A CLASS OF ALGEBRAS WITHOUT UNITY ELEMENT

R. M. THRALL

1. Introduction. In a study of the commuting algebra of tensor space representations of the orthogonal group W. P. Brown encountered a class of algebras for which the existence of a unity element was equivalent to semisimplicity, but which were of interest whether or not semisimple. He gave these algebras the name generalized-total matrix algebras and proved (2) that each such algebra was characterized by three integers l, r, m and was isomorphic to the algebra of all square matrices of degree $r+l+m$ which have zeros in the first l rows and in the last r columns.

Let F be any field, let K be an extension sfield of finite degree k over F, let m be a positive integer and let l, r be non-negative integers. We denote by $C=C(K, m, l, r)$ the F-algebra of order $k(m+l)(m+r)$ consisting of all K-matrices having zeros in the first l rows and in the last l-columns. We call C a submatrix algebra.

In the present paper we introduce a new family of algebras called algebras of class Q. These algebras are defined in terms of certain simple properties possessed by submatrix algebras. Our main result is a proof that each algebra of class Q is a factor algebra of a direct sum of submatrix algebras. We also touch on the topics of automorphisms, isomorphisms, and representations, of algebras of class Q.
2. Algebras of class Q and class Q^{\prime}. An F-algebra A (of finite dimension) is said to be of class Q if there exists an idempotent ϵ in A such that the following three conditions hold:
$\left(Q_{1}\right) B=\epsilon A \epsilon$ is semisimple,
(Q_{2}) $A \epsilon A=A$,
$\left(Q_{3}\right) A=B+N$, where N is the radical of A.
If instead of $\left(Q_{1}\right)$ we have the stronger condition
$\left(Q_{1}{ }^{\prime}\right) B=\epsilon A \epsilon$ is simple, then we say that A is of class Q^{\prime}.

It is easy to see that every submatrix algebra $C(K, m, l, r)$ is of class Q^{\prime}; for we may take as the idempotent the matrix

$$
\epsilon^{\prime}=\left\|\begin{array}{lll}
0 & 0 & 0 \tag{1}\\
0 & I_{m} & 0 \\
0 & 0 & 0
\end{array}\right\|
$$

where the partitioning of rows and columns is given by l, m, r.
Received October 12, 1954. Part of this research was carried out under a contract of the Office of Ordnance Research with the University of Michigan.

Theorem 1. Let A be an algebra of class Q. Then $A N A=0$.
Since no non-zero element in a semisimple algebra can be in the radical we note that $B \cap N=\{0\}$; hence the sum $B+N$ is direct (in the vector space sense). Now multiply A on left and right by ϵ and we get from (Q_{3}) that

$$
\begin{equation*}
\epsilon N_{\epsilon}=0 \tag{2}
\end{equation*}
$$

Finally, we have

$$
A N A=A \epsilon A N A \epsilon A \subseteq A \epsilon N \epsilon A=0
$$

Corollary 1. If A is of class Q then $N^{3}=0$ and $A N^{2}=N^{2} A=0$.
Theorem 2. If A is of class Q then

$$
\begin{equation*}
A=B+\epsilon N+N \epsilon+N^{2} \quad \text { (direct sum) } \tag{3}
\end{equation*}
$$

We establish the theorem by identifying (3) with the Pierce decomposition of A relative to ϵ. By $\left(Q_{1}\right), B=\epsilon A \epsilon$ consists of all elements of A having ϵ as two-sided unity. Next, suppose that α is an element of A for which $\alpha=\epsilon \alpha$ and $\alpha \epsilon=0$. According to (Q_{3}) we can write $\alpha=\beta+\eta$ where $\beta \in B$ and $\eta \in N$. Now since $\alpha=\epsilon \alpha$ we must have $\epsilon \eta=\eta$, and then $\alpha \epsilon=\beta+\epsilon \eta \epsilon=\beta$ requires $\beta=0$. This shows that ϵN contains all elements of A having ϵ as left unity and right annihilator; moreover, it follows from (2) that each element of ϵN has this property. We show similarly that $N \epsilon$ consists of all elements of A having ϵ as right unity and left annihilator.

This shows that the Pierce decomposition is

$$
\begin{equation*}
A=B+\epsilon N+N \epsilon+N_{0} \quad \text { (direct sum) } \tag{4}
\end{equation*}
$$

where N_{0} consists of all elements of A having ϵ as two-sided annihilator. All that remains is to show that $N_{0}=N^{2}$. It is a consequence of Corollary 1 that $N^{2} \subseteq N_{0}$. Next, it follows from (Q_{2}), (4), and the fact that N is an ideal that

$$
\begin{align*}
A=A \cdot A & =(B+N \epsilon \dot{(B+\epsilon N)} \tag{5}\\
& =B+N \epsilon+\epsilon N+N \epsilon N
\end{align*}
$$

where $N \epsilon N \subseteq N^{2} \subseteq N_{0}$. Comparison of (4) and (5) then shows that $N \epsilon N=N_{0}$ and hence

$$
N^{2}=N \epsilon N=N_{0} .
$$

3. Structure theory. In this section we show how a general algebra of class Q can be built up from algebras of class Q^{\prime} and in the following section we study the structure of algebras of class Q^{\prime}.

Theorem 3. Let A, A_{1}, and A_{2} be algebras of class Q and let M be an ideal (two-sided) in A. Then the direct sum $A_{1} \oplus A_{2}$ and the residue class algebra $A-M$ are both of class Q.

If $\epsilon, \epsilon_{1}, \epsilon_{2}$ are the postulated idempotents in A, A_{1}, A_{2}, respectively, then ($\epsilon_{1}, \epsilon_{2}$) and $\epsilon+M$, respectively, are idempotents which satisfy $\left(Q_{1}\right)$ and (Q_{2}) in $A_{1}+A_{2}$ and $A-M$. It is also easy to check $\left(Q_{3}\right)$ in both cases.

Theorem 4. Let A be an algebra of class Q. Then $A=A^{*}-M^{*}$ where A^{*} is a direct sum of algebras of class Q^{\prime} and M^{*} is contained in the square of the radical of A^{*}.

It follows from Theorem 3 that $A^{*}-M^{*}$ is of class Q if A^{*} and M^{*} satisfy the conditions of Theorem 4.

Let $A=B+N$ where B and N are related to A as in $\left(Q_{1}\right),\left(Q_{2}\right),\left(Q_{3}\right)$, and suppose that

$$
\begin{equation*}
B=B_{1}+\ldots+B_{p} \tag{6}
\end{equation*}
$$

is the (unique) expression of B as a direct sum of simple subalgebras. Let ϵ_{i} be the unity element of $B_{i}(i=1, \ldots, p)$; then

$$
\begin{equation*}
\epsilon=\epsilon_{1}+\ldots+\epsilon_{p} \tag{7}
\end{equation*}
$$

is an expression of ϵ as a sum of orthogonal idempotents in the centre of B.
Now set

$$
\begin{equation*}
A_{i}=A \epsilon_{i} A \quad(i=1, \ldots, p) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
N_{i}=A_{i} \cap N \quad(i=1, \ldots, p) \tag{9}
\end{equation*}
$$

Lemma 1. A_{i} is of class Q^{\prime} with idempotent ϵ_{i}, simple summand B_{i}, and radical N_{i}.

The equation

$$
\epsilon_{i} A_{i} \epsilon_{i}=\epsilon_{i}\left(A \epsilon_{i} A\right) \epsilon_{i}=\epsilon_{i} \epsilon A \epsilon \epsilon_{i} \epsilon A \epsilon_{i}=\epsilon_{i} B \epsilon_{i} B \epsilon_{i}=B_{i} B_{i}=B_{i}
$$

verifies $\left(Q_{1}{ }^{\prime}\right)$.
Next, we have

$$
A_{i} \supseteq A_{i} \epsilon_{i} A_{i}=A \epsilon_{i} A \epsilon_{i} A \epsilon_{i} A \supseteq A \epsilon_{i} A=A_{i}
$$

and hence $A_{i}=A_{i} \epsilon_{i} A_{i}$. This verifies (Q_{2}).
Finally,

$$
A_{i}=(B+N) \epsilon_{i}(B+N)=B \epsilon_{i} B+\left(N \epsilon_{i} B+N \epsilon_{i} N+B \epsilon_{i} N\right) \subseteq B_{i}+N_{i}
$$

since A_{i} and N_{i} are ideals in A. But $B_{i} \subseteq A_{i}, N_{i} \subseteq A_{i}$, hence

$$
\begin{equation*}
A_{i}=B_{i}+N_{i} . \tag{10}
\end{equation*}
$$

This sum is direct (in the vector space sense) since ϵ_{i} is unity element for B_{i} and $\epsilon_{i} N_{i} \epsilon_{i} \subseteq \epsilon_{i} N \epsilon_{i}=\epsilon_{i} \epsilon N \epsilon_{i}=0$; it follows that $A_{i}-N_{i} \cong B_{i}$, and hence the N_{i} is the radical of A_{i}. This establishes (Q_{3}).

Lemma 2. $A_{i} A_{j}=0$ if $i \neq j$.
If $i \neq j$ we have

$$
\begin{aligned}
\epsilon_{i} A \epsilon_{j} & =\epsilon_{i} B \epsilon_{j}+\epsilon_{i} N \epsilon_{j} \\
& =B \epsilon_{i} \epsilon_{j}+\epsilon_{i} \epsilon N \epsilon \epsilon_{j} \\
& =0+0
\end{aligned}
$$

hence $A_{i} A_{j}=A \epsilon_{i} A A \epsilon_{j} A=0$.

We are now ready to prove Theorem 4. Let A^{*} be the (ring) direct sum of A_{1}, \ldots, A_{p}, i.e., A^{*} consists of all p-tuples $\alpha^{*}=\left(\alpha_{1}, \ldots, \alpha_{p}\right)$ with α_{i} in A_{i} and with addition and multiplication done componentwise. Consider the mapping

$$
\begin{equation*}
T: \alpha^{*}=\left(\alpha_{1}, \ldots, \alpha_{p}\right) \rightarrow \alpha=\alpha_{1}+\ldots+\alpha_{p} \tag{11}
\end{equation*}
$$

of A^{*} into A.
This mapping is clearly a linear transformation. It follows from Lemma 2 that it is a ring homomorphism. It is "onto" since

$$
A^{*} T=A_{1}+\ldots+A_{p}=A \epsilon_{1} A+\ldots+A \epsilon_{p} A=A \epsilon A=A
$$

Let M^{*} be the kernel of T, and let N^{*} be the radical of A^{*}. All that remains is to show that $M^{*} \subseteq\left(N^{*}\right)^{2}$. Suppose that $\alpha^{*}=\left(\alpha_{1}, \ldots, \alpha_{p}\right)$ lies in M^{*};

$$
\begin{equation*}
\alpha=\alpha_{1}+\ldots+\alpha_{h}=0 \tag{12}
\end{equation*}
$$

It follows from (3) that we can write

$$
\begin{equation*}
\alpha_{i}=\beta_{i}+\eta_{i}+\zeta_{i}+\tau_{i} \quad(i=1, \ldots, p) \tag{13}
\end{equation*}
$$

where $\beta_{i}=\epsilon_{i} \alpha_{i} \epsilon_{i}, \eta_{i}=\epsilon_{i} \eta_{i}, \zeta_{i}=\zeta_{i} \epsilon_{i}$ and $\eta_{i} \epsilon_{i}=\epsilon_{i} \zeta_{i}=\epsilon_{i} \tau_{i}=\tau_{i} \epsilon_{i}=0$.
Now $\epsilon_{i} \alpha \epsilon_{i}=\beta_{i}, \epsilon_{i} \alpha=\beta_{i}+\eta_{i}, \alpha \epsilon_{i}=\beta_{i}+\zeta_{i}$, and since $\alpha=0$ this gives $\beta_{i}=\eta_{i}=\zeta_{i}=0(i=1, \ldots, p)$ and hence

$$
\alpha^{*}=\left(\tau_{1}, \ldots, \tau_{p}\right)
$$

which is in $\left(N^{*}\right)^{2}$.
4. Structure theory (continued). Theorem 4 gives the structure of algebras of class Q in terms of algebras of class Q^{\prime}. In this section we refine this result by an analysis of algebras of class Q^{\prime}.

Theorem 5. Every algebra of class Q^{\prime} is the homomorphic image of a submatrix algebra. The kernel of the homomorphism is contained in the square of the radical of the submatrix algebra.

Let A be an algebra of class Q^{\prime} with simple summand $B=\epsilon A \epsilon$. According to Wedderburn's Theorem (1), B is isomorphic to a total matrix algebra over a finite extension sfield K of F. Let $\left\{\kappa_{1}, \ldots, \kappa_{k}\right\}$ be a basis for K over F, let m be the degree of B over K, and let $e_{i j}(i, j=1, \ldots, m)$ be a matrix unit K-basis for B.

Let $e=e_{11}$; then K is isomorphic to $K^{\prime}=e B e$ and every irreducible left- B space W is isomorphic to $e B$. In particular, $e W \neq 0$ and there exists a vector w in W such that $\left\{w\left(=e_{11} w\right), e_{21} w, \ldots, e_{m 1} w\right\}$ is a K-basis for W. Then the $m k$ vectors $\kappa_{h} e_{i 1} w(h=1, \ldots, k ; i=1, \ldots, m)$ form an F-basis for W.
ϵN is a left B-space and as such is a direct sum of irreducible left B-spaces. Hence, there exist vectors $\eta_{1}, \ldots, \eta_{l}$ in $e N$ such that

$$
\begin{equation*}
\left\{\kappa_{h} e_{i 1} \eta_{s}(h=1, \ldots, k ; i=1, \ldots, m ; s=1, \ldots, l)\right\} \tag{14}
\end{equation*}
$$

is an F-basis for ϵN.

Similarly, there exist vectors $\zeta_{1}, \ldots, \zeta_{r}$ in $N e$ such that

$$
\begin{equation*}
\left\{\zeta_{\imath} e_{i j} \kappa_{h} \quad(h=1, \ldots, k ; j=1, \ldots, m ; t=1, \ldots, r)\right\} \tag{15}
\end{equation*}
$$

is an F-basis for $N \epsilon$.
Finally, $N^{2}=N \epsilon N$ is spanned by all products of basis vectors for $N \epsilon$ and ϵN; i.e. by all products of the form

$$
\zeta_{t} e_{1 j} \kappa_{h} \kappa_{h^{\prime}} e_{i 1} \eta_{s}
$$

Next, we observe that the matrix units $e_{i j}$ commute with elements of K, hence $e_{1 j} \kappa_{h} \kappa_{h^{\prime}} e_{i 1}$ is equal to zero unless $i=j$ and then it is equal to $e \kappa_{h} \kappa_{h^{\prime}} e$. Now $\zeta_{t} e=\zeta_{t}$ and $e \eta_{s}=\eta_{s}$; hence N^{2} is spanned by the $k l r$ products

$$
\begin{equation*}
\left\{\zeta_{t} \kappa_{h} \eta_{s} \quad(h=1, \ldots, k ; s=1, \ldots, l ; t=1, \ldots, r)\right\} . \tag{16}
\end{equation*}
$$

In general these products will not be independent but will satisfy certain linear conditions

$$
\begin{equation*}
\sum_{t, h, s} a_{q}(t, h, s) \zeta_{t} \kappa_{h} \eta_{s}=0 \quad(q=1, \ldots, g) \tag{17}
\end{equation*}
$$

We may suppose that these conditions are independent; then the F-dimension of N^{2} is $k l r-g$.

We now let $C=C(K, m, l, r)$. Let ϵ^{\prime} be the matrix given in (1), and let $C=B^{\prime}+N^{\prime}$ be the decomposition $\left(Q_{3}\right)$ for C. Then we can choose matrix units $e_{i j}{ }^{\prime}$ for B^{\prime} and elements $\eta_{1}{ }^{\prime}, \ldots, \eta_{l}{ }^{\prime}$ in $e_{11}{ }^{\prime} N^{\prime}, \zeta_{1}{ }^{\prime}, \ldots, \zeta_{r}{ }^{\prime}$ in $N^{\prime} e_{11}{ }^{\prime}$ such that the $k(m+l)(m+r)$ elements

$$
\begin{gather*}
\kappa_{h} e_{i t j}, \kappa_{h} e_{i l}^{\prime} \eta_{s}^{\prime}, \zeta_{\imath}^{\prime} e_{l j}^{\prime} \kappa_{h}, \zeta_{t}^{\prime} \kappa_{h} \eta_{s}^{\prime} \tag{18}\\
(h=1, \ldots, k ; i, j=1, \ldots, m ; s=1, \ldots, l ; t=1, \ldots, r)
\end{gather*}
$$

form an F-basis for C. Then the unique linear transformation of C onto A which sends each of these basis vectors into the corresponding unprimed element of A is clearly a ring homomorphism whose kernel lies in $\left(N^{\prime}\right)^{2}$. This completes the proof of Theorem 5.

Next we combine the results of Theorems 4 and 5 and get our main structure theorem.

Theorem 6. Let A be an algebra of class Q. Then $A=A^{*}-M^{*}$ where A^{*} is a direct sum of submatrix algebras and M^{*} is contained in the square of the radical of A^{*}.
5. Representation theory. Let A be an algebra of class Q and let V be a (left) representation space for A. Consider the chain $V \supseteq A V \supseteq N A V$ $\supseteq A N A V=0$. Clearly both the spaces $V / A V$ and $N A V$ are annihilated by every element of A, and $A V / N A V$ is a completely reducible non-degenerate A-space. Hence, by suitable choice of basis vectors we get the following matrix form for the representation:

$$
\alpha \rightarrow V_{(\alpha)}=\left\|\begin{array}{ccc}
0 & 0 & 0 \tag{19}\\
V_{21}(\alpha) & V_{22}(\alpha) & 0 \\
V_{31}(\alpha) & V_{32}(\alpha) & 0
\end{array}\right\|
$$

where V_{22} is in completely reduced form. We may suppose the basis elements so chosen that $V_{22}(\epsilon)$ is the identity matrix, and if $\alpha=\beta+\eta+\zeta+\tau$ is a splitting of α according to (3) then

$$
V_{22}(\alpha)=V_{22}(\beta), V_{21}(\alpha)=V_{21}(\eta), V_{32}(\alpha)=V_{32}(\zeta),
$$

and

$$
V_{31}(\alpha)=V_{31}(\tau)
$$

It is easy to show that if any of the integers l_{i}, r_{i} defined by the ideals A_{i} of A given by (8) exceeds unity, then A has unbounded representation type (3). Consequently, it is not likely that there is any simple classification of the indecomposable representations of algebras of class Q.
6. Uniqueness and automorphisms. Since the structure theorems depend on the decomposition $A=B+N$ it seems desirable to study its uniqueness. Since N is the radical any lack of uniqueness must come from the semisimple summand B. But since $B=\epsilon A \epsilon$ is uniquely determined by ϵ any second decomposition must correspond to a second idempotent ϵ^{\prime}.

It is easy to verify for any η_{0}, ζ_{0} in $\epsilon N, N \epsilon$, respectively, that

$$
\begin{equation*}
\epsilon^{\prime}=\epsilon+\eta_{0}+\zeta_{0}+\zeta_{0} \eta_{0}=\left(\epsilon+\zeta_{0}\right)\left(\epsilon+\eta_{0}\right) \tag{20}
\end{equation*}
$$

is an idempotent for which Q_{1}, Q_{2}, and Q_{3} hold. Moreover, if either η_{0} or ζ_{0} is different from zero, $B^{\prime}=\epsilon^{\prime} A \epsilon^{\prime}$ is not the same as B. Hence all we can expect for B is uniqueness to within an automorphism and this is established in the following theorem.

Theorem 7. Let A be an algebra of class Q and let $\epsilon, \epsilon^{\prime}$ be idempotents for which Q_{1}, Q_{2}, Q_{3} hold. Then there is an automorphism T of A which sends ϵ into ϵ^{\prime}. More precisely, if $\alpha=\beta+\eta+\zeta+\tau$ is a splitting of α according to (3) then the mapping

$$
T: \alpha \rightarrow \alpha T=\alpha^{\prime}=\epsilon^{\prime} \beta \epsilon^{\prime}+\epsilon^{\prime} \eta+\zeta \epsilon^{\prime}+\tau
$$

is an automorphism of A which sends ϵ into ϵ^{\prime}.
Both ϵ and ϵ^{\prime} are mapped into the identity element of $A-N$ under the natural mapping; hence $\epsilon^{\prime}-\epsilon$ is in N and so from (3) we get

$$
\epsilon^{\prime}=\epsilon+\eta_{0}+\zeta_{0}+\tau_{0} .
$$

Now $\epsilon^{\prime}=\left(\epsilon^{\prime}\right)^{2}=\epsilon+\eta_{0}+\zeta_{0}+\zeta_{0} \eta_{0}$; i.e., ϵ^{\prime} has the form (20). Note in particular that $\epsilon \epsilon^{\prime} \epsilon=\epsilon$.

Next, we have

$$
\begin{aligned}
\epsilon T & =\epsilon^{\prime} \epsilon \epsilon^{\prime}=\left(\epsilon+\zeta_{0}\right)\left(\epsilon+\eta_{0}\right) \epsilon\left(\epsilon+\zeta_{0}\right)\left(\epsilon+\eta_{0}\right) \\
& =\left(\epsilon+\zeta_{0}\right)\left(\epsilon+\eta_{0}\right)=\epsilon^{\prime} .
\end{aligned}
$$

Clearly T is a linear transformation and a direct computation shows that $\left(\alpha_{1} \alpha_{2}\right) T=\left(\alpha_{1} T\right)\left(\alpha_{2} T\right)$; i.e., T is an endomorphism on A.

To complete the proof that T is an automorphism, i.e. that it is one-to-one and onto we construct its inverse. Let $\alpha=\beta^{\prime}+\eta^{\prime}+\zeta^{\prime}+\tau$ be the splitting (3) for α relative to ϵ^{\prime} and let $\alpha T^{\prime}=\epsilon \beta^{\prime} \epsilon+\epsilon \eta^{\prime}+\zeta^{\prime} \epsilon+\tau$. Then the equations $T T^{\prime}=T^{\prime} T=I$ follow from $\epsilon \epsilon^{\prime} \epsilon=\epsilon$ and $\epsilon^{\prime} \epsilon \epsilon^{\prime}=\epsilon^{\prime}$.

The automorphism T of the theorem is completely defined by ϵ^{\prime} and hence by η_{0} and ζ_{0}; we denote it by $T\left(\eta_{0}, \zeta_{0}\right)$. It is easy to verify that the set W of all $T(\eta, \zeta)$ is a commutative group with composition rule

$$
\begin{equation*}
T\left(\eta_{1}, \zeta_{1}\right) \cdot T\left(\eta_{2}, \zeta_{2}\right)=T\left(\eta_{1}+\eta_{2}, \zeta_{1}+\zeta_{2}\right) \tag{21}
\end{equation*}
$$

Let U_{ϵ} denote the subgroup consisting of all automorphisms of A which leave ϵ fixed; then the group G of all automorphisms has the factorization $U_{\epsilon} W$.

Let $\boldsymbol{\gamma}, \boldsymbol{\gamma}^{\prime}$ be elements of B for which $\gamma \gamma^{\prime}=\gamma^{\prime} \gamma=\epsilon$. Then the mapping $S(\gamma)$ given by

$$
\begin{equation*}
\alpha=\beta+\eta+\zeta+\tau \rightarrow \alpha S(\gamma)=\gamma^{\prime} \beta \gamma+\gamma^{\prime} \eta+\zeta \gamma+\tau \tag{22}
\end{equation*}
$$

is an automorphism of A. The set V of all $S(\gamma)$ is an subgroup of U. We observe that N^{2} is elementwise fixed under the automorphisms in V and in W.

According to Theorem 6, the general question of conditions for isomorphism of algebras of class Q can be reduced to the study of conjugacy (under automorphisms) of ideals contained in the square of the radical of a direct sum of submatrix algebras.

In this paper we shall limit our study of isomorphism to the case of algebras of class Q^{\prime} and in particular those for which $K=F$, i.e. for which B is a total matrix algebra. According to Theorem 5 we can reduce this to the following question. Let $C=C(F, m, l, r)$, and let M, M^{\prime} be two ideals in the square of the radical of C. We ask for necessary and sufficient conditions for the conjugacy of M and M^{\prime} under automorphisms of C. We first determine the group G of automorphisms of C which leave F elementwise fixed.

We have initially the factorization $G=U_{\epsilon} W$. Let U_{B} denote the subgroup of G consisting of automorphisms which leave B elementwise fixed and let T be any element of U_{ϵ}. Then since B is a total matrix algebra T must agree on B with an inner automorphism of B, i.e., there exists γ in B such that $T(\gamma)^{-1}$ leaves B elementwise fixed (1). This shows that $U_{\epsilon}=U_{B} V$. Now since W and V both leave N^{2} elementwise fixed, M and M^{\prime} will be conjugate under G if and only if they are conjugate under U_{B}.

Theorem 8. Let G be the group of automorphisms of a submatrix F-algebra $C=C(F, m, l, r)$. Then G has the factorization

$$
G=U_{B} V W
$$

where W is isomorphic to a vector space of dimension $m^{2} l r$ over F, where V is isomorphic to the full linear group $G L(m)$, and where U_{B} is isomorphic to the direct product of $G L(l)$ and $G L(r)$.

The statement about W follows from (21) and the fact that for C we have $\operatorname{dim} \epsilon N=l m$ and $\operatorname{dim} N \epsilon=r m$. The statement about V follows from (22) since $G L(m)$ is the group of inner automorphisms of a total matrix algebra of degree m.

Next, let T be any element of U_{B}, and choose e as in the proof of Theorem 5 . Then, since e is in $B, e T=e$ and hence $(e N) T=e N$ and $(N e) T=N e$; moreover, T induces non-singular linear transformations T_{L} on $e N$ and T_{R} on $N e$. Let τ be an element of N^{2}. Then we have (cf. (16))

$$
\begin{equation*}
\tau=\sum_{i, s} a_{t s} \zeta_{i \eta_{s}} \tag{23}
\end{equation*}
$$

(The factor κ_{h} appearing in (16) does not appear here since $K=F$.) Now,

$$
\begin{equation*}
\tau T=\sum_{t, s} a_{t s}\left(\zeta_{t} T_{R}\right)\left(\eta_{s} T_{L}\right) \tag{24}
\end{equation*}
$$

hence T is completely determined by T_{L} and T_{R}. It follows that the mapping $T \rightarrow\left(T_{L}, T_{R}\right)$ is a homomorphism of U_{B} into $G L(l) \times G L(r)$. Moreover, it follows from (24) that if $T \rightarrow\left(I_{l}, I_{r}\right)$, then $T=I$, i.e. this mapping is an isomorphism. Finally we show that the mapping is onto. Let T_{L}, T_{R} be any elements of $G L(l) G L(r)$ respectively. Then the mapping $T=T\left(T_{L}, T_{R}\right)$ defined by

$$
\begin{equation*}
(\beta+\eta+\zeta+\tau) T=\beta+\eta T_{L}+\zeta T_{R}+\tau^{\prime} \tag{25}
\end{equation*}
$$

where τ^{\prime} is given by (24), is clearly an element of U_{B} which maps into (T_{L}, T_{R}).
Now let M be an ideal of C contained in N^{2}, and let M have dimension g over F. Then (cf. (17)) M has a basis of the form

$$
\begin{equation*}
\left\{\tau_{q}=\sum_{t, s} a_{q}(t, s) \zeta_{\imath} \eta_{s}(q=1, \ldots, g)\right\} \tag{26}
\end{equation*}
$$

where the $a_{q}(t, s)$ are elements of F. We can associate M and the given basis with the trilinear form

$$
f_{M}: f_{M}(x, y, z)=\sum_{q, i, s} a_{q}(t, s) x_{q} y_{s} z_{z} .
$$

A change of basis for M replaces f_{M} according to a non-singular linear transformation on the x_{q}. Under an automorphism $T\left(T_{L}, T_{R}\right), M$ is replaced by a new ideal M^{\prime} whose corresponding trilinear form is obtained from f_{M} by applying the substitutions T_{L} to the y_{s} and T_{R} to the z_{t}. Thus we see that two ideals M and M^{\prime} are conjugate under U_{B} and therefore under G if and only if their corresponding trilinear forms f and f^{\prime} are equivalent. Thus the problem of isomorphism of two algebras of class Q^{\prime} (having $K=F$) is reduced to the equivalence of trilinear forms.

To extend this result to the case where $K \neq F$ would involve equivalence of quadrilinear forms under the full linear group on three of the sets of variables and under a finite group corresponding to automorphisms of K over F on the fourth set of variables. If the centre of K is inseparable over F, then Theorem 8 still remains valid except that U_{B} must be enlarged to account
for automorphisms of K. The factorization $G=U_{B} V W$ is no longer valid (unless the centre of K is inseparable over F). We leave the detailed analysis of this case as well as the general problem of isomorphism of algebras of class Q for future treatment.

References

1. E. Artin, C. J. Nesbitt, and R. M. Thrall, Rings with minimum condition (University of Michigan Press, 1944).
2. W. P. Brown, Generalized matrix algebras, Can. J. Math., 7 (1955), 188-190.
3. J. P. Jans, On the indecomposable representations of algebras. 2200-5-T Engineering Research Institute, University of Michigan.

University of Michigan

