattened cuspy Navarro
Frenk White (NFW) model (Navarro, Frenk, & White 1996,
1997), where the density at large radii falls like R−1. This
model being self-consistent has a major advantage and that
is why it is mainly used for conducting N-body simulations.
Our model, on the other hand, is not self-consistent but sim-
ple and contrived, in order to give us the ability to study in
detail the orbital behaviour of the galactic system. Never-
theless, contrived models can provide an insight into more
realistic stellar systems, which unfortunately are very diffi-
cult to be studied if we take into account all the astrophysical
aspects. Due to the fact that our gravitational model consists
of Plummer-type potentials, at large galactocentric distances
the mass density decreases following the R−5 law.

In the present work, we shall investigate how the presence
of the dark matter influences the character of the orbits in the
meridional plane of an axially symmetric galaxy model with
a spherical nucleus and a dark matter halo component. We
shall use the usual cylindrical coordinates (R, φ, z), where z
is the axis of symmetry.
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Influence of Dark Matter in Galaxies 3

Figure 1. A plot of the rotation curve in our (a) disk and (b) elliptical galactic models. We can distinguish the total circular velocity (black)
and the contributions from luminous matter (green) and that of the dark matter (red).

The total potential V(R, z) in our model consists of three
components: the main galaxy potential Vg, the central spher-
ical component Vn, and the dark matter halo component Vh.
The first one is represented by the new mass model intro-
duced in Caranicolas (2012) and is given by

Vg(R, z) = −GMg(1 + δ)

Rg

, (1)

where

Rg =
√

(1 + δ) β2 + R2 +
(

α +
√

h2 + (
1 + δ2

)
z2

)2

. (2)

Here, G is the gravitational constant, Mg is the mass of the
galaxy, δ is the fractional portion of the dark matter in the
galaxy, while β represents the core radius of the halo of
the disk. The shape of the galaxy is controlled by the param-
eters α and h which correspond to the horizontal and vertical
scale length of the galaxy, respectively. Therefore, this po-
tential allow us to describe a variety of galaxy types from a
flat disk galaxy when α, β�h to an oblate elliptical galaxy
when h�α, β.

For the description of the spherically symmetric nucleus,
we use a Plummer potential (e.g. Binney & Tremaine 2008):

Vn(R, z) = −GMn√
R2 + z2 + c2

n

, (3)

where Mn and cn are the mass and the scale length of the
nucleus, respectively. This potential has been used success-
fully in the past in order to model and therefore interpret
the effects of the central mass component in a galaxy (see
e.g. Hasan & Norman 1990; Hasan, Pfenniger, & Norman
1993; Zotos 2012a). At this point, we must make it clear that
Equation (3) is not intended to represent the potential of a
black hole nor that of any other compact object, but just the
potential of a dense and massive nucleus; thus, we do not
include relativistic effects. The dark matter halo is modelled
by a similar spherically symmetric potential

Vh(R, z) = −GMh√
R2 + z2 + c2

h

, (4)

where, in this case, Mh and ch are the mass and the scale
length of the halo, respectively. The spherical shape of the
dark halo is simply an assumption, due to the fact that galactic
haloes may have a variety of shapes.

In this work, we use the well-known system of galactic
units, where the unit of length is 1 kpc, the unit of mass is
2.325×107 M� and the unit of time is 0.9778×108 yr. The
velocity unit is 10 km s−1, the unit of angular momentum
(per unit mass) is 10 km kpc s−1, while G is equal to unity.
Finally, the energy unit (per unit mass) is 100 km2 s−2. In
these units, the values of the involved parameters are Mg =
8200, Mn = 400, cn = 0.25, Mh = 7560, and ch = 15. For
the disk model, we choose β = 6, α = 3, and h = 0.3, while
for the elliptical model, we have set β = 2, α = 0.5, and
h = 11.5. The fractional portion of dark matter δ, on the
other hand, is treated as a parameter and its value varies in
the interval 0 � δ � 0.5.

It is well known that in disk galaxies, the circular velocity
in the galactic plane z = 0,

θ (R) =
√

R

∣∣∣∣∂V

∂R

∣∣∣∣
z=0

, (5)

is a very important physical quantity. A plot of θ (R) for both
disk and elliptical galactic models when δ = 0.1 is presented
in Figures 1(a, b), as a black curve. Moreover, in the same
plot, the green curve is the contribution from the luminous
matter, while the red line corresponds to the contribution from
the dark matter. It is seen that in both cases the component of
the rotational curve generated by the dark matter remains flat
for large galactocentric distances, while, on the other hand,
the luminous matter component continues to decline with
increasing distance from the galactic centre. We also observe
the characteristic local minimum of the rotation curve due
to the massive nucleus, which appears at small values of R,
when fitting observed data to a galactic model (e.g. Irrgang
et al. 2013; Gómez et al. 2010).

At this point, we must clarify that the mass density in our
new galaxy model obtains negative values when the distance
from the centre of the galaxy described by the model exceeds
a minimum distance dmin, which strongly depends on the
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Figure 2. The evolution of the minimum distance dmin where negative density appears as a function of the parameter δ for (a) the disk galaxy model
and (b) the elliptical galaxy model.

parameter δ. Figures 2(a, b) show a plot of dmin versus δ for
the both disk and elliptical galaxy models. We see that even
when δ = 0.5, the first indication of negative density occurs
only when dmin>40 kpc, that is almost at the theoretical
boundaries of a real galaxy. Here, we must point out that our
gravitational potential is truncated at Rmax = 30 kpc for both
reasons: (i) otherwise, the total mass of the galaxy modelled
by this potential would be infinite, which is obviously not
physical, and (ii) to avoid the existence of negative values of
density.

Taking into account that the total potential V(R, z) is ax-
isymmetric, the z-component of the angular momentum Lz is
conserved. With this restriction, orbits can be described by
means of the effective potential

Veff(R, z) = V (R, z) + L2
z

2R2
. (6)

The L2
z/(2R2) term represents a centrifugal barrier; only or-

bits with small Lz are allowed to pass near the axis of sym-
metry. The three-dimensional (3D) motion is thus effectively
reduced to a 2D motion in the meridional plane (R, z), which
rotates non-uniformly around the axis of symmetry according
to

φ̇ = Lz

R2
, (7)

where of course the dot indicates derivative with respect to
time.

The equations of motion on the meridional plane are

R̈ = −∂Veff

∂R
,

z̈ = −∂Veff

∂z
, (8)

while the equations describing the evolution of a deviation
vector δw = (δR, δz, δṘ, δż) which joins the corresponding
phase space points of two initially nearby orbits, needed for
the calculation of the standard chaos indicators (the FLI in

our case), are given by the variational equations:

˙(δR) = δṘ,

˙(δz) = δż,

( ˙δṘ) = −∂2Veff

∂R2
δR − ∂2Veff

∂R∂z
δz,

(δ̇ż) = −∂2Veff

∂z∂R
δR − ∂2Veff

∂z2
δz. (9)

Consequently, the corresponding Hamiltonian to the ef-
fective potential given in Equation (6) can be written as

H = 1

2

(
Ṙ2 + ż2

) + Veff(R, z) = E, (10)

where Ṙ and ż are momenta per unit mass, conjugate to R and
z respectively, while E is the numerical value of the Hamil-
tonian, which is conserved. Therefore, an orbit is restricted
to the area in the meridional plane satisfying E � Veff.

3 COMPUTATIONAL METHODS

In order to obtain the mass profiles of galaxies, we have to
construct dynamical models describing the main properties
of the galaxies. These models can be generated by deploy-
ing two main techniques: (i) using superposition of libraries
of orbits (e.g. Gebhardt et al. 2003; Thomas et al. 2004;
Cappellari et al. 2006) or (ii) using distributions functions
(e.g. Dejonghe et al. 1996; Gerhard et al. 1998; Kronawit-
ter et al. 2000). In the literature, there are also other more
specialised dynamical models combining kinematic and pho-
tometric data. For instance, axially symmetric Schwarzschild
models were used by Bridges et al. (2006), while Hwang et al.
(2008) used Jeans models in order to fit observational data
in the X-ray potential introduced by Humphrey et al. (2006).
Furthermore, axisymmetric Schwarzschild models were also
used by Shen & Gebhardt (2010) to fit data derived from the
Hubble Space Telescope.

In the recent years, the Schwarzschild superposition
method (Schwarzschild 1979) has been heavily utilised by
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several researchers (e.g. Rix et al. 1997; Gebhardt et al. 2003;
Thomas et al. 2004, 2005; Valluri, Merritt, & Emsellem 2004;
Krajnović et al. 2005) in order to study dark matter distribu-
tions in elliptical galaxies; therefore, we deem it necessary
to recall and describe briefly the basic points of this interest-
ing method. Initially, N closed cells define the configuration
space, while K orbits extracted from a given mass distribution
construct the phase space. Then, integrating numerically the
equations of motion, we calculate the amount of time spent
by each particular orbit in every cell. Thus, the mass of each
cell is directly proportional to the total sum of the stay times
of orbits in every cell. Using this technique, we manage to
compute the unknown weights of the orbits, assuming they
are not negative.

In our study, we want to know whether an orbit is regu-
lar or chaotic. Several chaos indicators are available in the
literature; we chose the FLI method. The FLI (Froeschlé,
Gonczi, & Lega 1997; Lega & Froeschlé 2001) has been
proved a very fast, reliable and effective tool, which is defined
as

FLI(t) = log ‖w(t)‖, t ≤ tmax, (11)

where w(t) is a deviation vector. For distinguishing between
regular and chaotic motion, we need to compute the FLI
for a relatively short time interval of numerical integration
tmax. In particular, we track simultaneously the time evolution
of the orbit itself as well as the deviation vector w(t) in
order to compute the FLI. The variational equations (9), as
usual, are used for the evolution of the deviation vector. The
main advantage of the FLI method is that only one deviation
vector is required to be computed, while in the case of other
dynamical indicators such as SALI (Skokos et al. 2004) or
GALIs (Skokos, Bountis, & Antonopoulos 2007) more than
one deviation vectors are needed. Therefore, by using the
FLI method we need considerably less computation time for
integrating and classifying massive sets of initial conditions
of orbits.

The particular time evolution of the FLI allows us to dis-
tinguish fast and safely between regular and chaotic motion
as follows: when an orbit is regular the FLI exhibits a linear
increase, while, on the other hand, in the case of chaotic orbits
the FLI evolution is super-exponential. The time evolution
of a regular (R) and a chaotic (C) orbit for a time period of
104 time units is presented in Figure 3. We observe that both
regular and chaotic orbits exhibit an increase in the value of
FLI but with a complete different rate. Unfortunately, this
qualitative criterion is applicable only when someone wants
to check the character of individual orbits by plotting and
then inspecting by eye the evolution of the FLI. Neverthe-
less, we can easily overcome this drawback by establishing a
numerical threshold value, in order to quantify the FLI. Af-
ter conducting extensive numerical experiments in different
types of dynamical systems, we conclude that a safe thresh-
old value for the FLI, taking into account the total integration
time of 104 time units, is 10. The horizontal, blue, dashed line
in Figure 3 corresponds to that threshold value which sepa-

Figure 3. Evolution of the FLI of a regular orbit (green colour, R), a sticky
orbit (orange colour, S), and a chaotic orbit (red colour, C) in our model for a
time period of 104 time units. The horizontal, blue, dashed line corresponds
to the threshold value of 10 which separates regular from chaotic motion.
The chaotic orbit needs only about 130 time units in order to cross the
threshold value, while, on the other hand, the sticky orbit requires a vast
integration time of about 4400 time units so as to reveal its chaotic nature.

rates regular from chaotic motion. In order to decide whether
an orbit is regular or chaotic, we may use the usual method,
according to which we check after a certain and predefined
time interval of numerical integration whether the value of
the FLI has become greater than the established threshold
value. Therefore, if FLI �10 the orbit is chaotic, while if FLI
<10 the orbit is regular.

In order to investigate the orbital properties (chaoticity or
regularity) of the dynamical system, we need to establish
some samples of initial conditions of orbits. The best ap-
proach, undoubtedly, would have been to extract these sam-
ples of orbits from the distribution function of the model.
Unfortunately, this is not available so, we followed another
course of action. For determining the chaoticity of our mod-
els, we chose, for each set of values of the parameters of
the potential, a dense grid of initial conditions in the (R, Ṙ)

phase plane, regularly distributed in the area allowed by the
value of the energy E. The points of the grid were separated
0.1 units in R and 0.5 units in the Ṙ direction. For each ini-
tial condition, we integrated the equations of motion (8) as
well as the variational equations (9) with a double-precision
Bulirsch–Stoer algorithm (e.g. Press et al. 1992). In all cases,
the energy integral (Equation (10)) was conserved better than
one part in 10−10, although for most orbits, it was better than
one part in 10−11.

Each orbit was integrated numerically for a time interval
of 104 time units (10 billion years), which corresponds to a
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time span of the order of hundreds of orbital periods but of
the order of one Hubble time. The particular choice of the
total integration time is an element of paramount importance,
especially in the case of the so-called ‘sticky orbits’ (i.e.
chaotic orbits that behave as regular ones during long periods
of time). A sticky orbit could be easily misclassified as regular
by any chaos indicator1, if the total integration interval is too
small, so that the orbit does not have enough time in order
to reveal its true chaotic character. A characteristic example
of a sticky orbit (S) in our galactic system can be seen in
Figure 3, where we observe that the chaotic character of the
particular sticky orbit is revealed after a considerably long
integration time of about 4400 time units. Thus, all the sets
of orbits of the grids of the initial conditions were integrated,
as already stated, for 104 time units, thus avoiding sticky
orbits with a stickiness at least of the order of a Hubble
time. All the sticky orbits which do not show any signs of
chaoticity for 104 time units are counted as regular ones,
because vast sticky periods are completely out of scope of our
research.

A first step towards the understanding of the overall be-
haviour of our galactic system is knowing the regular or
chaotic nature of orbits. Of particular interest, however, is
also the distribution of regular orbits into different families.
Therefore, once the orbits have been characterised as regular
or chaotic, we then further classified the regular orbits into
different families, by using the frequency analysis of Carpin-
tero & Aguilar (1998) and Muzzio, Carpintero, & Wachlin
(2005). Initially, Binney & Spergel (1982, 1984) proposed
a technique, dubbed spectral dynamics, for this particular
purpose. Later on, this method has been extended and im-
proved by Carpintero & Aguilar (1998) and Šidlichovský
& Nesvorný (1996). In a recent work (Zotos & Carpintero
2013), the algorithm was refined even further, so it can be
used to classify orbits in the meridional plane. In general
terms, this method calculates the Fourier transform of the
coordinates of an orbit, identifies its peaks, extracts the cor-
responding frequencies and searches for the fundamental fre-
quencies and their possible resonances. Thus, we can easily
identify the various families of regular orbits and also recog-
nise the secondary resonances that bifurcate from them.

Before closing this section, we would like to make a short
note about the nomenclature of orbits. All the orbits of an
axisymmetric potential are in fact 3D loop orbits, i.e. orbits
that rotate around the axis of symmetry always in the same
direction. However, in dealing with the meridional plane, the
rotational motion is lost, so the path that the orbit follows
onto this plane can take any shape, depending on the nature
of the orbit. We will call an orbit according to its behaviour
in the meridional plane. Thus, if, for example, an orbit is

1 Generally, dynamical methods are broadly split into two types: (i) those
based on the evolution of sets of deviation vectors in order to characterise
an orbit and (ii) those based on the frequencies of the orbits which extract
information about the nature of motion only through the basic orbital
elements without the use of deviation vectors.

a rosette lying in the equatorial plane of the axisymmetric
potential, it will be a linear orbit in the meridional plane, etc.

4 ORBIT CLASSIFICATION

In this section, we will numerically integrate several sets of
orbits in an attempt to distinguish the regular or chaotic na-
ture of motion. We use the initial conditions mentioned in
Section 3 in order to construct the respective grids of ini-
tial conditions, taking always values inside the zero velocity
curve (ZVC) defined by

1

2
Ṙ2 + Veff(R, 0) = E. (12)

In all cases, the value of the angular momentum of the orbits is
Lz = 15. We chose for both disk and elliptical galaxy models
such energy levels which correspond to Rmax�10 kpc, where
Rmax is the maximum possible value of R on the (R, Ṙ) phase
plane. Once the values of the parameters were chosen, we
computed a set of initial conditions as described in Section 3
and integrated the corresponding orbits calculating the value
of the FLI and then classifying the regular orbits into different
families.

4.1 Disk galaxy model

For the disk galaxy models, we choose the energy level
E = −1200, which is kept constant. Our investigation re-
veals that in our disk galaxy model there are six main types
of orbits: (a) box orbits, (b) 1:1 linear orbits, (c) 2:1 banana-
type orbits, (d) 3:2 resonant orbits, (e) 4:3 resonant orbits,
and (f) chaotic orbits. Note that every resonance n:m is ex-
pressed in such a way that m is equal to the total number of
islands of invariant curves produced in the (R, Ṙ) phase plane
by the corresponding orbit. In Figures 4(a–f), we present an
example of each of the five basic types of regular orbits,
plus an example of a chaotic one. In all cases, we set δ =
0.5. The orbits shown in Figures 4(a, f) were computed until
t = 100 time units, while all the parent periodic orbits were
computed until one period has completed. The black thick
curve circumscribing each orbit is the limiting curve in the
meridional plane (R, z) defined as Veff(R, z) = E. Table 1shows
the types and initial conditions for each of the depicted orbits;
for the resonant cases, the initial conditions and the period
Tper correspond to the parent periodic orbits.

To study how the fractional portion of the dark matter δ

influences the level of chaos, we let it vary while fixing all
the other parameters of our disk galaxy model. As already
said, we fixed the values of all the other parameters and
integrate orbits in the meridional plane for the set δ = {0,
0.1, 0.2, . . . , 0.5}. In all cases, the energy was set to −1200
and the angular momentum of the orbits was Lz = 15. Once
the values of the parameters were chosen, we computed a set
of initial conditions as described in Section 3 and integrated
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Figure 4. Orbit collection of the six basic types of orbits in the disk galaxy model: (a) box orbit, (b) 2:1 banana-type orbit, (c) 1:1 linear orbit, (d) 3:2
boxlet orbit, (e) 4:3 boxlet orbit, and (f) chaotic orbit.

Table 1. Types and initial conditions of the disk galaxy model
orbits shown in Figures 4(a–f). In all cases, z0 = 0 and ż0 is found
from the energy integral, Equation (10), while Tper is the period of
the resonant parent periodic orbits.

Figure Type R0 Ṙ0 Tper

4(a) Box 2.09000000 0.00000000 –
4(b) 2:1 banana 5.79009906 0.00000000 1.83668227
4(c) 1:1 linear 5.47170604 30.97448116 1.23526267
4(d) 3:2 boxlet 1.58031642 16.62648333 3.54124377
4(e) 4:3 boxlet 11.37966251 0.00000000 4.83447045
4(f) Chaotic 0.40000000 0.00000000 –

the corresponding orbits computing the FLI of the orbits and
then classifying regular orbits into different families.

In Figures 5(a–f) we present six grids of orbits that we
have classified for different values of the fractional portion
of the dark matter δ. Here, we can identify all the different
regular families by the corresponding sets of islands which
are formed in the phase plane. In particular, we see the five
main families already mentioned: (i) 2:1 banana-type orbits
surrounding the central periodic point; (ii) box orbits are
situated mainly outside of the 2:1 resonant orbits; (iii) 1:1

open linear orbits form the double set of elongated islands
in the outer parts of the phase plane; (iv) 3:2 resonant orbits
form the double set of islands above the box orbits; and
(v) 4:3 resonant orbits correspond to the outer triple set of
islands shown in the phase plane. Apart from the regions of
regular motion, we observe the presence of a unified chaotic
sea which embraces all the islands of stability. The outermost
black thick curve is the ZVC defined by Equation (12).

Figure 6 shows the resulting percentages of the chaotic
orbits and of the main families of regular orbits as δ varies.
It can be seen that there is a strong correlation between the
percentage of most orbits and the value of δ. As the portion
of the dark matter increases, there is a gradual decrease in
the percentage of chaotic orbit, although this tendency is
reversed in models with significant amount of dark matter
(δ>0.3). In particular, we observe that chaotic motion is
always the dominant type of motion and when δ>0.3 the
amount of chaotic orbits grows at the expense of box orbits
and 1:1 linear orbits. The meridional 2:1 banana-type orbits,
on the other hand, are almost unperturbed by the shifting
of the portion of dark matter. Moreover, the 4:3 resonant
orbits exhibit a constant increase, while the percentage of
the 3:2 resonant orbits remains at very low values. From
the diagram shown in Figure 6, one may conclude that the
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Figure 5. Orbital structure of the (R, Ṙ) phase plane of the disk galaxy model for different values of the fractional portion of the dark matter δ.
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Figure 6. Evolution of the percentages of the different kinds of orbits in our
disk galaxy model, when varying the fractional portion of the dark matter δ.

fractional portion of the dark matter affects mostly the 1:1,
4:3 resonant orbits and chaotic orbits in disk galaxy models.

Of particular interest is to investigate how the variation in
the fractional portion of the dark matter influences the posi-
tion of the periodic points of the different families of periodic
orbits shown in the grids of Figure 5. For this purpose, we use
the theory of periodic orbits (Meyer & Hall 1992) and the al-
gorithm developed and applied in Zotos (2013b). In Figures
7(a–d) we present the evolution of the starting position of the
parent periodic orbits of the four basic families of resonant
orbits. The evolution of the 2:1 and 4:3 families shown in
Figures 7(a) and (b) respectively is two dimensional since
the starting position (R0, 0) of both families lies on the R
axis. On the contrary, studying the evolution of the 1:1 and
3:2 families of periodic orbits is indeed a real challenge due
to the peculiar nature of their starting position (R0, Ṙ0). In
order to visualise the evolution of these families, we need
3D plots such as those presented in Figures 7(c) and (d), tak-
ing into account the simultaneous relocation of R0 and Ṙ0.
The stability of the periodic orbits can be obtained from the
elements of the monodromy matrix X(t) as follows:

K = Tr [X (t)] − 2, (13)

where Tr stands for the trace of the matrix and K is called the
stability index. For each set of values of δ, we first located,
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Figure 7. Evolution of the starting position (R0, Ṙ0) of the periodic orbits as a function of the fractional portion of the dark matter δ. (a) 2:1 resonant
family, (b) 4:3 resonant family, (c) 1:1 resonant family, and (d) 3:2 resonant family.

by means of an iterative process, the position of the par-
ent periodic orbits. Then, using these initial conditions, we
integrated the variational equations in order to obtain the ma-
trix X, with which we computed the index K. Our numerical
calculations indicate that in the disk galaxy models, all the
different families of periodic orbits remain stable throughout
the entire range of the values of δ.

4.2 Elliptical galaxy model

In the case of the elliptical galaxy model, we choose the en-
ergy level E = −1100, which is kept constant. Our numerical
investigation shows that in our elliptical galaxy model, there
are seven main types of orbits: (a) box orbits, (b) 1:1 linear
orbits, (c) 2:1 banana-type orbits, (d) 3:2 resonant orbits, (e)
4:3 resonant orbits, (f) 5:3 resonant orbits, (g) 8:5 resonant

orbits, and (h) chaotic orbits. It is worth noting that the ba-
sic resonant families, that is the 2:1, 1:1, 3:2, and 4:3, are
common in both disk and elliptical galaxy models. However,
in the case of the elliptical galaxy, additional secondary res-
onances (i.e. 5:3 and 8:5) appear. Again, every resonance
n:m is expressed in such a way that m is equal to the total
number of islands of invariant curves produced in the (R, Ṙ)

phase plane by the corresponding orbit. In Figures 8(a–h), we
present an example of each of the seven basic types of regular
orbits, plus an example of a chaotic one. In all cases, we set
δ = 0.5. The orbits shown in Figures 8(a) and (f) were com-
puted until t = 100 time units, while all the parent periodic
orbits were computed until one period has completed. Table 2
shows the types and the initial conditions for each of the de-
picted orbits; for the resonant cases, the initial conditions and
the period Tper correspond to the parent periodic orbits.
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Figure 8. Orbit collection of the eight basic types of orbits in the elliptical galaxy model: (a) box orbit, (b) 2:1 banana-type orbit, (c) 1:1 linear orbit, (d)
3:2 boxlet orbit, (e) 4:3 boxlet orbit, (f) 5:3 boxlet orbit, (g) 8:5 boxlet orbit, and (h) chaotic orbit.

Table 2. Types and initial conditions of the elliptical galaxy model
orbits shown in Figures 8(a–h). In all cases, z0 = 0 and ż0 is found
from the energy integral, Equation (10), while Tper is the period of
the resonant parent periodic orbits.

Figure Type R0 Ṙ0 Tper

8(a) Box 1.90000000 0.00000000 –
8(b) 2:1 banana 7.18420419 0.00000000 2.47524161
8(c) 1:1 linear 1.53837422 33.45716659 1.48665183
8(d) 3:2 boxlet 1.06837848 22.64363815 4.44068043
8(e) 4:3 boxlet 12.92588226 0.00000000 5.92689152
8(f) 5:3 boxlet 1.58425772 9.55073196 7.37479109
8(g) 8:5 boxlet 12.42410864 0.00000000 11.83080833
8(h) Chaotic 0.40000000 0.00000000 –

In order to study how the fractional portion of the dark
matter δ influences the level of chaos, we let it vary while
fixing all the other parameters in our elliptical galaxy model.
As already said, we fixed the values of all the other parameters
and integrate orbits in the meridional plane for the set δ = {0,
0.1, 0.2, . . . , 0.5}. In all cases, the energy was set to −1100
and the angular momentum of the orbits was Lz = 15. Once
the values of the parameters were chosen, we computed a set
of initial conditions as described in Section 3 and integrated
the corresponding orbits computing the FLI of the orbits and
then classifying regular orbits into different families.

Six grids of initial conditions (R0, Ṙ0) that we have classi-
fied for different values of the fractional portion of the dark
matter δ are shown in Figures 9(a–f). By inspecting these
grids, we can identify all the different regular families by
the corresponding sets of islands which are produced in the

phase plane. In particular, we see the seven main families of
regular orbits already mentioned: (i) 2:1 banana-type orbits
correspond to the central periodic point; (ii) box orbits situ-
ated mainly outside of the 2:1 resonant orbits; (iii) 1:1 open
linear orbits form the double set of elongated islands in the
outer parts of the phase plane; (iv) 3:2 resonant orbits form
the double set of islands; (v) 4:3 resonant orbits correspond
to the outer triple set of islands shown in the phase plane;
(vi) 5:3 resonant orbits form the set of the three small islands
inside the region of box orbits; and (vii) 8:5 resonant orbits
produce the set of five islands. It is evident that the struc-
ture of the phase plane in the elliptical galaxy models differs
greatly from that of the disk models. We observe that when
the amount of dark matter in the elliptical galaxy is low, al-
most the entire phase plane is covered by different types of
regular orbits. On the other hand, chaotic motion appears,
mainly at the outer parts of the phase plane, only when the
galaxy possesses a significant amount of dark matter (δ �
0.4).

In Figure 10, we present the resulting percentages of the
chaotic orbits and of also the main families of regular orbits
as δ varies. It can be seen that the motion of stars in elliptical
galaxies is almost entirely regular, the box orbits being the
all-dominant type. The percentage of box orbits is however
reduced as the portion of the dark matter is increased, al-
though they always remain the most populated family. It is
also seen that the percentages of the 2:1 banana-type orbits
exhibit a minor decrease with increasing δ. On the other hand,
the chaotic orbits start to grow rapidly as soon as the galaxy
contains significant amount of dark matter (δ>0.3). More-
over, all the other resonant families of orbits are immune to
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Figure 9. Orbital structure of the (R, Ṙ) phase plane of the elliptical galaxy model for different values of the fractional portion of the dark matter δ.
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Figure 10. Evolution of the percentages of the different kinds of orbits in
our elliptical galaxy model, when varying the fractional portion of the dark
matter δ.

changes of the portion of the dark matter, since their percent-
ages remain almost unperturbed and at very low values (less
than 5%). From Figure 10 one may conclude that dark matter
in elliptical galaxies mostly affects box and chaotic orbits. In
fact, a portion of box orbits turns into chaotic as the galaxy
gains more dark matter.

We close this section by presenting how the variation in the
fractional portion of the dark matter influences the position of
the periodic points of the different families of periodic orbits
shown in the grids of Figures 9(a–f). We follow the same
method as used previously in the case of the disk galaxy. In
Figures 11(a–f), the evolution of the starting position of the
parent periodic orbits of the six basic families of resonant
orbits is given. Once again, the evolution of the 2:1, 4:3, and
8:5 families shown in Figures 11(a–c) is two dimensional
since the starting position (R0, 0) of these families lies on
the R axis. On the contrary, the evolution of the 1:1, 3:2, and
5:3 families is shown in the 3D plots in Figures 11(d–f), thus
following simultaneously the relocation of R0 and Ṙ0 as the
fractional portion of the dark matter δ varies. Our numerical
calculations suggest that all the computed resonant periodic
orbits were found to be stable. Furthermore, we should point
out that several families of periodic orbits in the case of the
elliptical galaxy do not cover the entire range of the values
of δ.

PASA, 30, e049 (2013)
doi:10.1017/pasa.2013.27

https://doi.org/10.1017/pasa.2013.27 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2013.27
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Figure 11. Evolution of the starting position (R0, Ṙ0) of the periodic orbits as a function of the fractional portion of the dark matter δ. (a) 2:1 resonant
family, (b) 4:3 resonant family, (c) 8:5 resonant family, (d) 1:1 resonant family, (e) 3:2 resonant family, and (f) 5:3 resonant family.

5 DISCUSSION AND CONCLUSIONS

There is no doubt that the determination of the nature of dark
matter is one of the most interesting and challenging open
problems that scientists try to solve. In the present paper,
we used the analytic, axisymmetric, mass model which was
introduced in Caranicolas (2012) and embraces the general
features of a dense, massive nucleus and a spherical dark
matter halo. We made this choice because observations show
that the assumption of a spherical halo seems to be reason-
able. On the other hand, non-spherical and triaxial haloes
are also possible in some galaxies (see e.g. Gentile et al.
2004; Trachternach et al. 2008; Vera-Ciro et al. 2011). A
galaxy with a dark matter halo is undoubtedly a very com-
plex entity and, therefore, we need to assume some necessary
simplifications and assumptions in order to be able to study
mathematically the orbital behaviour of such a complicated
stellar system. For this purpose, our model is simple and con-
trived, in order to give us the ability to study different aspects
of the dynamical model. Nevertheless, contrived models can
provide an insight into more realistic stellar systems, which
unfortunately are very difficult to be studied, if we take into
account all the astrophysical aspects. On the other hand, self-
consistent models are mainly used when conducting N-body
simulations. However, this is entirely out of the scope of
the present paper. Once again, we have to point out that the
simplicity of our model is necessary; otherwise, it would be
extremely difficult, or even impossible, to apply the extensive

and detailed dynamical study presented in this study. Similar
gravitational models with the same limitations and assump-
tions were used successfully several times in the past in order
to investigate the orbital structure in much more complicated
galactic systems (see e.g. Zotos 2012b, 2013a).

In this work, we investigated how influential is the pa-
rameter corresponding to the portion of the dark matter δ

on the level of chaos and also on the distribution of regular
families among its orbits in both disk and elliptical galaxy
models. The main results of our research can be summarised
as follows.

1. In disk galaxy models, the fractional portion of the dark
matter affects mostly the 1:1 and 4:3 resonant orbits
and the chaotic orbits, while the effect on all the other
resonant families is very weak compared with them.
In particular, chaotic motion is always the prevailing
type of motion but when the amount of dark matter is
high enough, the amount of chaotic orbits grows at the
expense of box orbits and 1:1 linear orbits.

2. That portion of dark matter in elliptical galaxy models
influences mainly the box and the chaotic orbits. In fact,
box orbits are the dominant family when the amount of
dark matter is low, but the percentage of chaotic orbits
quickly grows as the dark matter is being accumulated,
by collapsing the percentage of box orbits, although
they always remain the most populated family.
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3. The percentage of the observed chaos in disk galaxy
models with dark matter is significantly larger than that
in elliptical galaxy models. This result coincides with
similar conclusions obtained using different types of
dynamical models in order to model disk and elliptical
galaxies (see e.g. Papadopoulos & Caranicolas 2005;
Zotos 2011).

The outcomes of the present research are considered as a
promising first step in the task of exploring the orbital struc-
ture in both disk and elliptical galaxy models containing dark
matter. Taking into account that our results are encouraging,
it is in our future plans to modify properly our dynamical
model in order to expand our study in three dimensions.
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