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Abstract

A three stage procedure for the analysis and least-cost design of looped water distribution
networks is considered in this paper. The first stage detects spanning trees and identifies the
true global optimum for the system. The second stage determines hydraulically feasible pipe
flows for the network by the numerical solution of a set of non-linear simultaneous equations
and shows that these solutions are contained within closed convex polygonal regions in the
solution space bounded by singularities resulting from zero flows in individual pipes. Ideal
pipe diameters, consistent with the pipe flows and the constant velocity constraint adopted
to prevent the system degenerating into a branched network, are selected and costed. It is
found that the most favourable optimum is in the vicinity of a vertex in the solution space
corresponding to the minimum spanning tree. In the third stage, commercial pipes are
specified and the design finalised. Upper bound formulae for the number of spanning trees
and hydraulically feasible solutions in a network have also been proposed. The treatment of
large networks by a heuristic procedure is described which is shown to result in significant
economies compared with designs obtained by non-linear programming.

1. Introduction

Water distribution networks consist of a planar system of pipes or links (through which
the water flows), connected together at nodes which may be at different elevations.
In general, the complex will also include pumps, reservoirs and valves. A node
usually has one of two main functions; it either receives a supply for the system or it
delivers the demand required by consumers. As a special case, it may satisfy neither
of these requirements but merely serve as a junction between two or more pipes. The
pressure head at a supply node is established by the presence of a pump or a reservoir.
Resistances to flow (friction losses) which are a function of length, diameter, flow
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rate, and pipe material and roughness, occur in the links as the fluid flows around
the network from supply nodes to demand nodes. The effect of minor losses may
be included as equivalent pipe lengths. It is usual to specify a minimum acceptable
residual pressure head at demand nodes and the pressure heads at supply nodes must
be of sufficient magnitude to satisfy these requirements. The difference between the
total heads (measured with reference to a common horizontal datum) at a supply node
and a demand node is equal to the algebraic sum of the head losses taken along any
path in the network.

Networks are of two different types; branched or open tree-like networks and
closed-looped networks. Branched networks have no built-in redundancy and, if one
of the links fails, no service is available at downstream nodes. For this reason looped
networks, which permit demand nodes to be served through more than one path, are
preferred for urban water supply.

There is only one flow solution for a branched network, but many solutions are
possible for looped systems, all of which satisfy the general closed network laws of
continuity and energy balance. The number of such solutions depends on the number
of links in each loop and the configuration of the network. The analysis of looped
networks with known pipe diameters, although a non-linear problem due to the nature
of the pipe resistance law, is not hard provided the network is relatively small. For
bigger networks, technical difficulties arise because of the need to deal with large
sparse matrices. The general design problem however, which requires the selection
of pipe sizes, is much more arduous since it includes both analysis and optimisation
subject to certain criteria such as least-cost.

Design may involve a completely new network, or the expansion and/or upgrading
of an existing network. Decision variables may be chosen as pipe diameters, pipe
flows, or pressures at demand nodes. Solutions to the general design problem are local
optima and the ideal outcome is to find the most favourable local optimum, usually
known as the global optimum. Paradoxically, the true global optimum for a looped
network is a particular branched network (a minimum spanning tree or the least-cost
branched network which serves all the nodes of the original system). It is therefore
necessary to force the network to retain its looped structure by the introduction of
artificial constraints on the solution such as specified minimum pipe diameters or
flows or, as in the present paper, by control of the flow velocity. Since the true
global optimum solution is no longer applicable, the best result that can be expected
is the identification of a favourable local optimum consistent with satisfaction of the
additional constraints.

Optimisation by non-linear programming is generally defined as the attainment of
an extremum for the objective function (in this case, a minimum of the cost function).
It will be shown here that optimal cost does not correspond to a mathematical minimum
but is simply the least of the costs associated with each of the hydraulically feasible
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solutions. Furthermore, the solution space contains as many singularities as there
are links in the network; thus the cost function cannot be treated as continuously
differentiable.

The approach to determining economic solutions for looped water distribution
networks, presented in this paper, involves three stages. The first stage leads to
identification of the minimum spanning tree and only requires knowledge of the
network geometry and satisfaction of the continuity equations for the network as a
whole and at each node. The second stage determines hydraulically feasible flows for
the intact network which are likely to be favourable optima, by numerical solution
of the loop head-loss equations using starting values in the vicinity of the minimum
spanning tree. In order to simplify the determination of ideal (continuous) least-cost
pipe diameters and to force the solution away from degeneration into a branched
network, the flow velocity is initially assumed to be constant for all links. This has the
important advantage that the head loss in a link may be expressed in terms of a single
variable (the pipe flow). As a further preliminary simplification, all links are presumed
to be of the same material and roughness. The third stage of the solution completes
the design; stock pipe sizes are selected using corresponding ideal diameters as a
guide, new balancing flows are calculated, different types of pipe are allowed for
as necessary and actual flow velocities in each link are obtained such that minimum
node-residual-head requirements are satisfied.

The constant-velocity constraint is a realistic alternative to the imposition of mini-
mum diameters or flows and has the additional virtue that the magnitude of the velocity
may be selected to control minimum service heads at the nodes and the total cost of the
pipes without affecting the flows. The constraint does not impose a serious restriction
on the validity of the solution since the flow velocity would be required anyway to
lie within a fairly narrow range (> 0.5 m/s to avoid silting and < 2.5 m/s to avoid
scouring). Indeed, Webber [14] has recommended an even narrower range (from 0.6
to 1.2 m/s) on both operational and economic grounds.

2. Previous work

There is an extensive literature on the analysis and optimisation of looped water
distribution networks dating from the late 1960s. Direct and indirect methods in-
corporating both non-linear programming and less conventional methods have been
proposed. Only seminal research which has a bearing on the present study is discussed
here.

In an early work, Jacoby [6] employed an unconstrained non-linear programming
approach with a gradient search technique to minimise the objective function. The
search methods included negative gradient direction, random direction and a combi-
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nation of both. The pipe cost was assumed to be linear with respect to the diameters.
Kesavan and Chandrashekar [7] used linear graph theory to find pipe flows in existing
networks for which pipe sizes were known. Their results were compared with those
obtained using the Hardy-Cross method.

Watanatada [13] presented a conventional non-linear optimisation procedure in
which inequality constraints were converted to equality constraints by standard meth-
ods. The Lagrangian was minimised using gradient balancing with an exterior point
penalty function. It was assumed that there were no singularities in the solution space
and that only one local minimum exists. It was found that the solution degenerated
into a branched network unless additional constraints defining minimum pipe diam-
eters were adopted. The method was illustrated with reference to a simple two-loop
triangular network. In a later section of the present paper, Watanatada's results for
this network will be compared with solutions obtained from the alternative approach
described herein.

Shamir [11] used a non-linear programming scheme which was an extension of a
network solver routine employing the generalised Newton-Raphson method. Ordered
triangular factorisation was employed to deal efficiently with inversion of the sparse
Jacobian found for networks of practical size. The initial capital cost of the system was
included in the objective function together with operating costs under one or several
loadings. The solution was based on the generalised reduced gradient method and the
objective function was expressed in terms of Lagrangian multipliers. Constraints on
dependent variables were dealt with either by internal penalty functions, which require
intervention by the user, or by variable exchange. Epp and Fowler [3] discussed the
analysis of existing networks and proposed banding of the Jacobian by a judicious
numbering of loops.

Rasmusen [10] also separated the network optimisation problem into analysis and
design. Instead of conventional optimisation, a heuristic method was used for selecting
pipe diameters in discrete sizes. Chiplunkar et al. [2] have treated the analysis and
design problem separately. The analysis stage used linear graph theory in combination
with Newton's method to provide fast convergence. An unconstrained non-linear
optimisation program with interior penalty functions was then solved by the Davidon-
Fletcher-Powell method. The objective function to be minimised included the costs
of the pipes, pumping plant, power consumption, labour and reservoirs. Gupta et al.
[5] have applied similar techniques to the expansion and upgrading of a system with
multiple sources. Initial values for the solution were obtained by consideration of
the minimum spanning tree for the network (although the method used to identify
the minimum from the approximately 6 x 106 spanning trees in their example is not
described). A minimum value for the pipe diameters was specified in order to ensure
that the network did not degenerate into a branched system.

Quindry et al. [9] postulated linear optimisation using gradient search based on the
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assumption that the ratio of the quantity flowing in a pipe to its cost is independent
of the diameter. Morgan and Goulter [8] made use of the same linear assumption
to determine least-cost layouts for looped networks. Templeman [12] was critical of
the linear approach and demonstrated that the looped network optimisation problem
is NP-hard, and that a rigorous algorithm to find an optimum design using discrete
diameters is not a practical possibility. The optimisation process tends to remove
the redundancy which is the essential feature of a looped system thus the inevitable
result of optimising a looped network without the inclusion of artificial constraints is
a branched system.

Bhave [1] also observed that, unless minimum diameter or minimum discharge
constraints are applied, the optimisation algorithm causes a looped network to degen-
erate into a branched system. The optimal expansion of existing water distribution
systems subjected to single loading was considered by first identifying a supposedly
least-cost branching configuration using a 'shortest path' algorithm. A solution was
obtained, not by non-linear programming, but by an iterative procedure in which node
pressure heads were taken as decision variables. Featherstone and El-Jumaily [4] took
account of initial capital costs and fixed and variable annual operating costs. They
also used an iterative optimisation technique, but based on the concept of dummy
hydraulic gradients.

3. An illustrative example

Before embarking on a detailed exposition of the present theory, it will be instructive
to illustrate the three stages of the optimisation process by means of a simple example.
The example chosen is the analysis and least-cost design of the ring main shown in
Figure 1. Pipe lengths, supply and demand flows, and node elevations are shown on
the diagram; the algebraic sum of the supply and demand flows is zero. A supply
pressure head of 8 m at node 1 is provided by a reservoir. We seek the most economic
choice of commercial pipe sizes such that a minimum residual head criterion of 1.2 m
is satisfied at all nodes. The capital costs of a pump and of building the elevated
reservoir, together with the recurrent costs of pumping, maintenance and so on, are
disregarded here in the interests of simplicity.

3.1. First stage. The system consists of eight links and eight nodes forming one
loop. The directions of the unknown link flows are assumed to be positive if acting
clockwise around the loop. Since there is one loop there is one independent link flow
which may be chosen arbitrarily. If the flow (x 1/s) in link 1 is selected, conservation
of continuity at the nodes allows each of the other link flows to be expressed in terms
of*:

q2 = x - 12, q-i = x - 34, q4 = x - 50, q5 = x - 69,
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FIGURE 1. Layout of ring main.

q6=x-S0, q7=x-92 and q% = x - 1001/s.

Another consequence of the network having a single loop is that a branched system
results if any one of the eight link flows is zero (if two or more non-adjacent link flows
are zero simultaneously, the network becomes disjoint). Thus the singularities (giving
rise to the eight viable spanning trees) in the one-dimensional solution space defined
by x are given by x = 0, 12, 34,50, 69, 80,92 and 1001/s.

The true global optimum (least-cost) configuration for the ring main may be deter-
mined if data is available relating pipe cost to the corresponding flow. This type of
information is obtained from manufacturer's catalogues, but in the form of cost per
unit length for specific nominal diameters. A cost function of the following form is
typical:

=KLjdf (1)

where C, is the capital cost of link./, L, is the length of linky (m), dj is the diameter
of linky (m) and K and ft are obtained by regression analysis. Values of K (= 1020)
and /3 (= 2) for polyethylene pipe available in Australia [15], are used here which
give the cost C, in $. For this example, additional installation costs are ignored.

Since pipe diameter is related to flow rate by the expression dj = (4qj/jrv)1'2,
where v (m/s) is assumed to be the common velocity of flow in all links and q, is in
m3/s, (1) may be expressed as

Cj=aKLjqf' (2)
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where a = (A/nv)pn.
The sum of the pipe costs for the ring main may now be determined from (2)

for each of the eight possible branched networks, or spanning trees. The minimum
spanning tree is found for x = 501/s {q* = 0) with a total cost of $67 634 if v is taken
as 1.8 m/s.

3.2. Second stage. The principle factor governing pipe flow is the head loss due
to friction. The Australian Standard for pipe design, AS 2200 [17] favours the
Colebrook-White formula for determining the friction head loss (hf)j in a link but
since this is not expressed in explicit form, it is more convenient to use the empirical
Hazen-Williams formula for turbulent flow in the transition zone which is usually
expressed in the form

vj = 0.354C//d
f°-63Sf54, (3)

where CH is the Hazen-Williams coefficient and 5, is the friction head loss per unit
length of pipe.

Substituting for dj as before and assuming constant velocity of flow we obtain

(hf)j =Kia-
2™Ljq-0™, (4)

where Kl = (10.68/C^85) and, for polyethylene pipe, 155 < CH < 160 [17].
The loop energy balance law (which is independent of node elevations), may be

expressed as £(ft/);-
 = 0, where each summation is understood to extend over all

the links in a loop. Since we make the assumptions for stage two that all links are of
the same material and that the link flow velocity is constant, the loop energy balance
equation may be expressed in a more simplified form as

where the subscript X identifies the loop. In this example there is only one loop, thus
A. = 1.

Normally, (5) would be solved by numerical means: however, in this instance,
a graphical method is not only possible but more instructive since it enables all the
solutions to be inspected. Figure 2 shows F* plotted against x, together with the
cost function for v = 1.8 m/s (which is piece-wise linear because /? = 2). The
eight singularities corresponding to the spanning trees are apparent as are the seven
hydraulically feasible solutions located between the singularities. It is clear that the
true global optimum corresponds to the minimum spanning tree (x = 50 1/s), but
there are two possible hydraulically feasible solutions (x = 39.7 1/s and x = 59
1/s) in the neighbourhood of the minimum spanning tree which need to be examined
more closely in order to determine the most favourable non-global optimum. Figure 3

https://doi.org/10.1017/S0334270000011796 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000011796


[8] Looped water distribution network 515

500

Fx and
Cost ('000$)

-20 120

FIGURE 2. Solution of (5) for the ring main.

therefore shows an expanded view of Figure 2 and confirms that the least-cost solution,
does not accord with a minimum of the cost function (indeed, the cost function does
not have a mathematical minimum), but is found for x = 59 1/s at a total pipe cost of
$68 520 when v = 1.8 m/s. The common flow velocity of 1.8 m/s originates from the
requirement of a minimum residual head of 12 m at node 5.

3.3. Third stage. The second stage of the solution results in a set of ideal, or con-
tinuous, link diameters. The final step is to replace these diameters with commercial
pipe sizes which are available only in discrete intervals. At the same time, the pipe
flows must satisfy (5) and the minimum residual head must not be less than 12 m (it
does not have to be exactly 12 m). Actual flow velocities are determined from the
commercial diameters and the adjusted pipe flows. This stage of the calculation is
most conveniently performed on a spreadsheet: details of the procedure have been
discussed elsewhere [15].

Although the ring-main example might be considered trivial, it does raise some
important matters of principle. The following particular observations are made from
this exercise which will be shown to be generally valid in die theoretical discussion
which appears next:

(a) the number of spanning trees associated with one loop is equal to the number of
links forming the loop;

(b) the number of singularities in the solution space is equal to the number of spanning
trees;

(c) me number of hydraulically feasible solutions associated with a loop is one less
than the number of links forming the loop;
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35

FIGURE 3. Expanded view of the cost function of Figure 2 in the vicinity of the true global optimum.

(d) hydraulically feasible solutions are located in regions of the solution space
bounded by singularities;

(e) the dimensionality of the solution space is equal to the number of loops in the
network;

(f) neither the true global optimum solution nor the most favourable non-global
optimum are associated with a minimum of the cost function;

(g) a mathematical minimum may not exist within the solution space for typical cost
functions representing commercial pipes and

(h) the cost function is not continuously differentiable throughout the solution space.

The last three observations cast doubts on the validity of the non-linear programming
approach to optimisation.

4. Theory

In general, a looped water distribution network has Nk loops made up of A/,- links
connected by Nn nodes such that A/} = Nn + Ni, — 1, Nj > Nn > Nk. The nodes are
junctions of links which may receive an external supply or deliver a demand. The node
supply or demand vector is Qo = [Q\, Qi, •• • , Qi, ••• , Qn}

T- The sign convention
adopted here assumes supplies to be positive and demands negative; it is also possible
for particular (?, to be zero as a special case. The algebraic sum of the g, for the
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entire network must he zero. The flows in the links (q = {qu q2,... , qi,... , qj }T)
are considered positive if they flow around an arbitrarily chosen loop in a clockwise
direction; then, proceeding loop by loop throughout the network, all unassigned flows
are similarly designated.

Kirchoff 's Laws govern the flows in a looped network. The continuity law requires
that the algebraic sum of all the flows into, and out of, a particular node shall be zero
and the energy law is satisfied if the algebraic sum of the link friction head-losses
around each loop is also zero.

4.1. The continuity equation. A looped network may be considered as a directed
linear graph for which the node incidence matrix is represented by Mn. The continuity
equations for all Nn nodes are therefore given by

Mn • q + Qo = 0, (6)

where Mn is of order {Nn x Nj•}, q is of order {Nj x 1} and Qo is of order {Nn x 1}.
Since satisfaction of continuity for the system as a whole is assumed a priori, one of

the Nn equations in (6) above is redundant and may be chosen arbitrarily for exclusion.
The necessary and sufficient conditions for satisfaction of the continuity law for the
network may therefore be expressed as

Mn_, q + Q = 0, (7)

where Mn_, is the reduced node incidence matrix (of order {(Nn — 1) x Nj}) and Q
(of order [(Nn — 1) x 1}) is the corresponding reduced supply/demand vector.

The modified node incidence matrix, A = |AiA2|, is obtained from Mn_i by
appropriate interchange of columns such that A2 is square and non-singular. If
q = {x, q2}T, (7) may be written in partitioned form as

|A,A2|.{x,q2}T + Q = 0; (8)

thus

q2 = -A2-'-[A1x + Q], (9)

where x is a set of Nk independent link flows, A, is of order {(Nn — 1) x 7v\} and A2

is of order {(Nn - 1) x (Nn - 1)}.
Each singularity in the solution space represents zero flow in a particular link

and the coordinates of intersections of singularities denote the independent flows
(x,) in spanning trees. It follows from (9) that if the singularities are identified as
q = {x,, q2}T = 0, we have the Nj equations in 7v\ unknowns given by

A • x, = {0, P}T, (10)
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where A = {I, K}T, I is an identity matrix, K = —AJ1 • A! and P = Aj1 • Q.
The overdetermined set of equations (10) are solved for x, by appropriate methods

(discarding inconsistent equations as they arise). The x, are then substituted for x in
(9) to determine the link flows in all the spanning trees. The cost of each spanning tree
is evaluated by reference to a cost function such as that given by (2) and the minimum
spanning tree identified.

4.2. The energy equation. The energy equation for the network is

M , - H / = 0 , (11)

where MA is the loop incidence matrix for the network and H/ is the link friction
head-loss vector obtained from (4). For pipes of the same material and for equal flow
velocity in all links, (11) may be simplified to

F = B G = 0, (12)

where B is the modified loop incidence matrix with columns corresponding to those
of A, G = {gi, g2, • . . , gk, • • • , gj }T and gk = Lkqf™.

Equation (12) represents a set of Nk non-linear simultaneous equations in Nk

unknown link flows x. The x may be determined using a Newton-Raphson recurrence
relation given by

X(r+1) = X(r) — J(r) • F(r), (13)

in which J (= H • A) is the Jacobian matrix of F with respect to x.
A typical element of H is bikek (i = 1 to Nk and k — 1 to Nj), where bik is an

element of B and ek = —O.SSSL^1^5. The matrix of differential coefficients A,
(8ki = dqk/dxi), has already been defined.

The Newton-Raphson iteration scheme requires starting values for x and these are
selected in the neighbourhood of spanning trees identified by the intersection (coordi-
nates x,) of the singularities in the solution space. The singularities are edges and their
intersections are vertices of a number, R(NX), of closed polygonal convex regions,
each of which contains one solution to the set of non-linear equations represented by
(12). The most favourable non-global optimum solution is found in the vicinity of the
minimum spanning tree.

Spanning trees are obtained by removing one of the links associated with each loop
of the original network with the proviso that links common to adjacent loops may be
eliminated only once. The number of spanning trees, T{Nk) (or the number of ways
Nk links may be removed to leave a branched network which serves all the nodes
of the original looped system), may be determined by consideration of the non-zero
elements of the loop incidence matrix, Mk, taken row by row. Thus, for example, if
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a network has loops "in-line" and is made up of a constant number of links rk, we
have a recurrence relation which provides an upper bound for networks having other
configurations:

T{Nk) = rkT(Nk -l)-T{Nk-2), (14)

in which 7 ( - l ) = 0, 7(0) = 1 and 7(1) = rk.
All hydraulically feasible solutions have been obtained for rectangular looped

networks (rk = 4), with Nk = 1, [T{\) = 4, R(l) = 3]; Nk = 2, [7<2> = 15, R{2) =
9]; Nk = 3, [7(3) = 56, R{3) = 27] and for the ring main (rk = 8) with Nk = 1,
[7(1) = 8,/?(1)=7]. From these results for R(Nk) and the observations at the end
of Section 3, it is possible to deduce a simple relationship for any network with loops
"in-line" which is also an upper bound for networks with other configurations:

R(Nk) = Y\(rk - 1), i = 1 to Nk, (15)

where rk is the number of links associated with a particular loop.
The determination of least-cost solutions for any network is theoretically possible

using this approach but it is likely to be time-consuming as Nk increases. With loops
"in-line" and rk = 4, for example, 7(4) = 209, R(4) = 81; 7(9) = 151 316, R(9) =
19 683 and 7(16) = 1 525 870529, R(16) = 43 046 721. The network layout has an
effect on both T{Nk) and R(Nk), determined by the number of common links between
loops. Thus, with rk = 4 and Nk = 4 (the smallest number of loops for which more
than one configuration exists), it is found that 7(4) = 192, R(4) = 79 when the loops
are arranged in checker-board fashion. This result is explained by the fact that the
four-loop "in-line" network loses one link (and hence two possible solutions) when
folded back on itself to form a "square" network.

5. Application of the theory

Application of the foregoing theory will be illustrated with reference to an example
given by Watanatada [13]. This is the analysis and least-cost design of the two-loop
triangular network shown in Figure 4. Pipe lengths, supply and demand flows and
node elevations are given in the diagram. The supply pressure head at node 4 (initially
unspecified) is to be provided by a pump. The choice of commercial pipe sizes and
pump must be such that a minimum residual head criterion of 24 m is satisfied at all
nodes. The capital cost of a pump and the recurrent costs of pumping are to be taken
into account.

The reduced node incidence matrix for the network is obtained by inspection as

1 0 - 1 - 1 0
Mn_! = 0 - 1 1 0 1

0 0 0 1 - 1
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FIGURE 4. Layout of Watanatada's example network.
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a) (0, -0.425)
b) (0, -0.142)
c) (0,0)
d) (0.142,0)
e) (0.425,0)
f) (0.623,0)
g) (0.623,0.198)
h) (0.623,0.481)

0.7

FIGURE 5. Solution space for Watanatada's example network.
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A, =
1
0
0

- 1
1
0

and
0 - 1 0

- 1 0 1
0 1 - 1

if the independent flows are Xi = qx and x2

Equation (10) now becomes

1 0
0 1
1 0
1 - 1
1 - 1

* =

0
0

0.623
0.142
0.425

(16)

since Q = {-0.142, -0.198, -0.283,0.623}Tm3/s.
The five equations in (16) are the singularities for the network and are shown on

the two-dimensional solution space in Figure 5. From (14) with Nk = 2 and rk = 3
we obtain T{2) = 8. The eight intersections a) to h) (coordinates of the spanning
trees) are evident from the diagram, but they could equally well have been obtained by
solution of (16). From (15) we have R{2) = 4 and these four closed convex regions
(see Figure 5) contain the hydraulically feasible solutions of (12).

The loop incidence matrix may also be obtained by inspection as

1 1 1 0 0
0 0 - 1 1 1

thus

B =
1 1 1 0 0
0 - 1 0 1 1

The eight link pairs (known as cotrees) which are removed from the network to form
spanning trees are obtained from MA) by combining links 1 or 2 (from the first row)
together with links 3,4 or 5 (from the second row) and link 3 (from the first row) with
links 4 or 5 (from the second row).

The pipe cost function used by Watanatada was

Cj = Lj (5.01 + 26.14 + 52.4^) , (17)

where C, is in $ if dj and L, are in m.
After evaluating the cost of each spanning tree using (17), it is found that the true

global optimum (the minimum spanning tree) for the network is intersection e) in
Figure 5 at $330 090.
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TABLE 1. All solutions from Stage 2 for Watanatada's example (C// as specified).

Region

2
4
3
1

(m3/s)
0.147
0.606
0.505
0.034

(m3/s)
-0.476
-0.01.7
-0.118
-0.589

(m3/s)
-0.099
0.014
0.323

-0.014

(m3/s)
0.103
0.450
0.040

-0.094

(m3/s)
-0.180
0.167

-0.243
-0.377

V

(m3/s)
0.90
0.99
0.86
0.72

Pipe
Cost

('000$)
517.1
560.2
619.7
702.1

Total
Cost

('000$)
945.8
988.9

1048.4
1130.8

Table 1 shows all four solutions for the network obtained by solving (12) with
the recurrence relation from (13). The iteration was terminated when the difference
between successive values of the moduli of the vector x were less than 104. The
different values of CH, for the pipes specified by Watanatada, have been incorporated
(as an exception) in the stage two calculation. The solutions are indicated for each
region of Figure 5 by plus (+) signs. The common velocities for each solution are
dictated by the requirement that the residual head at node 3 should not be less than 24
m. The most favourable solution in terms of pipe cost alone is obtained in Region 2
(see Table 1) at $517 135. The last column of Table 1 includes the cost of pumps and
pumping.

The final optimal design with commercial sizes gives total pipe costs as $510 133
with flow velocities in the range 0.77 to 1.04 m/s. The minimum residual head
requirement of 24 m is satisfied at node 3 if the total pressure head at the supply node
(node 4) is 171.1 m. The result of Watanatada's calculations for a least pipe diameter
of 0.305 m (12 in) is shown as an open circle close to the minimum spanning tree
at e) in Figure 5. Although the total pipe cost is less than that found by the present
procedure, Watanatada's design cannot be regarded as realistic since the velocity in
link 5 is well below the proscribed minimum.

Watanatada used the following functions to express the cost of a pump and associ-
ated equipment, and the recurrent costs of pumping (in $):

Cpump = 2420Ql5\H, - Z4)087 (18)

and

Cpuraping = 20300Q4(tf4 - u), (19)

where 04 is the supply at node 4 in m3/s, HA (m) is the total head at node 4 and u (m)
is the elevation of node 4.

It is now possible to look for a true minimum in the total cost of the system (cost
of pipes, pump and pumping). Figure 6 shows how these costs vary with i/4. The
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FIGURE 6. Variation of costs with the total head at the supply node for Watanatada's example network.

combined design costs are a minimum at $939918 for //4 = 171.1 m. Watanatada
found a minimum of $849405 for H4 = 167.8 m with vs = 0.08 m/s when the
diameter was constrained to be at least 0.305 m.

6. Treatment of large networks

The optimisation procedure is not directly applicable to networks with 7v\ greater
than about 5 or 6. This is partly because the number of spanning trees which have to be
investigated, in order to identify the minimum, quickly becomes unmanageable as Nk

increases; and partly because inversion of the sparse Jacobian found for larger networks
consumes excessive amounts of computing resources, even if special techniques are
employed. The author has therefore developed a heuristic approach for dealing with
large systems in which the network is dismantled into small components which may
be conveniently handled. After favourable optimum flows for the separate systems
have been found, the components are reassembled to provide a least-cost distribution
of flows for the original network.

The deconstruction process [16] has been successfully applied to the network
described by Gupta et al. [5] of the National Environmental Engineering Research
Institute (NEERI) in India. This medium sized system is the subject of both expansion
and upgrading. The original network was served by a single node with an elevated
service reservoir and consisted of 10 loops. The upgraded system has 13 loops, three
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additional nodes and six additional links with a single node supplying 96.41/s at peak
loading (load factor of 2.5). A second design option is to share the supply between
two nodes.

The NEERI network has been divided into three component systems [16]: A (with
two rectangular loops and one triangular loop), B (with two rectangular loops) and C
(with effectively one rectangular and two triangular loops for the first design option).
Link flows in all the spanning trees were first obtained for each component, (A, B
and C have respectively 41, 15 and 30 spanning trees). These flows were used as
starting values for calculating all hydraulically feasible solutions for each sub-system
(18 for system A, 9 for B and 12 for C) which were then costed and favourable
optima identified. On reassembly, these results enabled stock sizes for new pipes to
be selected as necessary (cast iron pipe was used for pipe diameters of 80 mm and
above and galvanised iron for diameters below 80 mm; the minimum permissible pipe
size being 50 mm). After once again satisfying continuity and energy requirements,
new parallel pipes were found to be required for three of the original links in order
to attain reasonable values for flow velocities. The total cost of new pipework was
US$24 628.65 and an additional 22.3 kW booster pump was necessary to cater for
peak demand. The non-linear programming approach used by Gupta et al. predicted
22 new parallel pipes costing US$66 228.47. The design presented here, although
requiring a new booster pump as well as new pipework, costs a total of US$37 456.95
and represents a saving of about 43 percent compared with the NEERI scheme.

For the second design option (supply shared between two nodes), three new parallel
pipes were also required. The total cost of new pipework was US$12173.89 and two
additional booster pumps (7.8 kW and 31 kW) were needed to provide for peak
demand. Gupta et al. recommended one new pump, 12 new parallel pipes and an
elevated service reservoir costing a total of US$72 020.26. The overall cost of the
design obtained by the present method was US$34 422.14; a saving of about 52 percent
compared with the NEERI proposal.

7. Summary and conclusions

A procedure for determining least-cost solutions for looped water distribution
systems has been described. The method does not involve non-linear programming,
but depends on the determination of flows in a minimum spanning tree (the true
global optimum) to furnish starting values for the numerical solution of a set of
non-linear loop head-loss equations. Although there are a number of hydraulically
feasible solutions for a looped network, it is not necessary to find them all since
the flow pattern corresponding to the most favourable optimum has been shown to
lie in the vicinity of the vertex of closed polygonal convex regions in the solution
space whose coordinates are given by independent flows in the minimum spanning
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tree. The boundaries of these regions are singularities identified with zero flows
in particular links. The existence of singularities calls into question the validity
of the non-linear programming approach which relies on the solution space being
continuously differentiable. A further disadvantage of this method is that a minimum
of the cost function is sought: a finding of the present study is that a mathematical
minimum for typical cost functions associated with commercial pipes may not exist.

A rigorous procedure for finding all spanning trees and all hydraulically feasible
solutions for a looped network has been proposed. Previous researchers have offered
simplifed algorithms to find approximate minimum spanning trees but with no guar-
antee that this would lead to a least-cost design. Upper bounds have been determined
for the number of spanning trees, T{Nk), and for the number of hydraulically feasible
solutions, R(Nk), in a looped network. The recurrence relation for T(Ni) assumes
loops to be "in-line" with a constant number of links in each loop. The formula for
R{Nk) also assumes loops to be "in-line" but the number of links in each loop may
vary. Further work is required to study the effect of network configuration on T{Nk)
and RiNx).

When a looped network is optimised, there is a natural tendency for the system
to degenerate into the true global optimum. To prevent this happening, artificial
constraints such as limitations on pipe diameters, pipe flows or node pressures have
been applied in the past. In the present study, a constant flow velocity in all links
has been assumed initially; this has the effect of simplifying the analysis and leads
to a more realistic and balanced design. It has been demonstrated that the minimum
diameter constraint is unsatisfactory since it may lead to unacceptable values of flow
velocity in particular pipes.

The number of spanning trees in a network which have to be investigated in order
to find the true global optimum may prohibit direct use of the method for typical
complex systems found in practice. Large networks are therefore dismantled, or
deconstructed, into components which may be analysed by the present approach.
Comparison with existing designs has shown that this heuristic approach is viable and
may offer substantial savings in overall project cost.
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