REGULAR TSUJI FUNCTIONS WITH INFINITELY MANY JULIA POINTS

W. K. HAYMAN

To K. Noshiro on his 60th birthday

1. Introduction

Let D denote the unit disk $|z|<1$, and C the unit circle $|z|=1$. Corresponding to any function f meromorphic in D we denote by f^{*} the spherical derivative

$$
f^{*}(z)=\frac{\left|f^{\prime}(z)\right|}{1+|f(z)|^{2}} .
$$

We write

$$
L(r)=\int_{0}^{2 \pi} f^{*}\left(r e^{i \theta}\right) r d \theta, \quad 0<r<1,
$$

and shall say that $f \in T_{1}(l)$ if

$$
\lim _{r \rightarrow 1} L(r) \leq l<+\infty .
$$

The functions $f \in T_{1}(l)$ are called Tsuji functions by Collingwood and Piranian [1]. Following their notation we call a rectilinear segment S lying in D except for one end-point $e^{i \theta}$ on C a segment of Julia for f provided that in each open triangle in D having one vertex at $e^{i \theta}$ and meeting S, the function f assumes all values on the Riemann sphere except possibly two. A point $e^{i \theta}$ is called a Julia point for f provided that each rectilinear segment S lying except for one endpoint $e^{i \theta}$ in D is a segment of Julia for f.

Following Tsuji [3] Collingwood and Piranian [1] investigated the class $T_{1}(l)$ and provided a number of illuminating examples. They proved among other results [1, Theorems 1,5]

Theorem A. There exists a meromorphic Tsuji function for which each point of C is a Julia point.

Theorem B. The function

Received April 28, 1966.

$$
w=\exp \left\{\left(\frac{1+z}{1-z}\right)^{2}\right\}
$$

is a regular Tsuji function with two segments of Julia at $z=1$: Their examples led Collingwood and Piranian to the following 3 conjectures concerning regular Tsuji functions.
I. If f is a regular Tsuji function then at most finitely many points of C are endpoints of segments of Julia for f.
II. If f is a regular Tsuji function then at most finitely many segments in D are segments of Julia for f.
III. If f is a regular normal Tsuji function then f has no segments of Julia.

In this paper we shall give a counter-example to I and II by proving
Theorem 1. There exist regular Tsuji functions with infinitely many Julia points.

We shall prove elsewhere [2] that a normal meromorphic Tsuji function necessarily remains continuous in $|z| \leq 1$ in the metric of the closed sphere so that conjecture III holds even for meromorphic Tsuji functions. Also such a function can have no point other than $f\left(e^{i \theta}\right)$ in its range set at $e^{i \theta}$. We shall prove however

Theorem 2. There exists a bounded Tsuji function, continuous in $|z| \leq 1$ and having zeros in each open triangle in D one of whose endpoints belongs to a certain infinite set on C.

Thus the range at $e^{i \theta}$ need not be empty.

2. Preliminary results

We shall proceed by means of a series of lemmas We have first
Lemma 1. Let Δ be the domain defined by $w=\rho e^{i ;}$, where

$$
\begin{aligned}
& 2^{-n}<\rho<1, \text { if } \phi=\frac{\pi}{2^{n}}, \quad n=1,2, \ldots \\
& 0<\rho<1, \text { if } 0<\phi<\pi, \phi \neq \frac{\pi}{2^{n}} .
\end{aligned}
$$

Then a function $w=f(z)$ which maps $D(1,1)$ conformally onto Δ is a bounded Tsuji function which remains continuous on C and vanishes at a countable set of points on C but no points of D.

Clearly Δ is a simply connected domain whose boundary r is rectifiable and of length

$$
l=2+\pi+2 \sum_{1}^{\infty} 2^{-n}=4+\pi
$$

Thus (see e.g [2, Lemmas 8 and 10])

$$
\lim _{r \rightarrow 1} \int_{0}^{2 \pi}\left|f^{\prime}\left(r e^{i \theta}\right)\right| r d \theta=4+\pi
$$

so that $f \in T_{1}(4+\pi)$. Also f remains continuous on C and maps C onto γ in such a way that each point of C corresponds in a (1, 1) manner to a prime end of r. Since there are infinitely many prime ends of r at the point $w=0$, namely those for which

$$
\frac{\pi}{2^{n+1}}<\phi<\frac{\pi}{2^{n}}, \quad n=0,1,2, \ldots, \text { and } \phi=0
$$

there exists a corresponding sequence of points $z=e^{i_{n}}$ on C which are mapped onto $w=0$ by $f(z)$. Further since Δ does not contain $w=0, f(z) \neq 0$ in D. This proves Lemma 1.

Theorems 1 and 2 will be a consequence of
Theorem 3. Suppose that $f(z) \in T_{1}(l), f(z) \neq 0$, and that F is a finite or countable set on C such that $f(z)$ vanishes continuously at the points ζ of F. Then there exists a sequence z, of points in D such that
(i) $\sum\left(1-\left|z_{v}\right|\right)<+\infty$,
(ii) If $\Pi(z)=\prod_{\nu=1}^{\infty}\left(\frac{z_{\nu}-z}{1-\bar{z}_{\nu} z}\right) \frac{\bar{z}_{\nu}}{\left|z_{\nu}\right|}$,
then $f(z) / \Pi(z)$ and $f(z) \Pi(z)$ both belong to $T_{1}\left(l^{\prime}\right)$ for some $l^{\prime}<+\infty$.
(iii) Each point $\zeta \in F$ is a Julia point for $f(z) / \Pi(z)$, with zero as the only possible exceptional value.
(iv) $f(z) \Pi(z)$ has infinitely many zeros in every triangle with vertex at $\zeta \in F$. Also $f(z) \Pi(z)$ remains continuous at every point $\zeta \in F$.

We choose the sequence $z_{\nu}=\rho_{\nu} e^{i \beta_{\nu}}$ to satisfy the following conditions
a) $\left(1-\rho_{v+1}\right) /\left(1-\rho_{\nu}\right)<\frac{1}{4}, \quad \nu=1,2, \ldots, \rho_{1}=\frac{1}{2}$.
b) Every triangle in D with vertex at a point ζ in F contains infinitely
many of the points z_{ν}.
c) $\left|f\left(r e^{i \theta}\right)\right|<\dot{2}^{-\nu}$, for $2 \rho_{\nu}-1<r<1$, and $\left|\theta-\phi_{\nu}\right|<2^{\nu}\left(1-\rho_{\nu}\right)$.
d) $f\left(z_{\nu}\right) \neq 0$.

3. Proof of Theorem 3

We prove Theorem 3 in two stages.
Lemma 2. The conditions a), b), c), d) are compatible, i.e. a sequence z_{ν} exists satisfying them all.

We assume that $l_{k}, k=1,2, \ldots$ is a countable system of rays, such that every l_{k} has one endpoint at a point $\zeta=e^{i \theta} \in F$, and further such that every Stolz angle with vertex at such a point ζ contains infinitely many of the rays l_{k}. Since F is finite or countable we can clearly choose such a system l_{k}. Next let n_{p} be a sequence of positive integers such that n_{p} assumes every positive integral value k infinitely often. For this we may choose for instance $n_{p}=1+p-[\nu p]^{2}$, where $[x]$ denotes the integral part of x. We then choose z_{p} to lie on the ray $l_{n_{p}}$. In this way condition b) is certainly satisfied. We can also satisfy a) and c). Suppose in fact that $\zeta=e^{i \theta}$ is the vertex of $l_{n_{p}}$. Then by hypothesis we have

$$
|f(z)|<2^{-p}, \text { if }|z-\zeta|<s_{p}, \text { say and }|z|<1 .
$$

We now choose ρ_{p} so near 1 , that

$$
2^{p+2}\left|\zeta-z_{p}\right|=\min \left\{\left(1-\rho_{p-1}\right), \varepsilon_{p}\right\rangle .
$$

Then $\left(1-\rho_{p}\right) /\left(1-\rho_{p-1}\right) \leq 2^{-p-2}$, so that a) holds. We also suppose that $f\left(z_{p}\right) \neq 0$, so that d) holds. Further if $z=r e^{i \psi}$, and $2 \rho_{p}-1<r<1,\left|\psi-\arg z_{p}\right|<2^{p}\left(1-\rho_{p}\right)$, then

$$
\begin{aligned}
|z-\zeta|<\left|z-z_{p}\right|+\mid & \left|z_{p}-\zeta\right|<\left|\psi-\arg z_{p}\right|+2\left(1-\rho_{p}\right)+\left|z_{p}-\zeta\right| \\
& <\left(2^{p}+2\right)\left(1-\rho_{p}\right)+\left|z_{p}-\zeta\right|<\left(2^{p}+3\right)\left|\zeta-z_{p}\right|<\varepsilon_{p} .
\end{aligned}
$$

Thus $|f(z)|<2^{-p}$ and c) is also satisfied. This proves Lemma 2.
We have finally.
Lemma 3. If the points z_{v} satisfy a$), \mathrm{b}$), c) and d), then the conclusions of Theorem 3 hold.

In fact (i) is an immediate consequence of a). Again (iv) follows at once from b) and the fact that $|\Pi(z)|<1$ and so $f(z) \Pi(z) \rightarrow 0$ as $z \rightarrow \zeta \in F$ from $|z|<1$.

We next prove (iii). We note that

$$
\left|\frac{1-\bar{z}_{\nu} z}{z-\bar{z}_{\nu}}\right|^{2}-1=\frac{\left(1-\left|z_{\nu}\right|^{2}\right)\left(1-|z|^{2}\right)}{\left|z-z_{\nu}\right|^{2}} .
$$

Thus

$$
\log \left|\frac{1}{\Pi(z)}\right|^{2}<\frac{1}{2} \sum_{\nu=1}^{\infty} \frac{\left(1-\left|z_{\nu}\right|^{2}\right)\left(1-|z|^{2}\right)}{\left|z-z_{\nu}\right|^{2}}
$$

Suppose now that $|z|=r$, where $\frac{1}{2}<r<1$, and let q be the largest value of ν for which $\left|z_{\nu}\right| \leq 2 r-1$. Then, for $0 \leq t \leq q-1$, we have from a)

$$
1-\left|z_{q-t}\right| \geq 4^{t}\left(1-\left|z_{q}\right|\right)>2.4^{t}(1-r) .
$$

Also

$$
\begin{gathered}
\left|z-z_{q-t}\right| \geq \frac{1}{2}\left(1-\left|z_{q-t}\right|\right) \text { so that } \\
\frac{1-\left|z_{q-t}\right|}{\left|z-z_{q-t}\right|^{2}} \leq \frac{\left(1-\left|z_{q-t}\right|\right)}{\left[\frac{1}{2}\left(1-\left|z_{q-t}\right|\right)\right]^{2}}<\frac{4}{2\left[4^{t}(1-r)\right]} .
\end{gathered}
$$

Thus

$$
\frac{1}{2} \sum_{v=q} \frac{\left(1-\left|z_{v}\right|^{2}\right)\left(1-|z|^{2}\right)}{\left|z-z_{v}\right|^{2}} \leq 2 \sum_{v \leq q} \frac{\left(1-\left|z_{v}\right|\right)(1-r)}{\left|z-z_{v}\right|^{2}}<4 \sum_{t=0}^{\infty} 4^{-t}<6 .
$$

Again if p is the least value of ν for which $\left|z_{\nu}\right| \geq \frac{1}{2}(1+r)$, we have for $t \geq 0$ in view of a)

$$
\left(1-\left|z_{p+t}\right|\right) \leq 4^{-t}\left(1-\left|z_{p}\right|\right) \leq \frac{1}{2} 4^{-t}(1-r)
$$

and if $|z|=r, \nu \geq p$, then $\left|z-z_{\nu}\right|^{2} \geq\left\{\frac{1}{2}(1-r)\right\}^{2}$.
Thus

$$
\frac{1}{2} \sum_{t=0}^{\infty} \frac{\left(1-\left|z_{p+t}\right|^{2}\right)\left(1-|z|^{2}\right)}{\left|z-z_{p+t}\right|^{2}} \leq \sum_{t=0}^{\infty} \frac{4^{-t}(1-r)(1-r)}{\left[\frac{1}{2}(1-r)\right]^{2}} \leq 4 \sum_{t=0}^{\infty} 4^{-t}<6
$$

Thus if $\Pi_{1}(z)$ denotes the product $\Pi(z)$ with the omission of the factor corresponding to the value z_{v}, if any, for which

$$
\begin{equation*}
2 r-1<\left|z_{v}\right|<\frac{1}{2}(1+r) \tag{1}
\end{equation*}
$$

then we have on $|z|=r$

$$
\frac{1}{\left|\Pi_{1}(z)\right|}<e^{12}
$$

i.e.

$$
\begin{equation*}
A_{1}<\left|\Pi_{1}(z)\right|<1, \tag{2}
\end{equation*}
$$

where $A_{1}=e^{-12}$. We note that in view of a) there can be at most one ν for which z_{v} lies in the range (1).

Suppose now that z_{ν} is a zero of $\Pi(z)$ and hence by d) a pole of $f(z) / \Pi(z)$ and consider $f(z) / \Pi(z)$ on the circle $\left|z-z_{\nu}\right|=2^{-(1 / 2) \nu}\left(1-\rho_{v}\right)$. On this circle we have in view of c)

$$
\begin{aligned}
\left|\frac{f(z)}{\Pi(z)}\right|=\left|\frac{f(z)}{\Pi_{1}(z)}\right| \cdot\left|\frac{1-\bar{z}_{v} z}{z-z_{v}}\right| & <A_{1}^{-1} 2^{-v} \cdot \frac{\left(1-\left|z_{v}\right|^{2}\right)+\left|z-z_{v}\right|\left|\bar{z}_{v}\right|}{2^{-(1 / 2) v}\left(1-\rho_{v}\right)} \\
& <\frac{3 A_{1}^{-1} 2^{-v}\left(1-\rho_{v}\right)}{2^{\left.-(1)^{2}\right) v}\left(1-\rho_{v}\right)}=3 A_{1}^{-1} 2^{-(1 / 2) v} .
\end{aligned}
$$

Hence $\frac{f(z)}{\Pi(z)}$ assumes every value w, with $|w|>3 A_{1}^{-1} 2^{-(1 / 2) v}$ equally often inside this circle, i.e. exactly once, and if w is fixed and $w \neq 0$, this condition is satisfied for all sufficiently large ν. It follows that, in any Stolz angle containing one of the lines $l_{k}, f(z)$ assumes infinitely often all values except possibly zero, and so these are all Julia lines. Since every Stolz angle at $\zeta \in F$ contains such lines l_{k}, it follows that every ray with endpoint at ζ is a Julia line, and so ζ is a Julia point.

4. Proof of (ii)

It remains to prove (ii) and this is by far the hardest part of the argument. We proceed in a number of stages.

Lemma 4. If $\frac{1}{2} \leq r<1$, and $\Pi_{1}(z)$ is formed from $\Pi(z)$ by omitting the factor corresponding to that zero z_{v}, if any, for which (1) holds, then if $F(z)=f(z) / \Pi_{1}(z)$ or $F(z)=f(z) \Pi_{1}(z)$, we have

$$
\int_{0}^{2 \pi} F^{*}\left(r e^{i \theta}\right) r d \theta<l_{1}<+\infty,
$$

where l_{1} is independent of r.
Consider first $F(z)=f(z) \Pi_{1}(z)$. We have

$$
\begin{equation*}
\frac{\left|F^{\prime}(z)\right|}{1+|F|^{2}} \leq \frac{\left|f^{\prime} \Pi_{1}\right|}{1+\left|f \Pi_{1}\right|^{2}}+\frac{\left|f \Pi_{1}^{\prime}\right|}{1+\left|f \Pi_{1}\right|^{2}} . \tag{3}
\end{equation*}
$$

In view of (2) we have $\left|f \Pi_{1}\right|>A_{1}|f|$, and so if $|f|>1$, we have

$$
\begin{equation*}
\frac{1}{1+\left|f \Pi_{1}\right|^{2}}<\frac{1}{\left|A_{1}\right|^{2}|f|^{2}}<\frac{2}{A_{1}^{2}\left(1+|f|^{2}\right)}, \tag{4}
\end{equation*}
$$

while if $|f|<1$

$$
\frac{1}{1+\left|f \Pi_{1}\right|^{2}}<1<\frac{2}{1+|f|^{2}} .
$$

Thus (4) holds in all cases and

$$
\begin{equation*}
\int_{0}^{2 \pi} \frac{\left|f^{\prime}\left(r e^{i \theta}\right) \prod_{1}\left(r e^{i \theta}\right)\right| r d \theta}{1+\mid f\left(r e^{i \theta}\right)} \frac{\left.\Pi_{1}\left(r e^{i \theta}\right)\right|^{2}}{2} \frac{2}{A_{1}^{2}} \int_{0}^{2 \pi} \frac{\left|f^{\prime}\left(r e^{i \theta}\right)\right| r d \theta}{1+\left|f\left(r e^{i \theta}\right)\right|^{2}} \leq \frac{4 l}{A_{1}^{2}} . \tag{5}
\end{equation*}
$$

if r is sufficiently near 1 .
We now consider the second term on the right hand side of (3). In view of (4) we may write

$$
\frac{\left|f \Pi_{1}^{\prime}\right|}{1+\mid f \overline{\left.\Pi_{1}\right|^{2}}} \leq \frac{2}{A_{1}^{2}} \quad|f| \quad\left|\Pi_{1}^{\prime}\right| \leq \frac{2}{A_{1}^{2}} \frac{|f|}{1+|f|^{2}}\left|\frac{\Pi_{1}^{\prime}}{\Pi_{1}}\right| .
$$

Also

$$
\begin{equation*}
\left|\frac{\Pi_{1}^{\prime}}{\Pi_{1}}\right|=\left|\sum_{\nu=1}^{\infty} \frac{1-\left|z_{\nu}\right|^{2}}{(1-\bar{z}, z)\left(z-z_{\nu}\right)}\right| \leq \sum_{\nu=1}^{\infty} \frac{1-\left|z_{\nu}\right|^{2}}{\left|z_{\nu}-z\right|^{2}} . \tag{6}
\end{equation*}
$$

We therefore proceed to estimate

$$
\int_{|z|=r} \frac{|f|}{1+|f|^{2}} \frac{1-\left|z_{\imath}\right|^{2}}{\left|z_{\imath}-z\right|^{2}}|d z| .
$$

Suppose first that $\left|z_{\nu}\right|>\frac{1}{2}(1+r)$. Then if $z=r e^{i \theta}, z_{\nu}=\rho_{\nu} e^{i \sigma_{\nu}}$, we have

$$
\left|z_{v}-z\right|^{2}=\left(\rho_{\nu}-r\right)^{2}+2 \rho_{\imath} r\left[1-\cos \left(\phi-\phi_{v}\right)\right] \geq \frac{1}{4}(1-r)^{2}+\frac{\left(\phi-\phi_{v}\right)^{2}}{\pi^{2}},
$$

for $\phi_{\nu}-\pi \leq \phi \leq \phi_{\nu}+\pi$. Thus

$$
\begin{aligned}
\int_{|z|=r} \frac{1}{|z,-z|^{2}}|d z| \leq \pi^{2} \int_{-\pi}^{\pi} \frac{d \phi}{\phi^{2}+(1-r)^{2}} & \leq \pi^{2} \int_{-\infty}^{\infty} \frac{d \phi}{\phi^{2}+(1-r)^{2}} \\
& =\frac{\pi^{3}}{1-r} .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\sum_{|z,|>1 / 2(1+r)} \int_{|z|=r} \frac{|f|}{1+|f|^{2}} \frac{1-|z,|^{2}}{\left|z_{y}-z\right|^{2}}|d z|<\frac{\pi^{3}}{2(1-r)} \sum_{|z,|>1 / 2(1+r)}\left(1-\left|z_{v}\right|^{2}\right)<A_{3}, \tag{7}
\end{equation*}
$$

in view of a).
Next suppose that $\left|z_{v}\right| \leq 2 r-1$. Then we have

$$
\begin{equation*}
\left|z_{v}-z\right|^{2} \geq \frac{1}{4}\left(1-\rho_{\nu}\right)^{2}+\frac{2 \rho_{v} r\left(\phi-\phi_{\nu}\right)^{2}}{\pi^{2}} \geq \frac{\left(1-\rho_{v}\right)^{2}+\left(\phi-\phi_{\nu}\right)^{2}}{2 \pi^{2}}, \tag{8}
\end{equation*}
$$

since $\rho_{\nu} \geq \frac{1}{2}, \quad r \geq \frac{1}{2} . \quad$ By c) we have, for $\left|\phi-\phi_{\nu}\right|<2^{1 / 2 \nu}\left(1-\rho_{\nu}\right)$,

$$
\frac{|f|}{1+|f|^{2}} \frac{\left(1-\left|z_{\nu}\right|^{2}\right)}{\left|z_{\nu}-z^{2}\right|^{2}}<\frac{2 \pi^{2} 2^{-\nu}\left(1-\rho_{\nu}^{2}\right)}{\left(1-\rho_{\nu}\right)^{2}}<\frac{2 \pi^{2} 2^{1-\nu}}{\left(1-\rho_{\nu}\right)} .
$$

Thus

$$
\begin{equation*}
\int_{\mid \phi-\phi_{\nu} i<2^{1 / 2} \nu_{\left(1-\rho_{\nu}\right)}} \frac{|f|}{1+|\bar{f}|^{2}} \frac{1-\left|z_{\nu}\right|^{2}}{\left|z_{\nu}-z\right|^{2}}|d z|<A_{4} 2^{-(1 / 2) \nu} \tag{9}
\end{equation*}
$$

Again if $\left|\phi-\phi_{\nu}\right| \geq 2^{(1 / 2) \nu}\left(1-\rho_{v}\right)$, then

$$
\frac{1}{\left|z_{\nu}-z\right|^{2}}<\frac{2 \pi^{2}}{\left(\phi-\phi_{\nu}\right)^{2}},
$$

and so

$$
\begin{equation*}
\int_{\left|\rho-\phi_{\nu}\right| z 2^{(1 / 2) \nu}\left(1-\rho_{\nu}\right)} \frac{|d z|}{\left|z_{\nu}-z\right|^{2}} \leq 4 \pi^{2} \int_{2^{(1 / 2 / \nu) \nu\left(1-\rho_{\nu}\right)}}^{\infty} \frac{d x}{x^{2}}=\frac{4 \pi^{2} 2^{-(1 / 2) v}}{\left(1-\rho_{\nu}\right)} \tag{10}
\end{equation*}
$$

On combining (9) and (10) we deduce that if $\left|z_{v}\right|<2 r-1$,

$$
\begin{equation*}
\int_{|z|=r} \frac{|f|}{1+|f|^{2}} \frac{1-\left|z_{\nu}\right|^{2}}{\left|z_{v}-z\right|^{2}}|d z|<A_{5} 2^{-(1 / 2) v} \tag{11}
\end{equation*}
$$

Now using (6), (7) and (11) we see that

$$
\int_{|z|=r} \frac{\left|f \Pi_{1}^{\prime}\right|}{\left(1+\left|f \Pi_{1}\right|^{2}\right)}|d z|<A_{6} .
$$

From this and (5) Lemma 4 follows for the case $F=f \Pi_{1}$, when we apply (3) and (4).

The case $F=f / \Pi_{1}$ is similar. We write

$$
\frac{\left|F^{\prime}\right|}{1+|F|^{2}} \leq \frac{\left|f^{\prime} \Pi_{1}\right|}{\left|\Pi_{1}^{2}\right|+|f|^{2}}+\frac{\left|f \Pi_{1}^{\prime}\right|}{\left|\Pi_{1}^{2}\right|+|f|^{2}}<A_{7}\left\{\frac{\left|f^{\prime}\right|}{1+|f|^{2}}+\frac{|f|}{1+|f|^{2}}\left|\frac{\Pi_{1}^{\prime}}{\Pi_{1}}\right|\right\} .
$$

in view of (2). We now obtain our result as before, using (6), (7) and (11).
5. To complete the proof of Lemma 3 and so of Theorem 3 we now consider the possible effect of the single factor in $\Pi(z)$ corresponding to a zero z_{\imath}, for which $2 r-1<\left|z_{\imath}\right|<\frac{1}{2}(1+r)$.

We consider first

$$
F(z)=f(z) \Pi_{1}(z), G(z)=F(z) a(z),
$$

where $a(z)=\left(z-z_{\nu}\right) /\left(1-\bar{z}_{\nu} z\right)$ and $z_{\nu}=\rho_{\nu} e^{i \phi_{\nu}}$.

$$
\frac{\left|G^{\prime}(z)\right|}{1+|G|^{2}} \leq \frac{\left|F^{\prime}(z)\right||a|}{1+|a F|^{2}}+\frac{\left|\frac{a^{\prime}}{a}\right||a F|}{1+|a F|^{2}}
$$

If $\left|z-z_{\nu}\right|>\frac{1}{2}\left(1-\left|z_{\nu}\right|\right)$, then we see from (8) that

$$
\frac{1}{2}<|a(z)|<1 \text { and }\left|\frac{a^{\prime}}{a}\right|<\frac{1-\left|z_{\nu}\right|^{2}}{\left|z-z_{\nu}\right|^{2}}<\frac{2 \pi^{2}\left(1-\rho_{\nu}^{2}\right)}{\left(r-\rho_{\nu}\right)^{2}+\left|\phi-\phi_{\nu}\right|^{2}}
$$

Hence if E is the range of ϕ, for which $\left|r e^{i \phi}-\rho_{\nu} e^{i \phi_{\nu}}\right| \geqq \frac{1}{2}\left(1-\rho_{\nu}\right)$, we have

$$
\int_{F} \frac{\left|F^{\prime}(z)\right||a||d z|}{1+|a F|^{2}}=\int_{E} \frac{\left|\frac{F^{\prime}}{a}\right| d \phi}{\left|\frac{1}{a}\right|^{2}+|F|^{2}}<2 \int_{|z|=r} \frac{\left|F^{\prime}(z)\right||d z|}{1+|F(z)|^{2}}<C
$$

say, while

$$
\int_{E} \frac{\left|a^{\prime} F\right| d \phi}{1+|a F|^{2}} \leq \int_{E}\left|\frac{a^{\prime}}{a}\right| d \phi \leq 2 \pi^{2} \int_{E} \frac{\left(1-\rho_{\nu}^{2}\right) d \phi}{\left(\phi-\phi_{\nu}\right)^{2}+\left(r-\rho_{\nu}\right)^{2}} .
$$

If $\left|r-\rho_{\nu}\right|<\frac{1}{4}\left(1-\rho_{\nu}\right)$, we see that $\left|\phi-\phi_{\nu}\right| \geq \frac{1}{4}\left(1-\rho_{\nu}\right)$ in our range so that the righthand side is bounded by an absolute constant. If $\left|r-\rho_{\nu}\right|=\frac{1}{4}\left(1-\rho_{\nu}\right)$, then

$$
\int_{E} \frac{\left(1-\rho_{\nu}^{2}\right) d \phi}{\left(\phi-\phi_{\nu}\right)^{2}+\left(r-\rho_{\nu}\right)^{2}} \leq \int_{-\infty}^{\infty} \frac{\left(1-\rho_{\nu}^{2}\right) d x}{x^{2}+\left(r-\rho_{\nu}\right)^{2}}=\frac{\pi\left(1-\rho_{\nu}^{2}\right)}{\left|r-\rho_{\nu}\right|} \leq 8 \pi
$$

Thus in either case

$$
\begin{equation*}
\int_{E} \frac{\left|G^{\prime}(z)\right|}{1+|G(z)|^{2}}|d z|<C_{1} \tag{12}
\end{equation*}
$$

where C_{1} is independent of r.
Consider finally the range E^{\prime} where $\left|z-\rho_{\nu} e^{i \phi_{\nu}}\right|<\frac{1}{2}\left(1-\rho_{\nu}\right)$. It follows from c) that in this range and even for ζ in a disk centre z and radius $\frac{1}{2}\left(1-\rho_{\nu}\right)$, we have $|f(\zeta)|<\frac{1}{2}$, and so also $|G(\zeta)|<\frac{1}{2}$. so that

$$
\left|G^{\prime}(z)\right|<\frac{2}{\left(1-\rho_{\nu}\right)}
$$

Thus if r is sufficiently near one, we have

$$
\begin{equation*}
\int_{E^{\prime}} \frac{\left|G^{\prime}\left(r e^{i \theta}\right)\right|}{1+\left|G\left(r e^{i \theta}\right)\right|^{2}} d \theta<\int_{E^{\prime}}\left|G^{\prime}\left(r e^{i \theta}\right)\right| d \theta<\frac{2}{1-\rho_{\nu}} 2\left(1-\rho_{\nu}\right)=4 \tag{13}
\end{equation*}
$$

On combining (12) and (13) we have Lemma 3 for $G(z)=f(z) \Pi(z)$.
It remains to consider the case where

$$
G(z)=\frac{f(z)}{\Pi(z)}=\frac{F(z)}{a(z)},
$$

and $F(z)=f(z) / \Pi_{1}(z)$. We consider now the two ranges E, where $\left|z-z_{\nu}\right|>\frac{1}{3}\left(1-\left|z_{v}\right|\right)$ and E^{\prime}, where $\left|z-z_{\imath}\right|<\frac{1}{3}\left(1-\left|z_{v}\right|\right)$. Since

$$
\frac{\left|G^{\prime}\right|}{1+|G|^{2}} \leq \frac{\left|F^{\prime}\right|\left|\frac{1}{a}\right|}{1+\left|\frac{F}{a}\right|^{2}}+\frac{\left|\frac{a^{\prime}}{a}\right|\left|\frac{F}{a}\right|}{1+\left|\frac{F}{a}\right|^{2}}
$$

we prove just as before that (12) holds.
However in E^{\prime} our argument is different. We note that $\frac{F(z)}{a(z)}$ has a pole of residue $r_{0}=F\left(z_{\nu}\right)\left(1-\left|z_{\nu}\right|^{2}\right)$ at $z=z_{\nu}$, and write

$$
G(z)=\frac{F(z)}{a(z)}=\frac{r_{0}}{z-z_{v}}+G_{1}(z)=c(z)+G_{1}(z) \text { say. }
$$

Thus

$$
\begin{align*}
G^{*}\left(r e^{i \phi}\right) & =\frac{\left|G^{\prime}\left(r e^{i \phi}\right)\right|}{1+|G|^{2}} \leq \frac{\left|G_{1}^{\prime}\left(r e^{i \phi}\right)\right|}{1+|G|^{2}}+\frac{\left|c^{\prime}\left(r e^{i \phi}\right)\right|}{1+|G|^{2}} \\
& \leq\left|G_{1}^{\prime}\left(r e^{i \phi}\right)\right|+\frac{\left|c^{\prime}\left(r e^{i \phi}\right)\right|}{1+|G|^{2}} . \tag{14}
\end{align*}
$$

In view of c$)$ and (2) $\left.\mid F_{1} z\right)|,|G(z)|$ and so $| G_{1}(z) \mid$ are small for $\left|z-z_{\nu}\right|=\frac{1}{2}\left(1-\left|z_{v}\right|\right)$ when ν is large and since $G_{1}(z)$ is regular in $\left|z-z_{\nu}\right|<\frac{1}{2}\left(1-\left|z_{\nu}\right|\right)$, we deduce that for large ν we have on E^{\prime},

$$
\left|G_{1}(z)\right|<1,\left|G_{1}^{\prime}(z)\right|<\left(1-\left|z_{\nu}\right|\right)^{-1} .
$$

Since the length of E^{\prime} is at most $\left(1-\left|z_{\nu}\right|\right)$ for large ν we deduce that

$$
\begin{equation*}
\int_{F}\left|G_{1}^{\prime}\left(r e^{i \phi}\right)\right| d \phi<1 \tag{15}
\end{equation*}
$$

for large ν.
To estimate the other term in (14) we let $E^{\prime \prime}$ be the part of. E^{\prime} where $|c(z)|>2$.
Then in $E^{\prime \prime}$ we have

$$
|G(z)| \geq|c(z)|-\frac{1}{2}|c(z)|=\frac{1}{2}|c(z)|
$$

$$
\frac{\left|c^{\prime}(z)\right|}{1+|G|^{2}} \leq \frac{4\left|c^{\prime}\right|}{|c|^{2}}=4 /\left|r_{0}\right|
$$

Since the length of $E^{\prime \prime}$ is at most $2\left|r_{0}\right|$ for large ν, we deduce that

$$
\begin{equation*}
\int_{E^{\prime \prime}} \frac{\left|c^{\prime}\left(r e^{i \phi}\right)\right|}{1+|G|^{2}} d \phi \leq 8 \tag{16}
\end{equation*}
$$

Finally if $E^{\prime \prime \prime}$ is the part of E^{\prime} outside $E^{\prime \prime}$, then

$$
\begin{equation*}
\int_{E^{\prime \prime \prime}} \frac{\left|c^{\prime}\left(r e^{i \phi}\right)\right|}{1+|G|^{2}} d \phi \leq \int_{F^{\prime \prime \prime}}\left|c^{\prime}\left(r e^{i \phi}\right)\right| d \phi=\int_{R^{\prime \prime \prime}} \frac{\left|r_{0}\right| d \phi}{\left|z-z_{2}\right|^{2}} . \tag{17}
\end{equation*}
$$

We have in $E^{\prime \prime \prime} z=r e^{i \phi}, z_{v}=\rho_{\nu} e^{i \phi_{\nu}}$, where

$$
\left|z-z_{\nu}\right|^{2}=\left(r-\rho_{\nu}\right)^{2}+4 r \rho_{\nu} \sin ^{2} \frac{\left(\phi-\phi_{\nu}\right)}{2}>\frac{1}{4}\left|r_{0}\right|^{2}
$$

Suppose first that $\left|r-\rho_{v}\right|>\frac{1}{4}\left|r_{0}\right|$. Then since $r \geq \frac{1}{2}, \quad \rho_{v} \geq \frac{1}{2}$ we have

$$
\begin{align*}
\int_{E^{\prime} \cdot \prime \prime} \frac{\left|r_{0}\right| d \phi}{\left|z-z_{v}\right|^{2}} & \leq \int_{-\infty}^{+\infty} \frac{\pi^{2}\left|r_{0}\right| d \phi}{\left(r-\rho_{v}\right)^{2}+\left(\phi-\phi_{v}\right)^{2}} \\
& =\frac{\pi^{3}\left|r_{0}\right|}{\left|r-\rho_{v}\right|}<4 \pi^{3} \tag{18}
\end{align*}
$$

If on the other hand $\left|r-\rho_{\nu}\right| \leq \frac{1}{4}\left|r_{0}\right|$, then we must have in $E^{\prime \prime \prime} 4 r \rho_{\nu}$ $\sin ^{2} \frac{\left(\phi-\phi_{\nu}\right)}{2} \geq \frac{1}{8}\left|\gamma_{0}\right|^{2}$, so that

$$
\left|\phi-\phi_{v}\right| \geq \frac{\left|r_{0}\right|}{4}
$$

Thus in this case

$$
\int_{E^{\prime \prime \prime}} \frac{\left|r_{0}\right| d \phi}{\left|z-z_{\nu}\right|^{-}} \leq 2 \int_{\left|r_{0}\right| / 4}^{\infty} \frac{\pi^{2}\left|r_{0}\right| d x}{x^{2}}=2 \pi^{2}\left|r_{0}\right| \cdot \frac{4}{\left|r_{0}\right|}=8 \pi^{2}
$$

so that (18) still holds. On combining (14) to (18) we deduce

$$
\int_{K^{\prime}} G^{*}\left(r e^{i \phi}\right) d \phi<A_{\tau}
$$

if r is sufficiently near one. On combining this with (12) we deduce Lemma 3.
6. Proof of Theorems 1 and 2. By choosing the function $f(z)$ of Lemma 1 and for F the corresponding countable set we see that Theorem 3 yields a non-zero Tsuji function $f(z) / \Pi(z)$ having every point of F as a Julia point.

Then the function $\Pi(z) / f(z)$ satisfies the conclusions of Theorem 1. Also $\Pi(z) f(z)$ satisfies the conclusions of Theorem 2.

In fact to see this we have only to show that $\Pi(z) f(z)$ remains continuous on C. This is obvious at all points of C which are not limits of zeros of $\Pi(z)$, since $\Pi(z)$ remains continuous at such points. The only other points of C are the points where $f(z)$ vanishes continuously and so $\Pi(z) f(z)$ vanishes and so remains continuous also at these points, since $|\Pi(z)|<1$.

I should like to thank the referee for pointing out two mistakes in the original argument.

Bibliography

[1] E. F. Colling wood and G. Piranian, Tsuji functions with segments of Julia. Math. Zeit., 84 (1964), 246-253.
[2] W. K. Hayman, The boundary behaviour of Tsuji functions. Michigan Math. J. to appear.
[3] M. Tsuji, A theorem on the boundary behaviour of a meromorphic function in $|z|<1$. Comment. Math. Univ. St. Paul., 8 (1960), 53-55.

Imperial College,
London S.W. 7.
England.

