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Abstract Let M be a von Neumann algebra acting on a Hilbert space H and let N be a von Neumann
subalgebra of M. If N ⊗̄ B(K) is singular in M ⊗̄ B(K) for every Hilbert space K, N is said to be
completely singular in M. We prove that if N is a singular abelian von Neumann subalgebra or if N is
a singular subfactor of a type-II1 factor M, then N is completely singular in M. If H is separable, we
prove that N is completely singular in M if and only if, for every θ ∈ Aut(N ′) such that θ(X) = X for
all X ∈ M′, θ(Y ) = Y for all Y ∈ N ′. As the first application, we prove that if M is separable (with
separable predual) and N is completely singular in M, then N ⊗̄ L is completely singular in M ⊗̄ L for
every separable von Neumann algebra L. As the second application, we prove that if N1 is a singular
subfactor of a type-II1 factor M1 and N2 is a completely singular von Neumann subalgebra of M2, then
N1 ⊗̄ N2 is completely singular in M1 ⊗̄ M2.
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1. Introduction

Let M be a von Neumann algebra acting on a Hilbert space H. A von Neumann sub-
algebra N of M is singular if the only unitary operators in M satisfying the condition
UNU∗ = N are those in N . The study of singular von Neumann subalgebras has a long
and rich history (see, for example, [1,6,8,9,11]). Recently, there has been remarkable
progress on singular maximal abelian von Neumann subalgebras (masas) in type-II1 fac-
tors (see [12–14]). In [13], Sinclair and Smith introduced the concept of the asymptotic
homomorphism property. In [12], the concept of the weak asymptotic homomorphism
property is introduced. Let M be a type-II1 factor and let N be a von Neumann subal-
gebra of M. Then N ⊆ M has the weak asymptotic homomorphism property if, for all
X1, . . . , Xn ∈ M and ε > 0, there exists a unitary operator U ∈ N such that

‖EN (XiUX∗
j ) − EN (EN (Xi)UEN (Xj)∗)‖2 < ε.

∗ Present address: Department of Mathematics, Texas A & M University, College Station, TX, 77843-
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Remarkably, in [14], it was shown that every singular masa in a type-II1 factor satisfies
the weak asymptotic homomorphism property. As a corollary, the tensor product of
singular masas in type-II1 factors is proved to be a singular masa in the tensor product
of type-II1 factors (see [14]), which was a long-standing problem.

It is very natural to ask the following question: if N1 and N2 are singular von Neumann
subalgebras of M1 and M2, respectively, is N1 ⊗̄ N2 singular in M1 ⊗̄ M2? It turns out
that this is not always true. Let M1 = M3(C) and N1 = M2(C) ⊕ C. Then

P =

⎛
⎜⎝1 0 0

0 1 0
0 0 0

⎞
⎟⎠ , Q =

⎛
⎜⎝0 0 0

0 0 0
0 0 1

⎞
⎟⎠

are central projections in N1 and N1 = {P, Q}′. Suppose that U ∈ M1 is a unitary matrix
such that UN1U

∗ = N1. Then UPU∗ = P and UQU∗ = Q (because the automorphism
θ(X) = UXU∗ of N1 preserves the centre of N1 and τ(P ) = 2

3 , τ(Q) = 1
3 , where τ is

the normalized trace on M3(C)). So U ∈ {P, Q}′ = N1. This implies that N1 is singular
in M1. Let M2 = B(l2(N)) and N2 = M2. Then N1 ⊗̄ B(l2(N)) = M2(C) ⊗̄ B(l2(N)) ⊕
C ⊗̄ B(l2(N)) is not singular in M1 ⊗̄ B(l2(N)) = M3(C) ⊗̄ B(l2(N)). Indeed, let V be an
isometry from l2(N) onto C2 ⊗ l2(N). Then

U =

(
0 V

V ∗ 0

)

is a unitary operator in M3(C) ⊗̄ B(l2(N)) such that

U(N1 ⊗̄ B(l2(N)))U∗ = N1 ⊗̄ B(l2(N)).

Since U is not in N1 ⊗̄ B(l2(N)), N1 ⊗̄ B(l2(N)) is not singular in M1 ⊗̄ B(l2(N)). Indeed,
N1 ⊗̄ B(l2(N)) is regular in M1 ⊗̄ B(l2(N)) (see Remark 2.14).

Let M be a von Neumann algebra and let N be a von Neumann subalgebra of M.
If N ⊗̄ B(K) is singular in M ⊗̄ B(K) for every Hilbert space K, then N is said to be
completely singular in M. In § 2, we prove that if N is a singular masa or if N is a
singular subfactor of a type-II1 factor M, then N is completely singular in M. For every
type-II1 factor M, we construct a singular von Neumann subalgebra N of M (N �= M)
such that N ⊗̄ B(l2(N)) is regular in M ⊗̄ B(l2(N)). Motivated by [3, Lemma 1.2], we
obtain a nice characterization of complete singularity in § 3. As the first application, in
§ 4.1, we prove that if M is separable and N is completely singular in M, then N ⊗̄ L is
completely singular in M ⊗̄ L for every separable von Neumann algebra L. As the second
application, we prove that if N1 is a singular subfactor of a type-II1 factor M1 and N2

is a completely singular von Neumann subalgebra of M2, then N1 ⊗̄ N2 is singular in
M1 ⊗̄ M2. The following question seems to be interesting: if N1, N2 are completely
singular von Neumann subalgebras of M1 and M2, is N1 ⊗̄ N2 completely singular in
M1 ⊗̄ M2?
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2. On singularity and complete singularity

2.1. Normalizer and normalizing groupoid of N in M
Let M be a von Neumann algebra and let N be a von Neumann subalgebra of M. Then
NM(N ) denotes the normalizer of N in M:

NM(N ) = {U ∈ M : U is a unitary operator, UNU∗ = N},

and GN
(2)
M (N ) denotes the (two-sided) normalizing groupoid of N in M:

GN
(2)
M (N ) = {V ∈ M : V is a partial isometry with initial space E and

final space F such that E, F ∈ N and V NEV ∗ = NF },

where NE = ENE and NF = FNF . N is singular in M if and only if NM(N )′′, the
von Neumann algebra generated by NM(N ), is N . Recall that N is regular in M if
NM(N )′′ = M.

If M is a finite von Neumann algebra and N is a maximal abelian von Neumann
subalgebra of M, then V ∈ GN

(2)
M (N ) if and only if there is a unitary operator U ∈

NM(N ) and a projection E ∈ N such that V = UE [6, Theorem 2.1]. In other words,
any partial isometry that normalizes N extends to a unitary operator that normalizes N .
As a corollary, we have GN

(2)
M (N )′′ = NM(N )′′, i.e. the von Neumann algebra generated

by the normalizing groupoid of N in M is the von Neumann algebra generated by the
normalizer of N in M. If M is an infinite factor, e.g. type-III, and N = M, then
there is an isometry in M which cannot be extended to a unitary operator in M. The
following example tells us that even the weak form GN

(2)
M (N )′′ = NM(N )′′ can fail. Let

M = M3(C) and N = M2(C) ⊕ C. As we pointed out in § 1, N is singular in M,
i.e. NM(N )′′ = N . Simple computations show that

V =

⎛
⎜⎝0 0 0

0 0 1
0 1 0

⎞
⎟⎠

is in GN
(2)
M (N ). Note that V is not in N .

Let V1, V2 ∈ M be two partial isometries in GN
(2)
M (N ) and Ei = V ∗

i Vi ∈ N , i = 1, 2.
We say V1 � V2 if E1 � E2 and V1 = V2E1. It is obvious that � is a partial order on the
set of partial isometries in GN

(2)
M (N ). Let {Vα} be a totally ordered subset of GN

(2)
M (N ).

Then V = limα Vα (in the strong operator topology) exists and V ∈ GN
(2)
M (N ).

Lemma 2.1. If M is a finite von Neumann algebra and N is a subfactor of M, then
for every V ∈ GN

(2)
M (N ) there is a unitary operator U ∈ NM(N ) such that V � U . In

particular, GN
(2)
M (N )′′ = NM(N )′′.

Proof. By Zorn’s lemma, there is a maximal element W ∈ GN
(2)
M (N ) such that V �

W . Let E = W ∗W and F = WW ∗. Then E, F �= 0 and E, F ∈ N . We need to prove
E = I. If E �= I, then F �= I since M is finite. So I − E, I − F ∈ N are not 0.
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Since N is a factor, there is a partial isometry V1 ∈ N with initial space E1, a non-zero
subprojection of I − E, and final space E2, a non-zero subprojection of E. Let F ′ be the
range space of WE2. Then F ′ = WE2W

∗ ∈ N . Since N is a factor, there is a partial
isometry V2 ∈ N with initial space F2, a non-zero subprojection of F ′, and final space
F1, a non-zero subprojection of I − F . Now W ′ = V2WV1 is a partial isometry with
initial space E1 � I − E and final space F1 � I − F . Simple computation shows that
W + W ′ ∈ GN

(2)
M (N ). Note that V � W � W +W ′ and W �= W +W ′. This contradicts

the maximality of W . �

Lemma 2.2. Let M be a von Neumann algebra and N be an abelian von Neumann
subalgebra of M. Then GN

(2)
M (N )′′ = NM(N )′′.

Proof. Let M1 = NM(N )′′. We only need to prove that GN
(2)
M (N )′′ ⊆ M1. For V ∈

M a partial isometry, define S(V ) = {W ∈ M1 : W is a partial isometry and W � V }.
Suppose V /∈ M1. By Zorn’s lemma, we can choose a maximal element W ∈ S(V )
such that V − W �= 0 and S(V − W ) = {0}. Since W ∈ M1, V ∈ M1 if and only if
V −W ∈ M1. Therefore, we can assume that V �= 0 and S(V ) = {0}. Let E = V ∗V and
F = V V ∗. Then E �= 0 and F �= 0.

If E = F , let U = V + (I − E). Then U ∈ NM(N ) and V = UE ∈ M1. This is a
contradiction. If E �= F , we can assume that E1 = E(I −F ) �= 0 (otherwise consider V ∗).
Let V1 = V E1 and F1 be the final space of V1. Then V1 ∈ GN

(2)
M (N ) with initial space

E1 � I−F and final space F1 � F such that 0 �= V1 � V . Let U = V1+V ∗
1 +(I−E1−F1).

Then U ∈ NM(N ) and V1 = UE1 ∈ M1. Note that V1 �= 0 and V1 � V . S(V ) �= {0}.
This is a contradiction. �

If N is singular in M and E ∈ N is a projection, NE (NE = ENE) may be not
singular in ME . For example, let M = M3(C), N = M2(C) ⊕ C and

E =

⎛
⎜⎝0 0 0

0 1 0
0 0 1

⎞
⎟⎠ ∈ N .

Then NE is not singular in ME . But we have the following result.

Lemma 2.3. Let N be a singular von Neumann subalgebra of M and E ∈ N be a
projection. If N is a countably decomposable, properly infinite von Neumann algebra,
then NE is singular in ME .

Proof. Let P be the central support of E relative to N . Then there are central
projections P1, P2 of N such that P1 + P2 = P and P1E is finite and P2E is properly
infinite. Let E1 = P1E and E2 = P2E. Then the central supports of E1 and E2 are P1

and P2, respectively. Since P1 is a properly infinite countably decomposable projection
and E1 is a finite projection in NP1 and the central support of E1 is P1, it follows that
P1 is a countably infinite sum of projections {E1n} in N , each E1n is equivalent to E1

in NP1(see, for example, [7, Corollary 6.3.12]). For n ∈ N, let W1n be a partial isometry
in NP1 such that W ∗

1nW1n = E1n and W1nW ∗
1n = E1. Since P2 and E2 are properly
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infinite projections in NP2 with the same central support P2 and since NP2 is countably
decomposable, P2 and E2 are equivalent in NP2 (see, for example, [7, Corollary 6.3.5]).
Since P2 is properly infinite in N , it can be decomposed into a countably infinite sum
of projections {E2n}, where each E2n is equivalent to P2 and hence to E2. For n ∈ N,
let W2n be a partial isometry in NP2 such that W ∗

2nW2n = E2n and W2nW ∗
2n = E2. Let

Wn = W1n + W2n ∈ N . Then W ∗
nWn = E1n + E2n and WnW ∗

n = E1 + E2 = E.
Suppose V is a unitary operator in ME such that V NEV ∗ = NE . Define

U =
∞∑

n=1

W ∗
nV Wn + (I − P1 − P2).

Then U is a unitary operator and U∗ =
∑∞

n=1 W ∗
nV ∗Wn+(I − P1 − P2). For any T ∈ N ,

UTU∗ =
∑∞

m,n=1 W ∗
mV WmTW ∗

nV ∗Wn + (I − P1 − P2)T . Note that WmTW ∗
n ∈ NE ,

V WmTW ∗
nV ∗ ∈ NE . So UTU∗ ∈ N . Similarly, U∗TU ∈ N . Thus, U ∈ NM(N ). Since

N is singular in M, U ∈ N . Therefore, W ∗
1 V W1 = U(E1n + E2n) ∈ N . So V = EVE =

W1W
∗
1 V W1W

∗
1 ∈ NE . This implies that NE is singular in ME . �

2.2. Singular masas and singular subfactors (of type-II1 factor) are
completely singular

There are close relations between NM ⊗̄ B(K)(N ⊗̄ B(K))′′ and GN
(2)
M (N )′′ ⊗̄ B(K). In

this subsection, we prove the following theorem.

Theorem 2.4. Let N be a von Neumann subalgebra of M and K be a Hilbert space. If
GN

(2)
M (N )′′ = NM(N )′′, then NM ⊗̄ B(K)(N ⊗̄ B(K))′′ = NM(N )′′ ⊗̄ B(K). In particular,

if GN
(2)
M (N )′′ = N , then N is completely singular.

Combining Theorem 2.4 and Lemmas 2.1 and 2.2, we have the following corollaries.

Corollary 2.5. If M is a type-II1 factor and N is a singular subfactor of M, then N
is completely singular in M.

Corollary 2.6. If N is a singular masa of a von Neumann algebra M, then N is
completely singular in M.

To prove Theorem 2.4, we need the following lemmas. We consider dim K = 2 first,
which motivates the general case.

Lemma 2.7. Let

U =

(
A1 A2

A3 A4

)

be a unitary operator in M ⊗̄M2(C). Then the following conditions are equivalent:

(i) U(N ⊗̄M2(C))U∗ = N ⊗̄M2(C);

(ii) AiXA∗
j ∈ N and A∗

i XAj ∈ N for all X ∈ N , 1 � i, j � 4.
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Proof. U(N ⊗̄M2(C))U∗ = N ⊗̄M2(C) if and only if

U(N ⊗̄M2(C))U∗ ⊆ N ⊗̄M2(C) and U∗(N ⊗̄M2(C))U ⊆ N ⊗̄M2(C).

U(N ⊗̄M2(C))U∗ ⊆ N ⊗̄M2(C) if and only if

U

(
X 0
0 0

)
U∗, U

(
0 X

0 0

)
U∗, U

(
0 0
X 0

)
U∗, U

(
0 0
0 X

)
U∗ ∈ N for all X ∈ N .

Simple computations show that U(N ⊗̄M2(C))U∗ ⊆ N ⊗̄M2(C) if and only if AiXA∗
j ∈

N for all X ∈ N , 1 � i, j � 4. �

Since the proof of the following lemma is similar to the proof of Lemma 2.7, we omit
it here.

Lemma 2.8. Let U = (Aij) be a unitary operator in M ⊗̄ B(K). Then the following
conditions are equivalent:

(i) U(N ⊗̄ B(K))U∗ = N ⊗̄ B(K);

(ii) AiXA∗
j ∈ N and A∗

i XAj ∈ N for all X ∈ N , 1 � i, j � dim K.

Let X = I and i = j in Lemma 2.8 (ii). We have the following corollary.

Corollary 2.9. Let U = (Aij) be a unitary operator in M ⊗̄ B(K) such that

U(N ⊗̄ B(K))U∗ = N ⊗̄ B(K).

If Aij = VijHij is the polar decomposition of Aij , then Hij ∈ N , 1 � i, j � dim K.

Lemma 2.10. Let N be a von Neumann algebra, let H be a positive operator in N
and let E be the closure of the range space of H. Then the strong-operator closure of
T = {HXH : X ∈ N} is NE (NE = ENE).

Proof. It is easy to see T ⊆ NE . Let

H =
∫

R

λ dE(λ) and En = E([1/n, ∞)).

Then limn→∞ En = E in strong-operator topology. Set Hn = EnH + (I − En). Then
Hn is invertible in N . For X ∈ NE , let Xn = H−1

n (EnXEn)H−1
n ∈ N . Then HXnH =

HH−1
n EnXEnH−1

n H = EnXEn → EXE = X in strong-operator topology. Hence, the
strong-operator closure of T contains NE . �

Lemma 2.11. Suppose that N is a von Neumann subalgebra of M and that A ∈ M
satisfies ANA∗ ⊆ N and A∗NA ⊆ N . Let A = V H be the polar decomposition and
E = V ∗V , F = V V ∗. Then H, E, F ∈ N and V ∈ GN

(2)
M (N ).
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Proof. By the assumption, A∗IA = H2 ∈ N . So H ∈ N and E = R(H) ∈ N , where
R(H) is the closure of range space of H. By symmetry, F ∈ N . Note that AXA∗ =
V HXHV ∗ ⊆ FNF = NF for all X ∈ N . By Lemma 2.10, V NEV ∗ ⊆ NF . By A∗XA ⊆
N for all X ∈ N and similar arguments, V ∗NF V ⊆ NE . So NF ⊆ V NEV ∗. Thus,
V NEV ∗ = NF , i.e. V ∈ GN

(2)
M (N ). �

Proof of Theorem 2.4. Let U1 ∈ NM(N ) and V be a unitary operator in B(K).
Then U1 ⊗ V ∈ NM ⊗̄ B(K)(N ⊗̄ B(K)). So

NM ⊗̄ B(K)(N ⊗̄ B(K))′′ ⊇ NM(N )′′ ⊗̄ B(K).

Let U = (Aij) be a unitary operator in M ⊗̄ B(K) such that U(N ⊗̄ B(K))U∗ =
N ⊗̄ B(K). Let Aij = VijHij be the polar decomposition of Aij . By Lemmas 2.8 and 2.11
and Corollary 2.9, Hij ∈ N and Vij ∈ GN

(2)
M (N ). By the assumption of Theorem 2.4,

Vij ∈ NM(N )′′. So U ∈ NM(N )′′ ⊗̄ B(K), i.e.

NM ⊗̄ B(K)(N ⊗̄ B(K))′′ ⊆ NM(N )′′ ⊗̄ B(K).

�

2.3. On singular but not completely singular von Neumann subalgebras

Proposition 2.12. If N is a singular but not a completely singular von Neumann
subalgebra of M, then there is a von Neumann subalgebra M1 of M and a Hilbert space
K such that N � M1, N is singular in M1 and N ⊗̄ B(K) is regular in M1 ⊗̄ B(K).

Proof. Since N is not completely singular in M, there is a Hilbert space K such that
L = NM ⊗̄ B(K)(N ⊗̄ B(K))′′ � N ⊗̄ B(K). Note that N ⊗̄ B(K) ⊆ L ⊆ M⊗̄ B(K). By
Ge and Kadison’s splitting theorem (see [4]), L = M1 ⊗̄ B(K) for some von Neumann
algebra M1, N � M1 ⊆ M. Since N is singular in M, N is singular in M1. Since
M1 ⊗̄ B(K) = NM ⊗̄ B(K)(N ⊗̄ B(K)), N ⊗̄ B(K) is regular in M1 ⊗̄ B(K). �

Proposition 2.13. If M is a type-II1 factor, then there is a singular von Neumann
subalgebra N of M such that N �= M and N ⊗̄ B(l2(N)) is regular in M ⊗̄ B(l2(N)). In
particular, N is not completely singular.

Proof. Let M1 be a type-I3 subfactor of M and M2 = M′
1 ∩ M. Then M2 is a

type-II1 factor. We can identify M with M3(C) ⊗̄ M2 and M1 with M3(C) ⊗̄ CI. With
this identification, let N = (M2(C) ⊕ C) ⊗̄ M2. Then

P =

⎛
⎜⎝1 0 0

0 1 0
0 0 0

⎞
⎟⎠ ⊗ I and Q =

⎛
⎜⎝0 0 0

0 0 0
0 0 1

⎞
⎟⎠ ⊗ I

are central projections in N . N = {P, Q}′ ∩ M and {P, Q}′′ is the centre of N . Let
U ∈ M be a unitary operator such that UNU∗ = N . Then U{P, Q}′′U∗ = {P, Q}′′. Let
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τ be the unique tracial state on M. Then τ(P ) = 2
3 and τ(Q) = 1

3 . So UPU∗ = P and
UQU∗ = Q. This implies that U ∈ {P, Q}′ ∩ M = N and N is singular in M.

To see that N ⊗̄ B(l2(N)) is not singular in M ⊗̄ B(l2(N)), we identify M ⊗̄ B(l2(N))
with M3(C) ⊗̄ B(l2(N)) ⊗̄ M2 and N ⊗̄ B(l2(N)) with (M2(C)⊕C) ⊗̄ B(l2(N)) ⊗̄ M2. Let
V be an isometry from l2(N) onto C2 ⊗ l2(N). Then

U =

(
0 V

V ∗ 0

)

is a unitary operator in M3(C) ⊗̄ B(l2(N)) such that U((M2(C) ⊕ C) ⊗̄ B(l2(N)))U∗ =
(M2(C) ⊕ C) ⊗̄ B(l2(N)). Therefore, U ⊗ I is a unitary operator in the normalizer of
N ⊗̄ B(l2(N)) but U ⊗ I /∈ N ⊗̄ B(l2(N)).

By Proposition 2.12, there is a von Neumann subalgebra L of M such that N � L and
N ⊗̄ B(l2(N)) is regular in L ⊗̄ B(l2(N)). Since (M2(C) ⊕ C) ⊗̄ M2 � L ⊆ M3(C) ⊗̄ M2,
by Ge and Kadison’s splitting theorem [4], L = L1 ⊗̄ M2 for some von Neumann algebra
L1 such that M2(C) ⊕ C � L1 ⊆ M3(C). Since M3(C) is the unique von Neumann
subalgebra of M3(C) satisfying the above condition, L1 = M3(C). This implies that
N ⊗̄ B(l2(N)) is regular in M ⊗̄ B(l2(N)). �

Remark 2.14. By the proof of Proposition 2.13, (M2(C) ⊕ C) ⊗̄ B(l2(N)) is regular
in M3(C) ⊗̄ B(l2(N)).

Remark 2.15. Let M be a type-II1 factor and let N be the singular von Neumann
subalgebra constructed as in the proof of Proposition 2.13. It is easy to see that N ⊗̄ N
is not singular in M ⊗̄ M.

3. A characterization of complete singularity

Theorem 3.1. Let M be a von Neumann algebra acting on a separable Hilbert space
H and let N be a von Neumann subalgebra of M. Then the following conditions are
equivalent.

(i) N is completely singular in M.

(ii) N ⊗̄ B(l2(N)) is singular in M ⊗̄ B(l2(N)).

(iii) If θ ∈ Aut(N ′) and θ(X) = X for all X ∈ M′, then θ(Y ) = Y for all Y ∈ N ′.

Proof. (iii) =⇒ (i). Let K be a Hilbert space and let U ∈ M⊗̄ B(K) be a unitary
operator such that U(N ⊗̄ B(K))U∗ = N ⊗̄ B(K). Note that (M ⊗̄ B(K))′ = M′ ⊗̄ CIK
and (N ⊗̄ B(K))′ = N ′ ⊗̄ CIK. θ(Z) = UZU∗ is an automorphism of N ′ ⊗̄ CIK. Since
U ∈ M⊗̄ B(K), θ(X ⊗ IK) = X ⊗ IK for all X ∈ M′. By the assumption of (iii),
Y ⊗ IK = θ(Y ⊗ IK) = U(Y ⊗ IK)U∗ for all Y ∈ N ′ ⊗̄ CIK. This implies that U ∈
N ⊗̄ B(K). Therefore, N ⊗̄ B(K) is singular in M ⊗̄ B(K).

(i) =⇒ (ii) is trivial.
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(ii) =⇒ (iii). By [5], there is a separable Hilbert space H1 and a faithful normal
representation φ of N ′ such that φ(N ′) acts on H1 in standard form. Let θ1 = φ · θ ·φ−1.
Then θ1 ∈ Autφ(N ′) and θ1(φ(X)) = φ(X) for all X ∈ M′. Now there is a unitary
operator U1 ∈ B(H1) such that θ1(φ(Y )) = U1φ(Y )U∗

1 for all Y ∈ N ′. Let N1 and
M1 be the commutants of φ(N ′) and φ(M′) relative to H1, respectively. Then N1 is a
von Neumann subalgebra of M1. Since θ1(φ(X)) = U1φ(X)U∗

1 = φ(X) for all X ∈ M′,
U1 ∈ M1. Since θ1(Z) = U1ZU∗

1 is an automorphism of φ(N ′, θ1(Z) = U1ZU∗
1 is also

an automorphism of N1. Now we only need to prove that N1 is a singular von Neumann
subalgebra of M1. Then U1 ∈ N1 and θ1(φ(Y )) = U1φ(Y )U∗

1 = φ(Y ) for all Y ∈ N ′.
This implies that θ(Y ) = Y for all Y ∈ N ′.

By [2, Theorem 3, p. 61], φ = φ3 · φ2 · φ1, where φ1(N ′) = N ′ ⊗̄ CIK, K = l2(N),
φ2(N ′ ⊗̄ CIK) = (N ′ ⊗̄ CIK)E, E ∈ (N ′ ⊗̄ CIK)′ = N ⊗̄ B(K) and φ3 is a spacial iso-
morphism. We may assume that φ3 = id. Then N1 = E(N ⊗̄ B(K))E and M1 =
E(M ⊗̄ B(K))E, where E ∈ N ⊗̄ B(K). By (ii), N ⊗̄ B(K) is singular in M ⊗̄ B(K). Note
that N ⊗̄ B(K) is a countably decomposable, properly infinite von Neumann algebra. By
Lemma 2.3, N1 is singular in M1. �

Note that in the proof of (iii) =⇒ (i) of Theorem 3.1, we do not need the assumption
that H is a separable Hilbert space.

Let M be a von Neumann algebra. A von Neumann subalgebra B of M is called
maximal injective if it is injective and if it is maximal with respect to inclusion in the
set of all injective von Neumann subalgebras of M (see [10]).

Proposition 3.2. If B is a maximal injective von Neumann subalgebra of M, then
B is completely singular in M.

Proof. We can assume that M acts on H in standard form. Then B′ is a minimal
injective von Neumann algebra extension of M′ [3, 1.3]. Let θ ∈ Aut(B′) such that
θ(X) = X for all X ∈ M′. Then θ(Y ) = Y for all Y ∈ B′ by [3, Lemma 1.2]. By
Theorem 3.1, B is completely singular in M. �

4. Completely singular von Neumann subalgebras in tensor products of
von Neumann algebras

4.1. Complete singularity is stable under the tensor product

The proof of the following lemma is similar to the proof of [16, Lemma 6.6].

Lemma 4.1. Let M be a separable von Neumann algebra and let N be a singular
von Neumann subalgebra of M. If A is an abelian von Neumann algebra, then N ⊗̄ A is
a singular von Neumann subalgebra of M ⊗̄ A.

Proof. We can assume that M acts on a separable Hilbert space H in standard form
and A is countably decomposable. Then there is a ∗-isomorphism from A onto L∞(Ω, µ)
with µ a probability Radon measure on some compact space Ω. To the ∗-isomorphism
A → L∞(Ω, µ) corresponds canonically a ∗-isomorphism Φ from B(H) ⊗̄ A onto
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L∞(Ω, µ; B(H)). Note that Φ(M ⊗̄ A)(ω) = M and Φ(N ⊗̄ A)(ω) = N for almost all
ω ∈ Ω. Let U ∈ M⊗̄ A be a unitary operator such that U(N ⊗̄ A)U∗ = N ⊗̄ A. Then
Φ(U) = U(ω) such that U(ω) is a unitary operator in M for almost all ω ∈ Ω. Because
U(N ⊗̄ A)U∗ = N ⊗̄ A, we have U(ω)NU(ω)∗ = N for almost all ω ∈ Ω. Since N is
singular in M, U(ω) ∈ N for almost all ω ∈ Ω. Hence, U ∈ N ⊗̄ A. �

Note that for every Hilbert space K, the von Neumann algebra M ⊗̄ A ⊗̄ B(K) is canon-
ically isomorphic to the von Neumann algebra M ⊗̄ B(K) ⊗̄ A. We have the following
corollary.

Corollary 4.2. Let M be a separable von Neumann algebra and N be a completely
singular von Neumann subalgebra. If A is an abelian von Neumann algebra, then N ⊗̄ A
is a completely singular von Neumann subalgebra of M ⊗̄ A.

Theorem 4.3. Let M be a separable von Neumann algebra and let N be a completely
singular von Neumann subalgebra. Then N ⊗̄ L is completely singular in M ⊗̄ L for every
separable von Neumann algebra L.

Proof. We can assume that M and L act on separable Hilbert spaces H and K in
standard form, respectively. Let θ be in Aut(N ′ ⊗̄ L′) such that θ(X ⊗ Z) = X ⊗ Z

for all X ∈ M′ and Z ∈ L′. Let A be the centre of L′. Then (CIH ⊗̄ L′)′ ∩ (N ′ ⊗̄ L′) =
(B(H) ⊗̄ L)∩(N ′ ⊗̄ L′) = (B(H)∩N ′) ⊗̄(L∩L′) = N ′ ⊗̄ A. So for T ∈ N ′ ⊗̄ A and Z ∈ L′,
T (IH ⊗Z) = (IH ⊗Z)T and θ(T )θ(IH ⊗Z) = θ(IH ⊗Z)θ(T ). Since θ(IH ⊗Z) = IH ⊗Z,
θ(T )(IH ⊗ Z) = (IH ⊗ Z)θ(T ). This implies that θ(T ) ∈ N ′ ⊗̄ A. So θ ∈ Aut(N ′ ⊗̄ A)
when θ is restricted on N ′ ⊗̄ A such that θ(X ⊗ Z) = X ⊗ Z for all X ∈ M′ and Z ∈ A.

Consider the standard representation φ of A on a separable Hilbert space K1. Then
φ(A)′ = φ(A). By Corollary 4.2, N ⊗̄φ(A) is completely singular in M ⊗̄φ(A). On H ⊗
K1, (N ⊗̄φ(A))′ = N ′ ⊗̄φ(A) and (M ⊗̄φ(A))′ = M′ ⊗̄φ(A). Note that θ1 = (id ⊗̄φ)·θ ·
(id ⊗̄φ−1) ∈ Aut(N ′ ⊗̄φ(A)) and θ1(X ⊗Z ′) = (id ⊗̄φ) · θ(X ⊗φ−1(Z ′)) = (id ⊗̄φ)(X ⊗
φ−1(Z ′)) = X ⊗Z ′ for all X ∈ M′ and Z ′ ∈ φ(A). By Theorem 3.1, θ1(Y ⊗Z ′) = Y ⊗Z ′

for all Y ∈ M′ and Z ′ ∈ φ(A). This implies that θ(Y ⊗ φ−1(Z ′)) = Y ⊗ φ−1(Z ′) for all
Y ∈ N ′ and Z ′ ∈ φ(A). Let Z ′ = IK1 . Then θ(Y ⊗ IK) = Y ⊗ IK for all Y ∈ N ′. Hence,
θ(Y ⊗ Z) = Y ⊗ Z for all Y ∈ N ′ and Z ∈ L′. By Theorem 3.1, N ⊗̄ L is completely
singular in M ⊗̄ L. �

4.2. Tensor product with completely singular subfactors

Theorem 4.4. Let Mi be a separable von Neumann algebra,and let Ni be a com-
pletely singular von Neumann subalgebra of Mi, i = 1, 2. If N1 is a factor, then N1 ⊗̄ N2

is completely singular in M1 ⊗̄ M2.

Proof. We can assume that M1 and M2 act on separable Hilbert spaces H1 and H2

in standard form, respectively. Let θ be in Aut(N ′
1 ⊗̄ N ′

2) such that θ(X1⊗X2) = X1⊗X2

for all X1 ∈ M′
1 and X2 ∈ M′

2.
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Since N1 is a singular subfactor in M1, N ′
1 ∩ M1 = N ′

1 ∩ N1 = CIH1 . Note that

(M′
1 ⊗̄ CIH2)

′ ∩ (N ′
1 ⊗̄ N ′

2) = (M1 ⊗̄ B(H2)) ∩ (N ′
1 ⊗̄ N ′

2)

= (M1 ∩ N ′
1) ⊗̄(B(H2) ∩ N ′

2)

= CIH1 ⊗̄ N ′
2.

We have

θ(CIH1 ⊗̄ N ′
2) = θ((M1 ∩ N ′

1) ⊗̄(B(H2) ∩ N ′
2))

= θ((M1 ⊗̄ B(H2)) ∩ (N ′
1 ⊗̄ N ′

2))

= θ((M′
1 ⊗̄ CIH2)

′ ∩ (N ′
1 ⊗̄ N ′

2))

= θ(M′
1 ⊗̄ CIH2)

′ ∩ θ(N ′
1 ⊗̄ N ′

2)

= (M′
1 ⊗̄ CIH2)

′ ∩ (N ′
1 ⊗̄ N ′

2)

= CIH1 ⊗̄ N ′
2.

Since N2 is completely singular in M2 and θ(IH1 ⊗ X2) = IH1 ⊗ X2 for all X2 ∈ M′
2,

θ(IH1 ⊗Y2) = IH1 ⊗Y2 for all Y2 ∈ M′
2 by Theorem 3.1. Therefore, θ(X1 ⊗Y2) = X1 ⊗Y2

for all X1 ∈ M′
1 and Y2 ∈ N ′

2. By Theorem 4.3, N1 ⊗̄ M2 is completely singular in
M1 ⊗̄ M2. Since θ(X1 ⊗ Y2) = X1 ⊗ Y2 for all X1 ∈ M′

1 and Y2 ∈ N ′
2, by Theorem 3.1,

θ(Y1 ⊗ Y2) = Y1 ⊗ Y2 for all Y1 ∈ N ′
1 and Y2 ∈ N ′

2. By Theorem 3.1 again, N1 ⊗̄ N2 is
completely singular in M1 ⊗̄ M2. �

Combining Theorem 4.4 and Corollary 2.5, we obtain the following corollary, which
generalizes [15, Corollary 4.4].

Corollary 4.5. If N1 is a singular subfactor of a type-II1 factor M1 and N2 is a
completely singular von Neumann subalgebra of M2, then N1 ⊗̄ N2 is completely singular
in M1 ⊗̄ M2.
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