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Abstract

We give sufficient conditions for a Frobenius category to be equivalent to the category
of Gorenstein projective modules over an Iwanaga–Gorenstein ring. We then apply this
result to the Frobenius category of special Cohen–Macaulay modules over a rational
surface singularity, where we show that the associated stable category is triangle
equivalent to the singularity category of a certain discrepant partial resolution of the
given rational singularity. In particular, this produces uncountably many Iwanaga–
Gorenstein rings of finite Gorenstein projective type. We also apply our method to
representation theory, obtaining Auslander–Solberg and Kong type results.
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1. Introduction

This paper is motivated by the study of certain triangulated categories associated to rational
surface singularities, first constructed in [IW11]. The purpose is to develop both the algebraic
and geometric techniques necessary to give precise information regarding these categories, and
to put them into a more conceptual framework. It is only by developing both sides of the picture
that we are able to prove the results that we want.

We explain the algebraic side first. Frobenius categories [Hap88, Kel90, Kel96] are now
ubiquitous in algebra, since they give rise to many of the triangulated categories arising in
algebraic and geometric contexts. One of the points of this paper is that we should treat Frobenius
categories which admit a ‘non-commutative resolution’ as a special class of Frobenius categories.
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Frobenius categories via Gorenstein algebras

We show that such a Frobenius category is equivalent to the category GP(E) of Gorenstein
projective modules over some Iwanaga–Gorenstein ring E (for definitions see §§ 2, especially
2.1). The precise statement is as follows. For a Frobenius category E we denote by proj E the full
subcategory of E consisting of projective objects and for an object P of E we denote by addP
the full subcategory of E consisting of direct summands of finite direct sums of copies of P .

Theorem 1.1 (= Theorem 2.7). Let E be a Frobenius category with proj E = addP for some
P ∈ proj E . Assume that there exists M ∈ E such that A := EndE(P ⊕M) is a noetherian ring
of global dimension n. Then the following statements hold.

(1) E := EndE(P ) is an Iwanaga–Gorenstein ring of dimension at most n, that is, a noetherian
ring with inj.dimE E 6 n and inj.dimEE 6 n.

(2) We have an equivalence HomE(P,−) : E → GP(E) up to direct summands. It is an
equivalence if E is idempotent complete. This induces a triangle equivalence

E '−→ GP(E) ' Dsg(E)

up to direct summands. It is an equivalence if E or E is idempotent complete.

(3) E = thickE(M), i.e. the smallest full triangulated subcategory of E containing M which
is closed under direct summands is E .

This abstract result has applications in, and is motivated by, problems in algebraic geometry.
If R is a Gorenstein singularity, then the category CM(R) of maximal Cohen–Macaulay modules
over R is a Frobenius category. Moreover, if R is a simple surface singularity, then the classical
algebraic McKay correspondence can be formulated in terms of the associated stable category
CM(R); see [Aus86].

When R is not Gorenstein, CM(R) is no longer Frobenius. However, for a complete local
rational surface singularity R over an algebraically closed field of characteristic zero (for details,
see § 3 or § 4.4), there is a subcategory SCM(R) ⊆ CM(R) of special CM modules (recalled in
§ 3). By Wunram’s GL(2) McKay correspondence [Wun88], if we denote Y → SpecR to be the
minimal resolution, and let {Ei}i∈I denote the set of exceptional curves, then there is a natural
bijection {

non-free indecomposable

special CM R-modules

}/
∼= ←→

{
Ei | i ∈ I

}
.

We let Mi denote the indecomposable special CM R-module corresponding to the exceptional
curve Ei. We remark that the set of exceptional curves can be partitioned into two subsets,
namely I = C ∪ D where C are all the (C)repant curves (i.e. the (−2)-curves), and D are all
the (D)iscrepant curves (i.e. the non-(−2)-curves). In this paper, the following module plays a
central role.

Definition 1.2. We define the module D ∈ SCM(R) by D := R⊕ (
⊕

d∈DMd).

It was shown in [IW11] that the category SCM(R) has at least one natural Frobenius
structure. Our first result in this setting is that there are often many different Frobenius
structures on SCM(R), and so the one found in [IW11] is not unique.

Proposition 1.3 (= Proposition 3.7). Let R be a complete local rational surface singularity
over an algebraically closed field of characteristic zero and let D ∈ SCM(R) be defined as above.
Choose N ∈ SCM(R) such that addD ⊆ addN . Then SCM(R) has the structure of a Frobenius
category whose projective objects are exactly addN . We denote the category SCM(R), equipped
with this Frobenius structure, by SCMN (R).
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It then follows from Theorem 1.1 and Proposition 1.3 that EndR(N) is Iwanaga–Gorenstein
(Theorem 3.8), using the fact that the reconstruction algebra, i.e. EndR(R⊕

⊕
i∈IMi), has finite

global dimension [IW10, Wem11a].
We then interpret the stable category SCMN (R) of the Frobenius category SCMN (R)

geometrically. To do this, we remark that the condition addD ⊆ addN implies (after passing to
the basic module) that we can write

N = D ⊕
⊕
j∈J

Mj

for some subset J ⊆ C. Set S := C\J , the complement of J in C, so that

N = D ⊕
⊕
j∈C\S

Mj := NS .

Contracting all the curves in S, we obtain a scheme XS together with maps

Y
fS−→ XS

gS−→ SpecR.

Knowledge of the derived category of XS leads to our main result, which also explains
geometrically why EndR(NS) is Iwanaga–Gorenstein (Corollary 4.15).

Theorem 1.4 (= Theorems 4.6, 4.10). With the assumptions as in Proposition 1.3, choose S ⊆ C
(i.e. NS ∈ SCM(R) such that addD ⊆ addNS). Then the following statements hold.

(1) There is a derived equivalence between EndR(NS) and XS .

(2) As a consequence, we obtain triangle equivalences

SCMNS (R) ' GP(EndR(NS)) ' Dsg(EndR(NS)) ' Dsg(XS) '
⊕

x∈SingXS

CM(ÔXS ,x)

where SingXS denotes the set of singular points of XS .

(3) In particular, SCMNS (R) is 1-Calabi–Yau, and its shift functor satisfies [2] = id.

Thus Theorem 1.4 shows that SCMNS (R) is nothing other than the usual singularity category
of some partial resolution of SpecR. We remark that it is the geometry that determines the last
few statements in Theorem 1.4, as we are unable to prove them using algebra alone. In § 5 we
give a relative singularity category version of the last two equivalences in Theorem 1.4.

The following corollary to Theorem 1.4 extends [IW11, Corollary 4.11] and gives a ‘relative’
version of Auslander’s algebraic McKay correspondence for all rational surface singularities.

Corollary 1.5 (= Corollary 4.14). With the assumptions as in Proposition 1.3, choose NS ∈
SCM(R) such that addD ⊆ addNS . Then the Auslander–Reiten (AR) quiver of the category
SCMNS (R) is the double of the dual graph with respect to the morphism Y → XS .

Using the geometry, we are also able to improve Theorem 1.1(1) in the situation of rational
surface singularities, since we are able to give the precise value of the injective dimension. The
following is a generalization of a known result, Proposition 3.2, for the case addN = SCM(R).

Theorem 1.6 (= Theorem 4.18). With the assumptions as in Proposition 1.3, choose
N ∈ SCM(R) such that addD ⊆ addN and put Γ = EndR(N). Then

inj.dimΓ Γ =

{
2 if R is Gorenstein,

3 otherwise.
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Frobenius categories via Gorenstein algebras

This gives many new examples of Iwanaga–Gorenstein rings Γ, of injective dimension three,
for which there are only finitely many Gorenstein projective modules up to isomorphism. In
contrast to the commutative situation, we also show the following result. Some explicit examples
are given in § 6.1.

Theorem 1.7 (= Theorem 4.19). Let G 6 SL(2,C) be a finite subgroup, with G � E8. Then
there are uncountably many non-isomorphic Iwanaga–Gorenstein rings Λ with inj.dimΛ Λ = 3,
such that GP(Λ) ' CM(C[[x, y]]G).

Conventions and notation. We use the convention that the composition of morphisms
f : X → Y and g : Y → Z in a category is denoted by fg. By a module over a ring A we mean
a left module, and we denote by ModA (modA) the category of A-modules (finitely generated
A-modules). We denote by projA the category of finitely generated projective A-modules. If M
is an object of an additive category C, we denote by addM all those objects of C which are direct
summands of finite direct sums of M . We say that M is an additive generator of C if C = addM .
If T is a triangulated category and M ∈ T , we denote by thick(M) the smallest full triangulated
subcategory containing M which is closed under taking direct summands.

2. A Morita type theorem for Frobenius categories

Throughout this section let E denote a Frobenius category, and denote by proj E ⊆ E the full
subcategory of projective objects. We denote the stable category of E by E . It has the same
objects as E , but the morphism spaces are defined as HomE(X,Y ) = HomE(X,Y )/P(X,Y ),
where P(X,Y ) is the subspace of morphisms factoring through proj E . We refer to Keller’s
overview article for definitions and unexplained terminologies [Kel90, Kel96].

2.1 Frobenius categories as categories of Gorenstein projective modules
Recall that a noetherian ring E is called Iwanaga–Gorenstein of dimension at most n if
inj.dimE E 6 n and inj.dimEE 6 n [EJ00]. For an Iwanaga–Gorenstein ring E of dimension
at most n, we denote by

GP(E) := {X ∈ modE | ExtiE(X,E) = 0 for any i > 0} = Ωn(modE)

the category of Gorenstein projective E-modules [AB69, EJ00]. Here Ω is the syzygy functor of
modE. This is a Frobenius category with projE the subcategory of projective objects.

Remark 2.1. The objects of GP(E) are sometimes called Cohen–Macaulay modules, but there
are reasons why we do not do this; see Remark 3.3 below. They are sometimes also called totally
reflexive modules.

Definition 2.2 ([Buch86, Orl04]). Let R be a left noetherian ring. The triangulated category
Dsg(R) := Db(modR)/Kb(projR) is called the singularity category of R.

Remark 2.3. Let E be an Iwanaga–Gorenstein ring. By a result of Buchweitz [Buch86, Theorem
4.4.1(2)], we have an equivalence of triangulated categories

GP(E) ' Dsg(E).

The purpose of this section is to show that the existence of a non-commutative resolution of
a Frobenius category E puts strong restrictions on E (Theorem 2.7).
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Definition 2.4. Let E be a Frobenius category with proj E = addP for some P ∈ proj E . By
a non-commutative resolution of E , we mean A := EndE(M) for some M ∈ E with P ∈ addM ,
such that A is noetherian with gl.dimA <∞.

At the level of generality of abstract Frobenius categories, the above definition is new. We
remark that when E = CMR (with R a Gorenstein ring), our definition of non-commutative
resolution is much weaker than Van den Bergh’s notion of a non-commutative crepant resolution
(= NCCR) [vdB04b], and especially in higher dimension, examples occur much more often.

Remark 2.5. Not every Frobenius category with a projective generator admits a non-
commutative resolution. Indeed, let R be a normal Gorenstein surface singularity over C, and
consider E := CM(R). Then any non-commutative resolution in the above sense is automatically
an NCCR, and the existence of an NCCR is well known to imply that R must have rational
singularities [SV08].

Our strategy to prove Theorem 2.7 is based on [AIR11, Theorem 2.2(a)], but the set-up here
is somewhat different. We need the following technical observation.

Lemma 2.6. Let E be a Frobenius category with proj E = addP for some P ∈ proj E . If f :X→ Y
is a morphism in E such that HomE(f, P ) is surjective, then there exists an exact sequence

0→ X
(f 0)
−−−→ Y ⊕ P ′→ Z → 0

in E with P ′ ∈ proj E .

Proof. This follows, for example, from [Kal13, Lemma 2.10]. 2

Theorem 2.7. Let E be a Frobenius category with proj E = addP for some P ∈ proj E . Assume
that there exists a non-commutative resolution EndE(M) of E with gl.dim EndE(M) = n. Then
the following statements hold.

(1) E := EndE(P ) is an Iwanaga–Gorenstein ring of dimension at most n.

(2) We have an equivalence HomE(P,−) : E → GP(E) up to direct summands. It is an
equivalence if E is idempotent complete. This induces a triangle equivalence

E '−→ GP(E) ' Dsg(E)

up to direct summands. It is an equivalence if E or E is idempotent complete.

(3) E = thickE(M).

Proof. Since P ∈ addM , EndE(M) is Morita equivalent to A := EndE(P ⊕ M) and so
gl.dimA = n. Since A is noetherian, so is E (see, for example, [MR87, Proposition 1.1.7]).
It follows from a standard argument that the functor HomE(P,−) : E → modE is fully faithful,
restricting to an equivalence HomE(P,−) : addP → projE up to direct summands. We can drop
the ‘up to direct summands’ assumption if E is idempotent complete. We establish (1) in three
steps:

(i) We first show that ExtiE(HomE(P,X), E) = 0 for any X ∈ E and i > 0. Let

0→ Y → P ′→ X → 0 (2.A)

be an exact sequence in E with P ′ projective. Applying HomE(P,−), we have an exact sequence

0→ HomE(P, Y )→ HomE(P, P
′)→ HomE(P,X)→ 0 (2.B)
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with a projective E-module HomE(P, P
′). Applying HomE(−, P ) to (2.A) and HomE(−, E) to

(2.B) respectively and comparing them, we have a commutative diagram of exact sequences.

HomE(P
′, P ) //

o
��

HomE(Y, P )

o
��

// 0

HomE(HomE(P, P
′), E) // HomE(HomE(P, Y ), E) // Ext1

E(HomE(P,X), E) // 0

Thus we have Ext1
E(HomE(P,X), E) = 0. Since the syzygy of HomE(P,X) has the same form

HomE(P, Y ), we have ExtiE(HomE(P,X), E) = 0 for any i > 0.
(ii) We show that, for any X ∈ modE, there exists an exact sequence

0→ Qn→ · · ·→ Q0→ X → 0 (2.C)

of E-modules with Qi ∈ add HomE(P, P ⊕M).
Define an A-module by X̃ := HomE(P ⊕ M,P ) ⊗E X. Let e be the idempotent of A =

EndE(P ⊕M) corresponding to the direct summand P of P ⊕M . Then we have eAe = E and
eX̃ = X. Since the global dimension of A is at most n, there exists a projective resolution

0→ Pn→ · · ·→ P0→ X̃ → 0.

Applying e(−) and using eA = HomE(P, P ⊕M), we have the assertion.
(iii) By (i) and (ii), we have that Extn+1

E (X,E) = 0 for any X ∈ modE, and so the injective
dimension of the E-module E is at most n. The dual argument shows that the injective dimension
of the Eop-module E is at most n. Thus E is Iwanaga–Gorenstein, which shows (1).

(2) By (i) again, we have a functor HomE(P,−) : E → GP(E), and it is fully faithful. We
will now show that it is dense up to direct summands.

For any X ∈ GP(E), we take an exact sequence (2.C). Since Qi ∈ add HomE(P, P ⊕M), we
have a complex

Mn
fn−→ · · · f0−→M0 (2.D)

in E with Mi ∈ add(P ⊕M) such that

0→ HomE(P,Mn)
·fn−−→ · · · ·f0−→ HomE(P,M0)→ X ⊕ Y → 0 (2.E)

is exact for some Y ∈ GP(E). (Note that due to the possible lack of direct summands in E it is
not always possible to choose Mi such that HomE(P,Mi) = Qi.) Applying HomE(−, P ) to (2.D)
and HomE(−, E) to (2.E) and comparing them, we have a commutative diagram

HomE(M0, P ) //

o
��

· · · // HomE(Mn, P )

o
��

// 0

HomE(HomE(P,M0), E) // · · · // HomE(HomE(P,Mn), E) // 0

where the lower sequence is exact since X ⊕ Y ∈ GP(E). Thus the upper sequence is also exact.
But applying Lemma 2.6 repeatedly to (2.D), we have a complex

0→Mn
(fn 0)
−−−−→Mn−1 ⊕Pn−1

(fn−1 0 0

0 1 0)−−−−−−→Mn−2 ⊕Pn−1 ⊕Pn−2 −→ · · ·→M0 ⊕P1 ⊕P0→ N → 0
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with projective objects Pi which is a splicing of exact sequences in E . Then we have X ⊕
Y ⊕ HomE(P, P0) ' HomE(P,N), and we have the assertion. The final statement follows by
Remark 2.3.

(3) The existence of (2.C) implies that HomE(P,−) gives a triangle equivalence thickE(M)→
GP(E) up to direct summands. Thus the natural inclusion thickE(M) → E is also a triangle
equivalence up to direct summands. This must be an isomorphism since thickE(M) is closed
under direct summands in E . 2

We note the following more general version stated in terms of functor categories [Aus66]. For
an additive category P we denote by ModP the category of contravariant additive functors from
P to the category of abelian groups. For X ∈ E , we have a P-module HX := HomE(−, X)|P . We
denote by modP the full subcategory of ModP consisting of finitely presented objects. Similarly,
we define ModPop, HX and modPop. If P has pseudokernels (pseudocokernels), then modP
(modPop) is an abelian category.

Theorem 2.8. Let E be a Frobenius category with the category P of projective objects. Assume
that there exists a full subcategory M of E such that M contains P, M has pseudokernels and
pseudocokernels, and modM and modMop have global dimension at most n. Then the following
statements hold.

(1) P is an Iwanaga–Gorenstein category of dimension at most n, i.e. ExtimodP(−, HP ) = 0
and ExtimodPop(−, HP ) = 0 for all P ∈ P, i > n.

(2) For the category

GP(P) := {X ∈ modP | ExtiP(X,HP ) = 0 for any i > 0 and P ∈ P}

of Gorenstein projective P-modules, we have an equivalence E → GP(P), X 7→ HX up to
summands. It is an equivalence if E is idempotent complete. This induces a triangle equivalence

E → GP(P) ' Dsg(P)

up to summands. It is an equivalence if E or E is idempotent complete.

(3) E = thickE(M).

Remark 2.9. In the setting of Theorem 2.8, we remark that [Che12, Theorem 4.2] also gives an
embedding E → GP(P).

2.2 Alternative approach
We now give an alternative proof of Theorem 2.7 by using certain quotients of derived categories.
This will be necessary to interpret some results in § 5 later. We retain the set-up from the previous
subsection; in particular, E always denotes a Frobenius category. Recall the following definition.

Definition 2.10. Let N ∈ Z. A complex P ∗ of projective objects in E is called acyclic in degrees
6 N if there exist exact sequences in E ,

Zn(P ∗) // in // Pn
pn // // Zn+1(P ∗)

such that dnP ∗ = pnin+1 holds for all n6N . Let K−,b(proj E)⊆K−(proj E) be the full subcategory
consisting of those complexes which are acyclic in degrees 6 d for some d ∈ Z. This defines a
triangulated subcategory of K−(proj E) (cf. [KV87]).
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Taking projective resolutions yields a functor E → K−,b(proj E). We need the following dual

version of [KV87, Example 2.3]; see also [Kal13, Proposition 2.36].

Proposition 2.11. This functor induces an equivalence of triangulated categories

P : E −→ K
−,b(proj E)/Kb(proj E).

Corollary 2.12. If there exists P ∈ proj E such that proj E = addP and, moreover, E =

EndE(P ) is left noetherian, then there is a fully faithful triangle functor

P̃ : E −→ Dsg(E). (2.F)

Proof. The fully faithful functor HomE(P,−) : proj E → projE induces a fully faithful triangle

functor K−(proj E) → K−(projE). Its restriction K−,b(proj E) → K−,b(projE) is well defined

since P is projective. Define P̃ as the composition

E P // K
−,b(proj E)

Kb(proj E)
// K
−,b(projE)

Kb(projE)
∼ // D

b(modE)

Kb(projE)
,

where P is the equivalence from Proposition 2.11 and the last functor is induced by the well-known

triangle equivalence K−,b(projE)
∼−→ Db(modE). 2

Remark 2.13. In the special case when E is an Iwanaga–Gorenstein ring and E := GP(E), the

functor P̃ in (2.F) was shown to be an equivalence in [Buch86, Theorem 4.4.1(2)] (see Remark 2.3).

For general Frobenius categories, P̃ is far from being an equivalence. For example, let E = projR

be the category of finitely generated projective modules over a left noetherian algebra R equipped

with the split exact structure. Then always E = 0 but Dsg(E) = Dsg(R) 6= 0 if gl.dim(R) = ∞.

We refer the reader to [Kal13, Remark 2.41] for a detailed discussion.

Below in Theorem 2.15, we give a sufficient criterion for P̃ to be an equivalence. To do this

requires the following result.

Proposition 2.14. Let A be a left noetherian ring and let e ∈ A be an idempotent. The exact

functor HomA(Ae,−) induces a triangle equivalence

G :
Db(modA)/thick(Ae)

thick (q(modA/AeA))
−→ Db(mod eAe)

thick(eAe)
, (2.G)

where q : Db(modA)→ Db(modA)/thick(Ae) denotes the canonical projection.

Proof. Taking e = f in [KY12, Proposition 3.3] yields the triangle equivalence (2.G). 2

Theorem 2.15. Let E be a Frobenius category with proj E = addP for some P ∈ proj E . Assume

that there exists M ∈ E such that A := EndE(P ⊕M) is a left noetherian ring of finite global

dimension, and denote E := EndE(P ). Then the following statements hold.

(1) P̃ : E −→ Dsg(E) is a triangle equivalence up to direct summands. If E is idempotent

complete, then P̃ is an equivalence.

(2) E = thickE(M).
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Proof. Let e ∈ A be the idempotent corresponding to the identity endomorphism 1P of P ; then
eAe = E. We have the following commutative diagram of categories and functors.(

Db(modA)/thick(Ae)
)

thick
(
q(modA/AeA)

) G
∼

// D
b(mod eAe)

Kb(proj eAe)
EP̃oo

(
Kb(projA)/thick(Ae)

)
thick

(
q(modA/AeA)

) Grestr.

∼
//

I1
OO

thick(eA)

Kb(proj eAe)

I2
OO

thickE(M)
P̃restr.

∼
oo

I3

OO

where Ii are the natural inclusions. Since A has finite global dimension the inclusion
Kb(projA)→ Db(modA) is an equivalence and so I1 is an equivalence. But G is an equivalence
from Proposition 2.14, and Grestr. denotes its restriction. It is also an equivalence since G maps
the generator A to eA. Thus, by commutativity of the left square we deduce that I2 is an
equivalence. Now P̃ denotes the fully faithful functor from Corollary 2.12, so since P̃ maps
P ⊕M to HomE(P, P ⊕M), which is isomorphic to eA as left eAe-modules, the restriction P̃restr.

is a triangle equivalence up to summands. Hence the fully faithful functors P̃ and I3 are also
equivalences, up to summands. In particular, I3 is an equivalence. If E is idempotent complete
then thickE(M) is idempotent complete and P̃restr. is an equivalence. It follows that P̃ is an
equivalence in this case. 2

2.3 A result of Auslander and Solberg
Let K be a field and denote D := HomK(−,K). The following is implicitly included in Auslander
and Solberg’s relative homological algebra [AS93b] (compare [Che12, Theorem 5.1]), and will be
required later (in §§ 3 and 6) to produce examples of Frobenius categories on which we can apply
our previous results.

Proposition 2.16. Let E be a K-linear exact category with enough projectives P and enough
injectives I. Assume that there exist an equivalence τ : E → E and a functorial isomorphism
Ext1

E(X,Y ) ' DHomE(Y, τX) for any X,Y ∈ E . LetM be a functorially finite subcategory of E
containing P and I, which satisfies τM =M. Then the following statements hold.

(1) Let 0→ X
f−→ Y

g−→ Z → 0 be an exact sequence in E . Then HomE(M, g) is surjective if
and only if HomE(f,M) is surjective.

(2) E has the structure of a Frobenius category whose projective objects are exactly addM.
More precisely, the short exact sequences of this Frobenius structure are the short exact sequences

0→ X
f−→ Y

g−→ Z → 0 of E such that HomE(f,M) is surjective.

Proof. (1) Applying HomE(M,−) to 0→ X → Y → Z → 0, we have an exact sequence

HomE(M, Y )
g−→ HomE(M, Z)→ Ext1

E(M, X)
f−→ Ext1

E(M, Y ). (2.H)

Thus we know that HomE(M, g) is surjective if and only if Ext1
E(M, f) is injective. Using AR

duality, this holds if and only if HomE(f, τM) is surjective, which holds if and only if HomE(f,M)
is surjective. This holds if and only if HomE(f,M) is surjective.

(2) One can easily check (e.g. by using [DRSS99, Propositions 1.4 and 1.7]) that exact
sequences fulfilling the equivalent conditions in (1) satisfy the axioms of exact categories in
which any object of addM is a projective and an injective object (see [Kal13, Remark 2.28] for
details).
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We will show that E has enough projectives with respect to this exact structure. For any
X ∈ E , we take a rightM-approximation f : N ′→ X of X. SinceM contains P, any morphism
from P to X factors through f . By a version of Lemma 2.6 for exact categories, we have an
exact sequence

0→ Y → N ′ ⊕ P
(f0)−−→ X → 0

in E with P ∈ P. This sequence shows that E has enough projectives with respect to this exact
structure.

Dually, we have that E has enough injectives. Moreover, both projective objects and injective
objects are addM. Thus the assertion holds. 2

3. Frobenius structures on special Cohen–Macaulay modules

Throughout this section we let R denote a complete local rational surface singularity over an
algebraically closed field of characteristic zero. Because of the characteristic zero assumption,
rational singularities are always Cohen–Macaulay. We refer the reader to § 4.4 for more details
regarding rational surface singularities.

We denote by CM(R) the category of maximal Cohen–Macaulay (CM) R-modules. Since
R is normal and two-dimensional, a module is CM if and only if it is reflexive. The category
CM(R), and all subcategories thereof, are Krull–Schmidt categories since R is complete local.
One such subcategory is the category of special CM modules, denoted SCM(R), which consists
of all those CM R-modules X satisfying Ext1

R(X,R) = 0.
The category SCM(R) is intimately related to the geometry of SpecR. If we denote the

minimal resolution of SpecR by

Y
π−→ SpecR,

and define {Ei}i∈I to be the set of exceptional curves, then the following is well known.

Proposition 3.1. (1) There are only finitely many indecomposable objects in SCM(R).
(2) Indecomposable non-free objects in SCM(R) correspond bijectively to {Ei}i∈I .

Proof. (2) is Wunram [Wun88, Theorem 1.2] (using [IW10, Theorem 2.7] to show that definition
of special in [Wun88] is the same as the one used here), and (1) is a consequence of (2). 2

Thus, by Proposition 3.1(2), SCM(R) has an additive generator M := R⊕
⊕

i∈IMi, where as
in the introduction by convention Mi is the indecomposable special CM module corresponding
to Ei. The corresponding endomorphism ring Λ := EndR(M) is called the reconstruction algebra
of R; see [Wem11b, IW10]. The following is also well known.

Proposition 3.2. Consider the reconstruction algebra Λ. Then

gl.dim Λ =

{
2 if R is Gorenstein,

3 otherwise.

Proof. An algebraic proof can be found in [IW10, Theorem 2.10] or [IW11, Theorem 2.6]. A
geometric proof can be found in [Wem11a]. 2

Remark 3.3. The reconstruction algebra Λ, and some of the eΛe below, will turn out to be
Iwanaga–Gorenstein in § 4. However, we remark here that Λ is usually not Gorenstein in the
stronger sense that ωΛ := HomR(Λ, ωR) is a projective Λ-module. Thus, unfortunately the objects
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of GP(Λ) are not simply those Λ-modules that are CM as R-modules, i.e. GP(Λ) ( {X ∈
mod(Λ) | X ∈ CM(R)} in general. In this paper we will always reserve ‘CM’ to mean CM as
an R-module, and this is why we use the terminology ‘Gorenstein projective’ (GP) for non-
commutative Iwanaga–Gorenstein rings.

We will be considering many different factor categories of SCM(R), so in order to avoid
confusion we now fix some notation.

Definition 3.4. Let X ∈ SCM(R). We define the factor category SCMX(R) to be the category
consisting of the same objects as SCM(R), but where

HomSCMX(R)(a, b) :=
HomSCM(R)(a, b)

X (a, b)
,

where X (a, b) is the subgroup of morphisms a→ b which factor through an element in addX.

As in the introduction, we consider the module D := R ⊕ (
⊕

d∈DMd). Algebraically the
following is known; the geometric properties of D will be established in Corollary 4.8 and 4.9
below.

Proposition 3.5. (1) The category SCM(R) has the natural structure of a Frobenius category,
whose projective objects are precisely the objects of addD. Consequently SCMD(R) is a
triangulated category.

(2) For any indecomposable object X in SCMD(R), there exists an AR triangle of the form

X → E → X → X[1].

(3) The stable category SCMD(R) has a Serre functor S such that SX ' X[1] for any
X ∈ SCMD(R).

Proof. (1) The exact sequences are defined using the embedding SCM(R) ⊆ modR, and the
result follows from [IW11, Theorem 4.2].

(2) This is [IW11, Proposition 4.9].

(3) SCMD(R) has AR triangles by (2), so there exists a Serre functor by [RV02, Proposition
I.2.3] such that

τX → E → X → SX

is the AR triangle. By inspection of (2), we see that SX[−1] ' X.
2

Remark 3.6. The above proposition almost asserts that the category SCMD(R) is 1-Calabi–Yau,
but it does not show that the isomorphism in Proposition 3.5(3) is functorial. We prove that it
is functorial in Theorem 4.10, using geometric arguments.

The following important observation, which generalizes Proposition 3.5(1), is obtained by
applying Proposition 2.16 to (E ,M, τ) = (SCM(R), addN, S[−1]).

Proposition 3.7. Let N ∈ SCM(R) such that addD ⊆ addN . Then the following statements
hold.

(1) Let 0→ X
f−→ Y

g−→ Z → 0 be an exact sequence of R-modules with X,Y, Z ∈ SCM(R).
Then HomR(N, g) is surjective if and only if HomR(f,N) is surjective.
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(2) SCM(R) has the structure of a Frobenius category whose projective objects are exactly
addN . We denote it by SCMN (R). More precisely, the short exact sequences of SCMN (R) are the

short exact sequences 0→ X
f−→ Y

g−→ Z → 0 of R-modules such that HomR(f,N) is surjective.

We maintain the notation from above, in particular Λ := EndR(M) is the reconstruction
algebra, where M := R⊕ (

⊕
i∈IMi), and D := R⊕ (

⊕
d∈DMd). For any summand N of M , we

denote by eN the idempotent in Λ corresponding to the summand N . The following is the main
result of this section.

Theorem 3.8. Let N ∈ SCM(R) such that addD ⊆ addN . Then the following statements hold.

(1) eNΛeN = EndR(N) is an Iwanaga–Gorenstein ring of dimension at most three.

(2) There is an equivalence HomR(N,−) : SCM(R)→ GP(EndR(N)) that induces a triangle
equivalence

SCMN (R) ' GP(EndR(N)).

Proof. By Proposition 3.7(2), SCM(R) has the structure of a Frobenius category in which
proj SCM(R) = addN . Since SCM(R) has finite type, there is some X ∈ SCM(R) such that
add(N ⊕X) = SCM(R), in which case EndR(N ⊕X) is Morita equivalent to the reconstruction
algebra, so gl.dim EndR(N ⊕X) 6 3 by Proposition 3.2. Hence (1) follows from Theorem 2.7(1),
and since SCM(R) is idempotent complete, (2) follows from Theorem 2.7(2). 2

Remark 3.9. We will give an entirely geometric proof of Theorem 3.8(1) in § 4, which also holds
in greater generality.

The following corollary will be strengthened in Remark 4.7 below.

Corollary 3.10. Let N ∈ SCM(R) such that addD ⊆ addN ( addM . Then eNΛeN =
EndR(N) has infinite global dimension.

Proof. By Theorem 3.8(2), we know that SCMN (R) ' GP(EndR(N)) ' Dsg(EndR(N)),
where the last equivalence holds by Buchweitz [Buch86, Theorem 4.4.1(2)]. It is clear that
SCMN (R) 6= 0 since addN ( addM . Hence Dsg(EndR(N)) 6= 0, which is well known to imply
that gl.dim EndR(N) =∞. 2

4. Relationship to partial resolutions of rational surface singularities

We show in § 4.1 that if an algebra Γ is derived equivalent to a Gorenstein scheme that is
projective birational over a CM ring, then Γ is Iwanaga–Gorenstein. In § 4.2 we then exhibit
algebras derived equivalent to partial resolutions of rational surface singularities, and we use this
information to strengthen many of our previous results.

In this section we will assume that all schemes Y are noetherian, separated, normal CM,
of pure Krull dimension d < ∞, and of finite type over a field k. This implies that D(QcohY )
is compactly generated, with compact objects precisely the perfect complexes Perf(Y ) [Nee96,
Proposition 2.5 and Lemma 2.3], and ωY = g! k[−dimY ] where g : Y → Spec k is the structure
morphism.

4.1 Gorenstein schemes and Iwanaga–Gorenstein rings
Serre functors are somewhat more subtle in the singular setting. Recall from [Gin06, Definition
7.2.6] the following definition.
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Definition 4.1. Suppose that Y → SpecS is a projective birational map where S is a CM
ring with canonical module ωS . We say that a functor S : Perf(Y )→ Perf(Y ) is a Serre functor
relative to ωS if there are functorial isomorphisms

RHomS(RHomY (F ,G), ωS) ∼= RHomY (G,S(F))

in D(ModS) for all F ,G ∈ Perf(Y ).

Lemma 4.2. Let Γ be a module finite S-algebra, where S is a CM ring with canonical module
ωS , and suppose that there exists a functor T : Kb(proj Γ)→ Kb(proj Γ) such that

RHomS(RHomΓ(a, b), ωS) ∼= RHomΓ(b,T(a))

for all a, b ∈ Kb(proj Γ). Then inj.dim ΓΓ <∞.

Proof. Denote (−)† := RHomS(−, ωS). We first claim that Γ† ∈ Kb(Inj Γop). By taking an
injective resolution of ωS ,

0→ ωS → I0→ · · ·→ Id→ 0,

and applying HomS(Γ,−) we see that Γ† is given as the complex

· · ·→ 0→ HomS(Γ, I0)→ · · ·→ HomS(Γ, Id)→ 0→ · · · .

Since HomΓ(−,HomS(Γ, Ii)) = HomS(Γ ⊗Γ −, Ii) is an exact functor, each HomS(Γ, Ii) is an
injective Γop-module. Hence Γ† ∈ Kb(Inj Γop), as claimed.

Now T(Γ) ∈ Kb(proj Γ), and further

T(Γ) ∼= RHomΓ(Γ,T(Γ)) ∼= RHomΓ(Γ,Γ)† = Γ†.

Hence Γ† ∈ Kb(proj Γ) = thick(Γ) and so Γ = Γ†† ∈ thick(Γ†) ⊆ Kb(Inj Γop). This shows that Γ
has finite injective dimension as a Γop-module, i.e. as a right Γ-module. 2

Grothendieck duality gives us the following theorem.

Theorem 4.3. Let Y → SpecS be a projective birational map where S a CM ring with canonical
module ωS . Suppose that Y is Gorenstein. Then the functor S := ωY ⊗− : Perf(Y )→ Perf(Y )
is a Serre functor relative to ωS .

Proof. Since Y is Gorenstein, the canonical sheaf ωY is locally free, and hence S := ωY ⊗ − =
ωY ⊗L − does indeed take Perf(Y ) to Perf(Y ). Also, ωY = f ! ωS and so

RHomY (G, S(F)) = RHomY (G,F ⊗L ωY )∼= RHomY (RHomY (F ,G), ωY )
∼= RHomY (RHomY (F ,G), f ! ωS)
∼= RHomS(Rf∗RHomY (F ,G), ωS)
∼= RHomS(RHomY (F ,G), ωS)

for all F ,G ∈ Perf(Y ), where the second-last isomorphism is Grothendieck duality. 2

The last two results combine to give the following corollary, which is the main result of this
subsection.

Corollary 4.4. Let Y → SpecS be a projective birational map where S is a CM ring with
canonical module ωS . Suppose that Y is derived equivalent to Γ. Then if Y is a Gorenstein
scheme, Γ is an Iwanaga–Gorenstein ring.
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Proof. By Theorem 4.3 there is a Serre functor S : Perf(Y )→ Perf(Y ) relative to ωS . By [IW14,
Lemma 4.12] this induces a Serre functor relative to ωS on Kb(proj Γ). Hence Lemma 4.2 shows
that inj.dim ΓΓ <∞.

Repeating the argument with V∨ := RHomY (V,OY ), which is well known to give an
equivalence between Y and Γop (see, for example, [BH13, Proposition 2.6]), we obtain an
induced Serre functor relative to ωS on Kb(proj Γop). Applying Lemma 4.2 to Γop shows that
inj.dimΓ Γ <∞. 2

4.2 Tilting bundles on partial resolutions
We now return to the set-up in § 3, namely R denotes a complete local rational surface singularity
over an algebraically closed field of characteristic zero. We inspect the exceptional divisors in Y ,
the minimal resolution of SpecR. Recall from the introduction that we have I = C ∪ D where C
are the crepant curves and D are the discrepant curves. We choose a subset S ⊆ I, and contract
all curves in S. In this way we obtain a scheme which we will denote XS (see, for example,
[Rei93, § 4.15]). In fact, the minimal resolution π : Y → SpecR factors as

Y
fS−→ XS

gS−→ SpecR.

When S ⊆ C, fS is crepant and, furthermore, XS has only isolated ADE singularities
since we have contracted only (−2)-curves. It is well known that in the dual graph of the
minimal resolution, all maximal (−2)-curves must lie in ADE configurations (see, for example,
[TT04, Proposition 3.2]).

Example 4.5. To make this concrete, consider the T9 singularity [Rie77, p47] SpecR = C2/T9,
which has minimal resolution

Y := E2

−3 −2

E3

−2

E4E1

−3

−2
E5

−→ SpecR

so C = {E3, E4, E5}. Choosing S = {E3, E5} gives

XS :=
E2E1

1
2

(1,1) 1
2

(1,1)

E4

where 1
2(1, 1) is complete locally the A1 surface singularity. On the other hand, choosing S =

C = {E3, E4, E5} gives

XC :=
E2E1

1
2

(1,1) 1
3

(1,2)

Note, in particular, that in these cases S ⊆ C so SingXS always has only finitely many points,
and each is Gorenstein ADE.

The following theorem is well known to experts and is somewhat implicit in the literature. For
lack of any reference, we provide a proof here. As before, Λ denotes the reconstruction algebra.

Theorem 4.6. Let S ⊆ I, set NS := R ⊕ (
⊕

i∈I\SMi) and let e be the idempotent in Λ

corresponding to NS . Then eΛe = EndR(NS) is derived equivalent to XS via a tilting bundle
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VS in such a way that

Db(mod Λ) Db(cohY )

Db(mod eΛe) Db(cohXS)

RHomY (V∅,−)oo

e(−)

�� RHom
XS (VS ,−)

oo

RfS∗

��

commutes.

Proof. Since all the fibres are at most one-dimensional and R has rational singularities, by
[vdB04a, Theorem B] there is a tilting bundle on Y given as follows. Let E = π−1(m) where m is
the unique closed point of SpecR. Giving E the reduced scheme structure, write Ered =

⋃
i∈I Ei,

and let LYi denote the line bundle on Y such that LYi · Ej = δij . If the multiplicity of Ei in E
is equal to one, setMY

i := LYi [vdB04a, Proposition 3.5.4], otherwise defineMY
i to be given by

the maximal extension

0→ O⊕(ri−1)
Y →MY

i → LYi → 0

associated to a minimal set of ri− 1 generators of H1(Y, (LYi )−1). Then V∅ := OY ⊕ (
⊕

i∈IMY
i )

is a tilting bundle on Y [vdB04a, Theorem 3.5.5].

For ease of notation denote X := XS , and further denote Y
fS−→ XS

gS−→ SpecR by

Y
f−→ X

g−→ SpecR.

Then, in an identical manner to the above, VS := OX ⊕ (
⊕

i∈I\SMX
i ) is a tilting bundle on X.

We claim that f∗(VS) = OY ⊕ (
⊕

i∈I\SMY
i ). Certainly f∗LXi = LYi for all i ∈ I\S, and

pulling back

0→ O⊕(ri−1)
X →MX

i → LXi → 0

gives an exact sequence

0→ O⊕(ri−1)
Y → f∗MX

i → LYi → 0. (4.A)

But

Ext1
Y (f∗MX

i ,OY ) = Ext1
Y (Lf∗MX

i ,OY ) = Ext1
X(MX

i ,Rf∗OY ) = Ext1
X(MX

i ,OX),

which equals zero since VS is tilting. Hence (4.A) is a maximal extension, so it follows (by
construction) that MY

i
∼= f∗MX

i for all i ∈ I\S, so f∗(VS) = OY ⊕ (
⊕

i∈I\SMY
i ) as claimed.

Now by the projection formula

Rf∗(f
∗VS) ∼= Rf∗(OY ⊗ f∗VS) ∼= Rf∗(OY )⊗ VS ∼= OX ⊗ VS = VS ,

and so it follows that

EndX(VS) ∼= HomX(VS ,Rf∗(f∗VS)) ∼= HomY (Lf∗ VS , f∗VS) ∼= EndY (f∗VS),

i.e. EndX(VS) ∼= EndY (OY ⊕ (
⊕

i∈I\SMY
i )). But it is very well known (see, for example,

[Wem11a, Lemma 3.2]) that EndY (OY ⊕ (
⊕

i∈I\SMY
i )) ∼= EndR(R⊕i∈I\S Mi) = EndR(NS).
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Hence we have shown that VS is a tilting bundle on XS with endomorphism ring isomorphic
to EndR(NS), so the first statement follows. For the last statement, simply observe that we have
functorial isomorphisms

RHomXS (VS ,Rf∗(−)) = RHomY (Lf∗ VS ,−)

= RHomY (OY ⊕i∈I\SMY
i ,−)

= eRHomY (OY ⊕i∈IMY
i ,−)

= eRHomY (V∅,−). 2

Remark 4.7. Theorem 4.6 shows that if Λ is the reconstruction algebra and e 6= 1 is a non-
zero idempotent containing the idempotent corresponding to R, then eΛe always has infinite
global dimension, since it is derived equivalent to a singular variety. This greatly generalizes
Corollary 3.10, which only deals with idempotents corresponding to partial resolutions ‘above’
XC ; these generically do not exist. It would be useful to have a purely algebraic proof of the fact
gl.dim eΛe =∞, since this is related to many problems in higher dimensions.

Now recall from Definition 1.2 that D := R⊕ (
⊕

d∈DMd). This is just NC , so as the special
case of Theorem 4.6 when S = C we obtain the following corollary.

Corollary 4.8. EndR(D) is derived equivalent to XC .

Remark 4.9. It follows from Corollary 4.8 that the module D corresponds to the largest totally
discrepant partial resolution of SpecR, in that any further resolution must involve crepant curves.
This scheme was much studied in earlier works (e.g. [RRW90]), and is related to the deformation
theory of SpecR. We remark that XC is often referred to as the rational double point resolution.

As a further consequence of Theorem 4.6, we have the following result.

Theorem 4.10. If S ⊆ C, then we have triangle equivalences

SCMNS (R) ' GP(EndR(NS)) ' Dsg(EndR(NS)) ' Dsg(XS) '
⊕

x∈SingXS

CM(ÔXS ,x),

where SingXS denotes the set of singular points of XS . In particular, SCMNS (R) is 1-Calabi–
Yau, and its shift functor satisfies [2] = id.

Proof. Since R is complete local we already know that SCMNS (R) is idempotent complete,
so the first equivalence is just Theorem 3.8(2). Since EndR(NS) is Iwanaga–Gorenstein by
Theorem 3.8(1), the second equivalence is a well-known theorem of Buchweitz [Buch86, Theorem
4.4.1(2)]. The third equivalence follows immediately from Theorem 4.6 (see, for example, [IW14,
Lemma 4.1]). The fourth equivalence follows from [Orl09], [BK12] or [IW14, Theorem 3.2] since
the singularities ofXS are isolated and the completeness of R implies that Dsg(XS)' SCMNS (R)

is idempotent complete. The final two statements hold since each ÔXS ,x is Gorenstein ADE,

and for these it is well known that CM(ÔXS ,x) are 1-Calabi–Yau [Aus78], satisfying [2] = id
[Eis80]. 2

Example 4.11. In Example 4.5 choose S = {E3, E5}. Then by Theorem 4.10,

SCMNS (R) ' CMC[[x, y]]
1
2

(1,1) ⊕ CMC[[x, y]]
1
2

(1,1).

Remark 4.12. It was remarked in [IW11, Remark 4.14] that often the category SCMD(R) is
equivalent to that of a Gorenstein ADE singularity, but this equivalence was only known to be an
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additive equivalence, as the triangle structure on SCMD(R) was difficult to control algebraically.
Theorem 4.10 improves this by lifting the additive equivalence to a triangle equivalence. It
furthermore generalizes the equivalence to other Frobenius quotients of SCM(R) that were not
considered in [IW11].

We now use Theorem 4.10 to extend Auslander’s algebraic McKay correspondence. This
requires the notion of the dual graph relative to a morphism.

Definition 4.13. Consider fS : Y →XS . The dual graph with respect to fS is defined as follows:
for each irreducible curve contracted by fS draw a vertex, and join two vertices if and only if the
corresponding curves in Y intersect. Furthermore, label every vertex with the self-intersection
number of the corresponding curve.

The following corollary, which is immediate from Theorem 4.10, extends [IW11, Corollary
4.11].

Corollary 4.14. If S ⊆ C, then the AR quiver of the category SCMNS (R) is the double of the
dual graph with respect to the morphism Y → XS .

4.3 Iwanaga–Gorenstein rings from surfaces
The following corollary of Theorem 4.6 gives a geometric proof of Theorem 3.8(1).

Corollary 4.15. Let N ∈ SCM(R) such that addD ⊆ addN . Then eNΛeN = EndR(N) is an
Iwanaga–Gorenstein ring.

Proof. Since addD ⊆ addN , Theorem 4.6 shows that the algebra EndR(N) is derived equivalent,
via a tilting bundle, to the Gorenstein scheme XS . Thus the result follows by Corollary 4.4. 2

The point is that, using the geometry, we can sharpen Theorem 3.8(1) and Corollary 4.15,
since we are explicitly able to determine the value of the injective dimension. The proof requires
the following two lemmas, which we state and prove in greater generality.

Lemma 4.16. Suppose that (S,m) is local, Γ is a module-finite S-algebra, and X,Y ∈ mod Γ.
Then ExtiΓ(X,Y ) = 0 if i > inj.dimΓ Y − depthS X.

Proof. Use induction on t = depthS X. The case t = 0 is clear. Take an X-regular element r and
consider the sequence

0→ X
r
→ X → X/rX → 0.

By induction we have Exti+1
Γ (X/rX, Y ) = 0 for i > inj.dimΓ Y − t. By the exact sequence

ExtiΓ(X,Y )
r
→ ExtiΓ(X,Y )→ Exti+1

Γ (X/rX, Y ) = 0

and Nakayama’s lemma, we have ExtiΓ(X,Y ) = 0. 2

Recall that if Γ is an S-order, then we denote by CM(Γ) the category consisting of those
X ∈ mod Γ for which X ∈ CM(S).

Lemma 4.17 [GN01, Proposition 1.1(3)]. Suppose that S is an equicodimensional (i.e. dimS =
dimSm for all m ∈ MaxS) d-dimensional CM ring with canonical module ωS , and let Γ be an
S-order. Then:

(1) inj.dimΓ HomS(Γ, ωS) = d = inj.dimΓop HomS(Γ, ωS);

(2) inj.dimΓX = proj.dimΓop HomS(X,ωS) + d for all X ∈ CM(Γ).
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Proof. We include a proof for the convenience of the reader. To simplify notation denote HomS(−,
ωS) := (−)†. This gives an exact duality CM(Γ) ↔ CM(Γop). The statements are local, so we

can assume that S is a local ring.

(1) Consider the minimal injective resolution of ωS in modS, namely

0→ ωS → I0→ I1→ · · ·→ Id→ 0.

Applying HomS(Γ,−), using the fact that Γ ∈ CM(S) we obtain an exact sequence

0→ Γ†→ HomS(Γ, I0)→ · · ·→ HomS(Γ, Id)→ 0.

As in the proof of Lemma 4.2, each HomS(Γ, Ii) is an injective Γ-module. This shows that

inj.dimΓ Γ† 6 dimS. If inj.dimΓ Γ† < dimS then

0→ HomS(Γ,Ω−d+1ωS)→ HomS(Γ, Id−1)→ HomS(Γ, Id)→ 0 (4.B)

must split. Let T be some non-zero Γ-module which has finite length as an S-module (e.g.

T = Γ/mΓ for some m ∈ MaxS). Since (4.B) splits, applying HomΓ(T,−) shows that the top

row in the following commutative diagram is exact.

0 // HomΓ(T, S(Γ,Ω−d+1ωS)) //

∼=
��

HomΓ(T, S(Γ, Id−1)) //

∼=
��

HomΓ(T, S(Γ, Id−1)) //

∼=
��

0

0 // HomS(T,Ω−d+1ωS) // HomS(T, Id−1) // HomS(T, Id) // 0

Hence the bottom row is exact. But T has finite length, so HomS(T, Id−1) = 0 since none of the

associated primes of Id−1 is maximal by equicodimensionality of S. But by the above diagram

this implies that HomS(T, Id) = 0, which is a contradiction since HomS(−, Id) is a duality on

finite length modules.
(2) Set l := proj.dimΓop X† and m := inj.dimΓX. Consider a projective resolution of X† over

Γop:

· · · f2−→ P1
f1−→ P0→ X†→ 0. (4.C)

Applying (−)† gives rise to an exact sequence

0→ X → P †0
f†1−→ P †1

f†2−→ · · · . (4.D)

Since by (1) each P †i has injective dimension d, it follows that m = inj.dimΓX 6 l + d. So m is

infinity implies that l is infinity, and in this case the equality holds. Hence we can assume that

m <∞.

We first claim that m > d. This is true if X ∈ add Γ† by (1). Now we assume that X /∈ add Γ†,

so X† /∈ add Γ. Thus

0 6= Ext1
Γop(X†,ΩΓopX†) = Ext1

Γ((ΩΓopX†)†, X).

Since depthS(ΩΓopX†)† = d, by Lemma 4.16 we conclude that m > d+ 1. Thus we have m > d

in both cases.
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Consider Im(f †m−d+1). Since depthS(Im(f †m−d+1)) = d, by Lemma 4.16 it follows that

Extm−d+1
Γ (Im(f †m−d+1), X) = 0. But since X ∈ CM(Γ) and the P †i are injective in CM(Γ),

ExtjΓ(X,P †i ) = 0 for all j > 0 and so (4.D) shows that

Ext1
Γ(Im(f †m−d+1), Im(f †m−d)) = · · · = Extm−d+1

Γ (Im(f †m−d+1), X) = 0.

This implies that the short exact sequence

0→ Im(f †m−d)→ P †m−d→ Im(f †m−d+1)→ 0

splits, which in turn implies that the sequence

0→ Im(fm−d+1)→ Pm−d→ Im(fm−d)→ 0

splits, so l 6 m − d. In particular, l < ∞, so we may assume that Pi = 0 for i > l in (4.C). So

(4.D) shows that m 6 l + d. Combining inequalities, we have m = l + d, as required. 2

The following result is the main result in this subsection. We remark that this gives a

generalization of Proposition 3.2.

Theorem 4.18. Let N ∈ SCM(R) such that addD ⊆ addN and put Γ := EndR(N). Then

inj.dimΓ Γ =

{
2 if R is Gorenstein,

3 otherwise.

Proof. By Lemma 4.17 we know that inj.dimΓ Γ > 2.

(1) Suppose that R is Gorenstein. In this case Γ ∈ CM(R) is a symmetric R-order, meaning

Γ ∼= HomR(Γ, R) as Γ-Γ bimodules [IR08, Proposition 2.4(3)]. Thus inj.dimΓ Γ = dimR = 2 by

Lemma 4.17.

(2) Suppose that R is not Gorenstein, so there exists an indecomposable summand Ni of N

such that Ni corresponds to a non-(−2)-curve. Necessarily Ni is not free, and, furthermore, by

Proposition 3.5(1), Ext1
R(Ni, X) = 0 for all X ∈ SCM(R).

If inj.dimΓ Γ = dimR = 2 then, by Lemma 4.17, HomR(Γ, ωR) is a projective Γ-module. But

HomR(Γ, ωR) = HomR(EndR(N), ωR) ∼= HomR(N, (N ⊗R ωR)∗∗) ∼= HomR(N, τN)

where τ is the AR translation in the category CM(R), and the middle isomorphism holds, for

example by [AG60, Proposition 4.1]. Hence by reflexive equivalence HomR(N,−) : CM(R) →

CM(Γ), we have τN ∈ addN , so, in particular, τNi ∈ SCM(R). But this implies that Ext1
R(Ni,

τNi) = 0 by the above, which by the existence of AR sequences is impossible. Hence inj.dimΓ Γ 6=
2. Now Theorem 3.8(1) implies that inj.dimΓ Γ 6 3 and so consequently inj.dimΓ Γ = 3. 2

4.4 Construction of Iwanaga–Gorenstein rings

In this subsection, we work over C. If R is not Gorenstein and N ∈ SCM(R) such that addD ⊆
addN , then, by Theorems 4.10 and 4.18, Γ := EndR(N) is an Iwanaga–Gorenstein ring with

inj.dim Γ = 3, such that GP(Γ) is a direct sum of stable CM categories of ADE singularities. In

particular, each Γ has finite Gorenstein projective type. The simplest case is when Γ has only

one non-free indecomposable GP module, i.e. the case GP(Γ) ' CM(C[[x, y]]
1
2

(1,1)).
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The purpose of this section is to prove the following theorem.

Theorem 4.19. Let G 6 SL(2,C) be a finite subgroup, with G � E8. Then there are
uncountably many non-isomorphic Iwanaga–Gorenstein rings Γ with inj.dim Γ = 3, such that
GP(Γ) ' CM(C[[x, y]]G).

The theorem is unusual, since commutative algebra constructions such as Knörrer periodicity
only give countably many non-isomorphic Gorenstein rings S with CM(S)' CM(C[[x, y]]G), and,
furthermore, no two of the S have the same injective dimension.

Remark 4.20. We remark that the omission of type G ∼= E8 from our theorem is also unusual;
it may still be possible that there are uncountably many non-isomorphic Iwanaga–Gorenstein
rings Γ with inj.dim Γ = 3 such that GP(Γ) ' CM([[x, y]]E8), but our methods do not produce
any. It is unclear to us whether this illustrates simply the limits of our techniques, or whether
the finite type E8 is much rarer.

To prove Theorem 4.19 requires some knowledge of complete local rational surface
singularities over C, which we now review. If R is a complete local rational surface singularity,
then if we consider the minimal resolution Y → SpecR, then (as before) the fibre above the origin
is well known to be a tree (i.e. a finite connected graph with no cycles) of P1s denoted {Ei}i∈I .
Their self-intersection numbers satisfy Ei ·Ei 6 −2, and the intersection matrix (Ei ·Ej)i,j∈I is
negative definite. We encode the intersection matrix in the form of the labelled dual graph.

Definition 4.21. We refer to the dual graph with respect to the morphism Y → SpecR (in the
sense of Definition 4.13) as the dual graph of R.

Thus, given a complete local rational surface singularity, we obtain a labelled tree. Before
we state as a theorem the solution to the converse problem, we require some notation.

Suppose that T is a tree, with vertices denoted E1, . . . , En, labelled with integers w1, . . . , wn.
To this data we associate the symmetric matrix MT = (bij)16i,j6n with bii defined by bii := wi,
and bij (with i 6= j) defined to be the number of edges linking the vertices Ei and Ej . We denote
the free abelian group generated by the vertices Ei by Z, and call its elements cycles. The matrix
MT defines a symmetric bilinear form (−,−) on Z and by analogy with the geometry, we will
often write Y · Z instead of (Y,Z). We define

Ztop :=

{
Z =

n∑
i=1

aiEi ∈ Z | Z 6= 0, all ai > 0, and Z · Ei 6 0 for all i

}
.

If there exists Z ∈ Ztop such that Z · Z < 0, then automatically MT is negative definite [Art66,
Proposition 2(ii)]. In this case, Ztop admits a unique smallest element Zf , called the fundamental
cycle.

Theorem 4.22 [Art66, Gra62]. Let T denote a labelled tree, with vertex set {Ei | i ∈ I} and
labels wi. Suppose that T satisfies the following combinatorial properties:

(1) wi 6 −2 for all i ∈ I;

(2) there exists Z ∈ Ztop such that Z · Z < 0;

(3) writing Zf (which exists by (2)) as Zf =
∑

i∈I aiEi, then

Zf · Zf +
∑
i∈I

ai(−wi − 2) = −2.
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Then there exists some complete local rational surface singularity R, whose minimal
resolution has labelled dual graph precisely T .

A labelled tree satisfying the combinatorial properties in Theorem 4.22 is called a rational
tree. The above theorem says that every rational tree arises as the labelled dual graph of some
complete local rational surface singularity; however, this singularity need not be unique.

We are now ready to prove Theorem 4.19.

Proof. Consider the following labelled trees:

· · ·
−2 −2 −2 −2 −6

−3

−3

−3

−3

−3

−3

−3

−3

−3

(4.E)

· · ·
−2 −2

−2

−2 −2 −2 −6

−3

−3

−3

−3

−3

−3

−3

−3

−3

(4.F)

−2 −2

−2

−2 −2 −2 −6

−3

−3

−3

−3

−3

−3

−3

−3

−3

(4.G)

−2 −2

−2

−2 −2 −2 −2 −6

−3

−3

−3

−3

−3

−3

−3

−3

−3

(4.H)

It is an easy combinatorial check to show that each labelled graph above satisfies the criteria
in Theorem 4.22, so consequently there is a (not necessarily unique) complete rational surface
singularity corresponding to each. We do this for (4.F), the rest being similar. Labelling the
vertices in (4.F) by

E1 E3

E2

E4 En+1 En+2 En+3

En+4

En+5

En+6

En+7

En+8

En+9

En+10

En+11

En+12

· · ·
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then it is easy to see that Z :=
∑2

i=1Ei +
∑n+2

i=3 2Ei +
∑n+12

i=n+3Ei satisfies Z · Ei 6 0 for all
1 6 i 6 n+ 12, hence Z ∈ Ztop. We denote Z as

Z = 1 2

1

2 2 2 1

1

1

1

1

1

1

1

1

1

· · ·

From this we see that

(Z · Ei)n+12
i=1 = 0 0

0

0 0 −1 −1

0

0

0

−2

−2

−2

−2

−2

−2

· · ·

so Z ∈ Ztop and Z · Z = Z · (
∑2

i=1Ei +
∑n+2

i=3 2Ei +
∑n+12

i=n+3Ei) = 0 + 2(−1) + (−1 − 2 − 2 −
2− 2− 2− 2) = −15. Hence condition (2) in Theorem 4.22 is satisfied. For condition (3), by the
standard Laufer algorithm, Zf = Z, so Zf · Zf = −15. On the other hand,

∑
i∈I ai(−E2

i − 2) =
4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 13, so Zf · Zf +

∑
i∈I ai(−E2

i − 2) = −15 + 13 = −2, as
required.

Now in the above diagrams, for clarity we have drawn a box around the curves that get
contracted to form XC . Hence a Γ = EndR(NC) corresponding to (4.E) has the GP finite
type corresponding to cyclic groups, by Theorem 4.10 applied to EndR(NC). Similarly, a Γ
corresponding to (4.F) has the GP finite type corresponding to binary dihedral groups, (4.G)
corresponds to binary tetrahedral groups, and (4.H) corresponds to binary octahedral groups.

Now each of the above trees has more than one vertex that meets precisely three edges,
so by the classification [Lau73, § 1 p. 2] they are not pseudo-taut, and further in each of the
above trees there exists a vertex that meets precisely four edges, so by the classification [Lau73,
§ 2 p. 2] they are not taut. This means that in Theorem 4.22 there are uncountably many
(non-isomorphic) R corresponding to each of the above labelled trees. For each such R we thus
obtain an Iwanaga–Gorenstein ring EndR(NC) with the desired properties; furthermore, if R
and R′ both correspond to the same labelled graph, but R � R′, then EndR(NC) � EndR′(N

C)
since the centres of EndR(NC) and EndR′(N

C) are R and R′, respectively. Hence, since there are
uncountably many such R, there are uncountably many such Iwanaga–Gorenstein rings. 2

We give, in § 6.1, some explicit examples illustrating Theorem 4.19 in the case G = Z2.

Remark 4.23. We remark that the method in the above proof cannot be applied to E8, since it
is well known that the rational tree E8 with all vertices labelled with −2 cannot be a (strict)
subtree of any rational tree [TT04, Corollary 3.11].

5. Relationship to relative singularity categories

In the notation of § 4, let Y
fS−→ XS

gS−→ SpecR be a factorization of the minimal resolution of
a rational surface singularity, with S ⊆ I. Let Λ be the reconstruction algebra of R and e ∈ Λ
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be the idempotent corresponding to the identity endomorphism of the special Cohen–Macaulay

R-module NS = R⊕ (
⊕

i∈I\SMi).

Definition 5.1. (1) A triangle functor Q : C → D is called a quotient functor if the induced

functor C/ kerQ→ D is a triangle equivalence. Here kerQ ⊆ C denotes the full subcategory of

objects X such that Q(X) = 0.

(2) A sequence of triangulated categories and triangle functors U F
→ T G

→ Q is called exact

if G is a quotient functor with kernel U , and F is the natural inclusion.

In this section, we extend triangle equivalences from Theorem 4.10 to exact sequences

of triangulated categories. In particular, this yields triangle equivalences between the relative

singularity categories studied in [BK12, KY12, Kal13].

Proposition 5.2. There exists a commutative diagram of triangulated categories and functors

such that the horizontal arrows are equivalences and the columns are exact.

thick
(⊕

i∈S OEi(−1)
)

thick(mod Λ/ΛeΛ)

Db(cohY )
thick

(
OY ⊕

(⊕
i∈I\SMi

)) Db(mod Λ)
thick(Λe)

Dsg(XS) Dsg(eΛe)

∼ //
� _

��

� _

��

RfS∗
����

e(−)

����RHom
XS (VS ,−)

∼
//

RHomY (V∅,−)

∼
// (5.A)

By an abuse of notation, the induced triangle functors in the lower square are labelled by the

inducing triangle functors from the diagram in Theorem 4.6.

Proof. We start with the lower square. Since the corresponding diagram in Theorem 4.6

commutes, it suffices to show that the induced functors above are well-defined. Clearly, the

equivalence RHomY (V∅,−) from Theorem 4.6 maps OY ⊕ (
⊕

i∈I\SMi) to Λe. Hence, it induces

an equivalence on the triangulated quotient categories. Since RHomXS (VS ,−) is an equivalence

by Theorem 4.6 and the subcategories Perf(XS) and Perf(eΛe) can be defined intrinsically, we

get a well-defined equivalence on the bottom of diagram (5.A). The functor on the right is a

well-defined quotient functor by Proposition 2.14. Now, the functor on the left is a well-defined

quotient functor by the commutativity of the diagram in Theorem 4.6 and the considerations

above.

The category thick(mod Λ/ΛeΛ) is the kernel of the quotient functor e(−),by Proposition 2.14.

Since R has isolated singularities, the algebra Λ/ΛeΛ is always finite-dimensional and so

thick(mod Λ/ΛeΛ) = thick(
⊕

i∈S Si), where Si denotes the simple Λ-module corresponding to

the vertex i in the quiver of Λ. But under the derived equivalence RHomY (V∅,−), Si corresponds

to OEi(−1)[1] [vdB04a, Proposition 3.5.7], so it follows that we can identify the subcategory

thick(mod Λ/ΛeΛ) = thick(
⊕

i∈S Si) with thick(
⊕

i∈S OEi(−1)), inducing the top half of the

diagram. 2

Remark 5.3. The functor RHomXS (VS ,−) identifies Perf(XS) with Perf(eΛe) ∼= thick(Λe) ⊆
Db(mod Λ). Hence, applying the quasi-inverse of RHomY (V∅,−) to thick(Λe) yields a triangle
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equivalence Perf(XS) ∼= thick(OY ⊕ (
⊕

i∈I\SMi)). In particular, there is an equivalence

Db(cohY )

Perf(XS)

∼−→ Db(mod Λ)

thick(Λe)
. (5.B)

Analysing the commutative diagram in Theorem 4.6 shows that Perf(XS) ∼= thick(OY ⊕
(
⊕

i∈I\SMi)) is obtained as a restriction of L(fS)∗.

If we contract only (−2)-curves (i.e. if S ⊆ C holds), then we know that Dsg(XS) splits into

a direct sum of singularity categories of ADE surface singularities (Theorem 4.10). In this case,

it turns out that the diagram above admits an extension to the right and that in fact all the

triangulated categories in our (extended) diagram split into blocks indexed by the singularities

of the Gorenstein scheme XS .

Let us fix some notation. For a singular point x ∈ SingXS let Rx = ÔXS ,x, and let fx : Yx→

SpecRx be the minimal resolution of singularities.

Proposition 5.4. Assume S ⊆ C. There exists a commutative diagram of triangulated categories

and functors such that the horizontal arrows are equivalences and the columns are exact.

thick(mod Λ/ΛeΛ)
⊕

x∈SingXS
ker(R(fx)∗)

Db(mod Λ)
thick(Λe)

⊕
x∈SingXS

Db(cohYx)
Perf(Rx)

Dsg(eΛe)
⊕

x∈SingXS
Dsg(Rx)

∼ //
� _

��

� _

��

⊕
x∈SingXS R(fx)∗����

e(−)

����
∼ //

∼ // (5.C)

Proof. We need some preparation. Note that by the derived McKay correspondence [KV00,

BKR01], there are derived equivalences Db(cohYx)→ Db(mod Πx), where Πx is the Auslander

algebra of the Frobenius category of maximal Cohen–Macaulay Rx-modules CM(Rx). Now we

have two Frobenius categories E1 := SCMNS (R) and E2 :=
⊕

x∈SingXS CM(Rx), which clearly

satisfy the conditions (FM1)–(FM4) in [KY12, Setup 5.1] and whose stable categories are Hom-

finite and idempotent complete. Further, E1 and E2 are stably equivalent by Theorem 4.10.

Now, by [KY12, Theorem 5.5(a)], there are triangle equivalences

Db(mod Λ)/ thick(Λe) ∼= per
(
Λdg(E1)

)
, (5.D)⊕

x∈SingXS

Db(mod Πx)/Perf(Rx) ∼= per
(
Λdg(E2)

)
, (5.E)

where by definition Λdg(E1) and Λdg(E2) are differential graded algebras that depend only

on (the triangulated structure of) the stable Frobenius categories E1 and E2 (the quotient

category Db(mod Λ)/ thick(Λe) is idempotent complete by [Kal13, Proposition 2.69] combined

with Proposition 3.2 and the completeness of R). Hence, since E1 and E2 are stably equivalent,

these two differential graded algebras are isomorphic. Thus the combination of the equivalences

(5.D) and (5.E) yields a triangle equivalence
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Db(mod Λ)

thick(Λe)
−→

⊕
x∈SingXS

Db(mod Πx)

Perf(Rx)
(5.F)

which, in conjunction with the derived McKay correspondence, yields the equivalence of
triangulated categories in the middle of (5.C).

Furthermore, the functors HomΛ(Λe,−) and
⊕

x∈SingXS R(fx)∗ are quotient functors with
kernels thick(mod Λ/ΛeΛ) and

⊕
x∈SingXS ker(R(fx)∗), respectively. These subcategories admit

intrinsic descriptions (cf. [KY12, Corollary 6.17]). Hence, there is an induced equivalence, which
renders the upper square commutative. This in turn induces an equivalence on the bottom of
(5.C), such that the lower square commutes. 2

Remark 5.5. Using (5.B) together with an appropriate adaption of the techniques developed in
[BK12] may yield a more direct explanation for the block decomposition in (5.C).

6. Examples

In this section we illustrate some of the previous results with some examples. Our construction
in § 2 relies on finding some M such that gl.dim EndΛ(Λ⊕M) <∞, so we give explicit examples
of when this occurs both in finite-dimensional algebras and in geometry.

6.1 Iwanaga–Gorenstein rings of finite GP type
As a special case of Theorem 4.19, there are uncountably many Iwanaga–Gorenstein rings Γ

with the property that GP(Γ) ' CM(C[[x, y]]
1
2 (1,1)). This category has only one indecomposable

object, and is the simplest possible triangulated category. Here we show that the abstract setting
in Theorem 4.19 can be used to give explicit examples of such Γ, presented as a quiver with
relations.

Definition 6.1. For all n > 3, we define the algebra Λn to be the path algebra of the quiver

a

b

s1
s2

sn

..

(where there are n arrows from right to left), subject to the relations

sn−1bsn = snbsn−1,

asn = (bsn−1)2,

sna = (sn−1b)
2,

asi+1 = bsi
si+1a = sib

}
for all 1 6 i 6 n− 2.

Our main result (Theorem 6.2) shows that, for all n > 3, the completion Λ̂n is an Iwanaga–

Gorenstein ring with inj.dim Λ̂n = 3, such that GP(Λ̂n) ' CM(C[[x, y]]
1
2

(1,1)). Before we can
prove this, we need some notation. Let n > 3, set m := 2n− 1 and consider the group

1

m
(1, 2) :=

〈(
εm 0
0 ε2

m

)〉
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where εm is a primitive mth root of unity. The invariants C[x, y]
1
m

(1,2) are known to be generated
by

a := xm, b1 := xm−2y, b2 := xm−4y2, . . . , bn−1 := xyn−1, c := ym

which abstractly as a commutative ring is C[a, b1, . . . , bn−1, c] factored by the relations given by
the 2× 2 minors of the matrix (

a b1 b2 . . . bn−2 b2n−1
b1 b2 b3 . . . bn−1 c

)
.

We denote this (non-complete) commutative ring by R. This singularity is toric, and the minimal
resolution of SpecR is well known to have dual graph

−n −2

Theorem 6.2. Let n > 3, set m := 2n − 1 and consider G := 1
m(1, 2). Denote R := C[x, y]G,

presented as C[a, b1, . . . , bn−1, c]/(2× 2 minors) as above. Then the following statements hold.

(1) The R-ideal (a, b1) is the non-free special CM R-module corresponding to the (−n)-curve
in the minimal resolution of SpecR.

(2) Λn ∼= EndR(R⊕ (a, b1)).
In particular, by completing both sides of (2), Λ̂n is an Iwanaga–Gorenstein ring with

inj.dim Λ̂n = 3, such that GP(Λ̂n) ' CM(C[[x, y]]
1
2 (1,1)). Furthermore, Λ̂n′ � Λ̂n whenever n′ 6= n.

Proof. (1) Let ρ0, . . . , ρm−1 be the irreducible representations of G ∼= Zm over C. Since R =
C[x, y]G, we can consider the CM R modules Si := (C[x, y] ⊗C ρi)G. It is a well-known result
of Wunram [Wun87] that the special CM R-modules in this case are R = S0, S1 and S2, with
S2 corresponding to the (−n)-curve. We remark that Wunram proved this result under the
assumption that R is complete, but the result is still true in the non-complete case [Cra11,
Wem11b]. Furthermore, S2 is generated by x2, y as an R-module [Wun87]. It is easy to check
that under the new coordinates, S2 is isomorphic to (a, b1).

(2) We prove this using key varieties.

Step 1. Consider the commutative ring C[a, b
(1)
1 , b

(2)
1 , . . . , b

(1)
n−1, b

(2)
n−1, c] factored by the relations

given by the 2× 2 minors of the matrix a b
(1)
1 b

(1)
2 · · · b

(1)
n−2 b

(1)
n−1

b
(2)
1 b

(2)
2 b

(2)
3 · · · b

(2)
n−1 c

 .

We denote this factor ring by S. We regard SpecS as a key variety which we then cut (in Step 4)
to obtain our ring R.

Step 2. We blow up the ideal (a, b
(2)
1 ) of S to give a variety, denoted Y , covered by the two affine

opens

C
[
b
(2)
1 , b

(2)
2 , . . . , b

(2)
n−1, c,

a

b
(2)
1

]
, C

[
a, b

(1)
1 , b

(1)
2 , . . . , b

(1)
n−1,

b
(2)
1

a

]
.

The resulting map f : Y → SpecS has fibres at most one-dimensional, so we know from [vdB04a]
that Y has a tilting bundle. Using the above explicit open cover and morphism, there is an ample
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line bundle L on Y generated by global sections, satisfying L · E = 1 (where E is the P1 above

the origin), with the property that H1(L∨) = 0. This means, by [vdB04a, Proposition 3.2.5], that

V :=O⊕L is a tilting bundle. As is always true in the one-dimensional fibre tilting setting (where

f is projective birational between integral normal schemes), EndY (O⊕L)∼= EndS(S⊕f∗L). In the

explicit construction of Y above, it is clear that f∗L= (a, b
(2)
1 ). This shows that EndS(S⊕(a, b

(2)
1 ))

is derived equivalent to Y .

Step 3. We present EndS(S⊕ (a, b
(2)
1 )) as a quiver with relations. This is easy, since Y is smooth.

We have

EndS(S ⊕ (a, b
(2)
1 )) ∼=

(
S (a, b

(2)
1 )

(a, b
(2)
1 )∗ S

)
,

and we can check that all generators can be seen on the diagram

S (a,b
(2)
1 )

a

b
(2)
1

inc

ψ2

ψn

..

where ψi := b
(1)
i−1/a = b

(2)
i /b

(2)
1 for all 2 6 i 6 n − 1, and ψn := b

(1)
n−1/a = c/b

(2)
1 . Thus if we

consider the quiver Q,
a

b

s1
s2

sn

..

with relations R,

asib = bsia for all 1 6 i 6 n

siasj = sjasi for all 1 6 i < j 6 n,

then there is a natural surjective ring homomorphism

CQ/R→ EndS(S ⊕ (a, b
(2)
1 )).

But everything above is graded (with arrows all having grade one), and so a Hilbert series

calculation shows that the above ring homomorphism must also be bijective.

Step 4. We base change, and show that we can add central relations to the presentation of

EndS(S ⊕ (a, b
(2)
1 )) in Step 3 to obtain a presentation for EndR(R⊕ (a, b1)).

Factoring S by the regular element b
(1)
1 − b

(2)
1 , we obtain a ring denoted R1. Factoring R1 by

the regular element b
(1)
2 − b

(2)
2 , we obtain a ring denoted R2. Continuing in this manner, factor

Rn−3 by b
(1)
n−2 − b

(2)
n−2 to obtain Rn−2. Finally, factor Rn−2 by b

(1)
n−1 − (b

(2)
n−1)2 to obtain Rn−1,

which by definition is the ring R in the statement of the theorem. At each step, we are factoring
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by a regular element. Taking the pullbacks, we obtain a commutative diagram

Yn−1 Yn−2 . . . Y1 Y

SpecR SpecRn−2 . . . SpecR1 SpecS

in−1 in−2 i2 i1

jn−1 jn−2 j2 j1

fn−1 fn−2 f1 f

Under the set-up above, Vn−1 := i∗n−1 . . . i
∗
1V is a tilting bundle on Yn−1 with EndYn−1(Vn−1) ∼=

j∗n−1 . . . j
∗
1 EndS(f∗V) ∼= j∗n−1 . . . j

∗
1 EndS(S⊕(a, b

(2)
1 )). But on the other hand, fn−1 is a projective

birational morphism with fibres at most one-dimensional between integral normal schemes, and
so

EndYn−1(Vn−1) ∼= EndR((fn−1)∗Vn−1) ∼= EndR(j∗n−1 . . . j
∗
1f∗V) ∼= EndR(R⊕ (a, b1)),

where the middle isomorphism follows by iterating [IU09, Lemma 8.1]. Thus EndR(R ⊕ (a,

b1)) ∼= j∗n−1 . . . j
∗
1 EndS(S ⊕ (a, b

(2)
1 )). Since by definition each j∗t factors by a regular element,

we obtain EndR(R⊕ (a, b1)) from the presentation of EndS(S ⊕ (a, b
(2)
1 )) in Step 3 by factoring

out by the central relations corresponding to the regular elements. Now, via the explicit form in
Step 3, these are

b
(1)
1 − b

(2)
1 ↔ (as2 + s2a)− (bs1 + s1b)

...

b
(1)
n−2 − b

(2)
n−2 ↔ (asn−1 + sn−1a)− (bsn−2 + sn−2b)

b
(1)
n−1 − (b

(2)
n−1)2

↔ (asn + sna)− (bsn−1 + sn−1b)
2.

Step 5. We justify that Λn ∼= EndR(R ⊕ (a, b1)). From Step 4 we know that EndR(R ⊕ (a, b1))
can be presented as

a

b

s1
s2

sn

..

subject to the relations

asib = bsia for all 1 6 i 6 n,

siasj = sjasi for all 1 6 i < j 6 n,

asn = (bsn−1)2,

sna = (sn−1b)
2,

asi+1 = bsi for all 1 6 i 6 n− 2,

si+1a = sib for all 1 6 i 6 n− 2.

This is a non-minimal presentation, since some relations can be deduced from others. It is not
difficult to show that the non-minimal presentation above can be reduced to the relations defining
Λn. This proves (2).
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For the final statement in the theorem, by completing both sides we see that Λ̂n ∼= End
R̂

(NC),

which by Corollary 4.8 is derived equivalent to the rational double point resolution XC of Spec R̂.

Since by construction XC has only one singularity, of type 1
2(1, 1), GP(Λ̂n) ' CM(C[[x, y]]

1
2 (1,1))

follows from Theorem 4.10. Finally, since the centre of Λ̂n is C[[x, y]]
1

2n−1 (1,2)
, it follows that

n′ 6= n implies Λ̂n′ � Λ̂n. 2

6.2 Frobenius structures on module categories

Let K be a field and denote D := HomK(−,K). Here we illustrate our main theorem,

Theorem 2.7, in the setting of finite-dimensional algebras. Using both Theorem 2.7 and

Proposition 2.16, we recover the following result due to Auslander and Solberg [AS93a], which

is rediscovered and generalized by Kong [Kon12].

Proposition 6.3. Let Λ be a finite-dimensional algebra and N a functorially finite subcategory

of mod Λ satisfying Λ⊕ DΛ ∈ N and τN = N , where τ is the AR translation. Then mod Λ has

a structure of a Frobenius category such that the category of projective objects is addN , and

we have an equivalence mod Λ→ GP(N ), X 7→ HomΛ(X,−)|N .

Proof. By Proposition 2.16, we have a new structure of a Frobenius category on mod Λ whose

projective-injective objects are addN . Applying Theorem 2.8 to (E ,M,P) := (mod Λ,mod Λ,

addN ), we have the assertion since mod(mod Λ) has global dimension at most two and mod Λ

is idempotent complete. 2

The following result supplies a class of algebras satisfying the conditions in Proposition 6.3.

It generalizes [Kon12, Theorem 3.4] in which Γ is the path algebra of a Dynkin quiver. Below

⊗ := ⊗K .

Proposition 6.4. Let ∆ and Γ be finite-dimensionalK-algebras. Assume that ∆ is self-injective.

Then Λ = ∆ ⊗ Γ and N = ∆ ⊗ mod Γ := {∆ ⊗ M | M ∈ mod Γ} satisfy the conditions

in Proposition 6.3. Consequently, we have an equivalence

mod Λ ∼= GP(∆⊗mod Γ).

Proof. Since ∆ is self-injective, both Λ = ∆ ⊗ Γ and DΛ = D(∆ ⊗ Γ) = D∆ ⊗ DΓ = ∆ ⊗ DΓ

belong to N = ∆ ⊗ mod Γ. For M ∈ mod Γ, it follows from the next lemma that τΛ(∆ ⊗ M) =

ν∆(∆) ⊗ τΓ(M). Since ∆ is self-injective, we have ν∆(∆) = ∆, and hence τΛ(∆ ⊗ M) = ∆ ⊗
τΓ(M) ∈ ∆ ⊗ mod Γ. Thus the conditions in Proposition 6.3 are satisfied. 2

Lemma 6.5. Let ∆ and Γ be finite-dimensional K-algebras and Λ = ∆ ⊗ Γ. Then, for a finite-

dimensional Γ-module M and a finitely generated projective ∆-module P , we have τΛ(P ⊗M) =

ν∆(P ) ⊗ τΓ(M), where ν∆ = DHom∆(−,∆) is the Nakayama functor.

Proof. This is shown in the proof of [Kon12, Theorem 3.4] for the case when ∆ is self-injective

and Γ is the path algebra of a Dynkin quiver. The proof there works more generally in our

setting. For the convenience of the reader we include it here.

Let Q−1 f
→ Q0 be a minimal projective presentation of M over Γ. Then

P ⊗Q−1 idP⊗f−−−−→ P ⊗Q0
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is a minimal projective presentation of P ⊗M over ∆⊗ Γ. We apply νΛ = DHom∆⊗Γ(−,∆⊗ Γ),
and by the definition of τ we obtain an exact sequence

0→ τΛ(P ⊗M)→ νΛ(P ⊗Q−1)
ν(idP⊗f)
−−−−−−→ νΛ(P ⊗Q0). (6.A)

Observe that for a finitely generated projective Γ-module Q we have

νΛ(P ⊗Q) =DHom∆⊗Γ(P ⊗Q,∆⊗ Γ) = D(Hom∆(P,∆)⊗HomΓ(Q,Γ))

= ν∆(P )⊗ νΓ(Q).

Therefore the sequence (6.A) is equivalent to

0→ τΛ(P ⊗M)→ ν∆(P )⊗ νΓ(Q−1)
ν(idP )⊗ν(f)
−−−−−−−→ ν∆(P )⊗ νΓ(Q0).

It follows that τΛ(P ⊗M) = ν∆(P ) ⊗ τΓ(M), as desired. 2

Remark 6.6. Let ∆, Γ and Λ be as in Proposition 6.4. Assume further that Γ has finite
representation type and let Aus(Γ) denote the Auslander algebra of Γ, i.e. the endomorphism
algebra of an additive generator of mod Γ.

(1) The algebra ∆ ⊗ Aus(Γ) is Iwanaga–Gorenstein and we have an equivalence

mod Λ ∼= GP(∆⊗Aus(Γ)).

(2) If, in addition, mod Γ has no stable τ -orbits, then any subcategory of ∆⊗mod Γ satisfying
the conditions in Proposition 6.3 already additively generates ∆ ⊗ mod Γ. In this sense, ∆ ⊗
Aus(Γ) is smallest possible.

6.3 Frobenius categories arising from preprojective algebras
Let Q be a finite quiver without oriented cycles and let W be the Coxeter group associated to Q
with generators si, i ∈ Q0. Let K be a field, let Λ be the associated preprojective algebra over
K and let ei be the idempotent of Λ corresponding to the vertex i of Q. Denote Ii = Λ(1− ei)Λ.

For an element w ∈ W with reduced expression w = si1 · · · sik , let Iw = Ii1 · · · Iik and set
Λw = Λ/Iw. As a concrete example, if Q is the quiver of type A3 and w = s2s1s3s2, then Λw is
given by the following quiver with relations:

1 2 3a∗

a

b∗

b aa∗ = 0, b∗b = 0, a∗a = bb∗,

ab = 0, b∗a∗ = 0.

Note that Iw and Λw do not depend on the choice of the reduced expression. By [BIRS09,
Proposition III.2.2], Λw is finite-dimensional and is Iwanaga–Gorenstein of dimension at most 1.
In this case, the category of Gorenstein projective Λw-modules coincides with the category Sub Λw
of submodules of finitely generated projective Λw-modules. By [BIRS09, Proposition III.2.3 and
Theorem III.2.6], Sub Λw is a Hom-finite stably 2-Calabi–Yau Frobenius category and admits a
cluster-tilting object Mw. These results were stated in [BIRS09] only for non-Dynkin quivers,
but they also hold for Dynkin quivers.

Another family of Hom-finite stably 2-Calabi–Yau Frobenius categories with cluster-tilting
object are constructed by Geiß, Leclerc and Schröer in [GLS07]. Specifically, for a terminal
module M over KQ (i.e. M is preinjective and addM is closed under taking the inverse AR
translation), consider CM = π−1(addM) ⊆ nil Λ, where nil Λ is the category of finite-dimensional
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nilpotent representations over Λ and π : nil Λ→ mod kQ is the restriction along the canonical
embedding KQ → Λ. Geiß et al. show that CM admits the structure of a Frobenius category
which is stably 2-Calabi–Yau with a cluster tilting object T∨M . To M is naturally associated
an element w of W . By comparing T∨M with Mw, they show that there is an anti-equivalence
CM → Sub Λw [GLS07, § 22.7].

We now explain how the results in this paper can be used to give a different proof of the
equivalence CM ∼= Sub Λop

w .
In [GLS07, § 8.1], an explicit construction of a projective generator IM of the Frobenius

category CM is given. One can check that EndCM (IM ) ∼= Λop
w . By [GLS07, Theorem 13.6(2)],

EndCM (T∨M ) has global dimension 3. Since T∨M has IM as a direct summand, it follows from
Theorem 2.7 that

CM ∼= GP(Λop
w ),

and since inj.dim Λop
w = 1, we have GP(Λop

w ) = Sub Λop
w . Thus CM ∼= Sub Λop

w follows.
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