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On Deformations of Nodal Hypersurfaces

Zhenjian Wang

Abstract. We extend the inûnitesimal Torelli theorem for smooth hypersurfaces to nodal hypersur-
faces.

1 Introduction

Deformations of smooth hypersurfaces provide examples of great interest and impor-
tance in the theory of variation ofHodge structures, especially because of the generic
Torelli theorem; see [13, Chapter 6]. In a recent thesis,Y.Zhao [15] considers deforma-
tions of nodal surfaces in the 3-dimensional complex projective space P3 and shows
that the inûnitesimal Torelli theorem still holds.

Let S = C[x0 , . . . , xn] =⊕
∞
d=0 Sd be the graded ring of polynomials and let f ∈ Sd

be a homogeneous polynomial of degree d. Denote by X f ∶ f = 0 the hypersurface in
Pn deûned by f . Moreover, let

J( f ) = (
∂ f
∂x0

, . . . , ∂ f
∂xn

)

be the graded ideal generated by the ûrst derivatives of f , also called the Jacobian ideal
of f . We consider themap

φ∶ (S/J( f )) d Ð→ Hom ((S/J( f ))d−n−1 , (S/J( f ))2d−n−1) ,(1.1)

[P]z→ ([Q]z→ [PQ]) .

As a matter of fact, Y. Zhao [15] proves the inûnitesimal Torelli theorem by showing
that the map φ is injective when n = 3 and X f is a nodal surface. _is result can be
extended to higher dimensional cases.

_eorem 1.1 Assume n ≥ 3 is an integer and d ≥ n + 1. Let f ∈ S be a homogeneous
polynomial of degree d such that X f ∶ f = 0 is a nodal hypersurface in Pn . _en the
map φ is injective.

As was proved in [15, Chapter 3, Example 3.1.3], (S/J( f ))d parameterizes the
equivalence classes of deformations of the pair (Pn , X f ). Alternatively, let GL =

GL(n + 1,C) be the general linear group of rank n + 1. _en GL acts on Sd by coor-
dinate transformations and for any f ∈ Sd , the tangent space at f of the orbit GL ⋅ f
is given by J( f )d ; see [1, Chapter 4, Formula (4.16)]. It follows that (S/J( f ))d can
be seen as the set of directions in Sd that are transversal to the orbit GL ⋅ f at f . In
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addition, any smooth analytic subset U ⊆ Sd can be seen as a family of hypersurfaces
in Pn . If f ∈ U and TfU ∩ J( f )d = {0}, then we call U an eòective deformation of f .
From this point of view, (S/J( f ))d is themaximal set of eòective deformations of f .

Now let X f ∶ f = 0 be a nodal hypersurface in Pn and let n( f ) be the number of
nodes in X f . _en we have a moduli space, denoted byB f ⊆ Sd , parameterizing all
nodal hypersurfaces in Pn having exactly n( f ) nodes. By the discussion following
[2, Chapter 1, Corollary 3.8], we have that B f is a constructible subvariety of Sd and
the topological type of (Pn , Xg) is locally trivial for g ∈B f . Moreover, for any g lying
in the connected component ofB f containing f , (Pn , Xg) is topologically equivalent
to (Pn , X f ).

Now assume thatU ⊆B f is a connected smooth subvariety and f ∈ U. For any g ∈
U, Xg is homeomorphic to X f by the local topological triviality of the pair (Pn , Xg).
So there is a natural identiûcation Hn−1

0 (Xg) ≅ Hn−1
0 (X f ), where Hn−1

0 (Xg) is the
primitive cohomologyof Xg deûned byHn−1

0 (Xg) = Coker(Hn−1(Pn)→ Hn−1(Xg)).
In particular, dimHn−1

0 (Xg) is constant for g ∈ U.
Moreover, Hn−1

0 (Xg) has a natural mixed Hodge structure, since Xg is a singular
algebraic variety, see [11, Part II, Chapter 5]. It turns out that dim Fn−1Hn−1

0 (Xg) and
dim Fn−2Hn−1

0 (Xg) are also constant for g ∈ U (in most cases); see Corollary 3.4.
_us, we have the well-deûnedmap

(1.2) P∶U ∋ g z→ (Fn−1Hn−1
0 (Xg), Fn−2Hn−1

0 (Xg)) ∈ F,

where F is the corresponding �ag manifold of subspaces of Hn−1
0 (X f ).

By relating the primitive cohomology with the graded pieces of the algebra S/J( f )
and applying _eorem 1.1, we prove the following theorem, as a generalization of [15,
Chapter 3].

_eorem 1.2 Assume n ≥ 3 is odd or n ≥ 6 is even. Let X f ∶ f = 0 be a nodal
hypersurface in Pn of degree d ≥ n + 1 and let U ⊆ B f be a smooth subvariety of B f
that gives an eòective deformation of X f . _en themap P above is well deûned, and the
diòerential dP is injective at f .

_us, loosely speaking, the inûnitesimal Torelli theorem also holds for nodal hy-
persurfaces.

Note that for smooth hypersurfaces, the generic Torelli theorem holds; see [13,
Part II, Chapter 6, Section 6.3.2], and it remains an interesting question whether this
is also the case for nodal hypersurfaces. Recall that in the proof of the generic Torelli
theorem for smooth hypersurfaces, the essential part is to show that a generic homo-
geneous polynomial can be reconstructed from its Jacobian ideal,which also holds for
nodal hypersurfaces by [14,_eorem 1.1], because a generic f of degree d > 3with the
associated hypersurface X f having a ûxed number of nodes is not of Sabastiani–_om
type,which is the only exception for f not to be reconstructed from J( f ); another key
ingredient in the smooth case is the symmetriser lemma,which is still open for nodal
hypersurfaces.
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2 Syzygies of the Jacobian Ideal

Let K●( f ) be theKoszul complex of ∂ f
∂x0

, . . . , ∂ f
∂xn

with the natural grading deg(x j) = 1
and deg(dx j) = 1:

K●
( f )∶ 0Ð→ Ω0

Ð→ Ω1
Ð→ ⋅ ⋅ ⋅Ð→ Ωn+1

Ð→ 0,
where Ω1 = ∑

n
i=0 Sdx i and Ωp = ⋀

p Ω1, and the diòerentials are given by the wedge
product with d f = ∑n

i=0
∂ f
∂x i
dx i .

_e homogeneous component of the cohomology group Hn(K●( f ))n+r describes
the syzygies

n

∑
j=0
a j

∂ f
∂x j

= 0

with a j ∈ Sr modulo the trivial syzygies generated by
∂ f
∂x i

∂ f
∂x j

+ (−
∂ f
∂x i

)(
∂ f
∂x j

) = 0, i < j.

We can restate themain result in [5] or in [6,_eorem 9] in the following form.

Lemma 2.1 Let X f ∶ f = 0 be a nodal hypersurface in Pn of degree d > 2 and n ≥ 3,
then Hn(K●( f ))m = 0 for any

m ≤
nd − 1

2
.

Let fs ∈ Sd be such that X fs ∶ fs = 0 is a smooth hypersurface. It is well known that
dim(S/J( fs))k depends only on n, d, and k; see [1, Chapter 7, Proposition 7.22]. In
the introduction part of [4], the following two notions are given:

ct(X f ) = max{q ∶ dim(S/J( f ))k = dim(S/J( fs))k for all k ≤ q} ,

mdr(X f ) = min{q ∶ Hn
(K●

( f ))q+n /= 0} .
_ey have the following relation

ct(X f ) = mdr(X f ) + d − 2;
see loc. cit.. We have the following lemma.

Lemma 2.2 Let X f ∶ f = 0 be a nodal hypersurface in Pn of degree d ≥ n + 1 and
n ≥ 3, then

dim (S/J( f )) k = dim (S/J( fs)) k , k = d − n − 1, 2d − n − 1.

In particular, dim(S/J( f ))k does not depend on the concrete equation of the polynomial
f for k = d − n − 1, 2d − n − 1.

Proof We only need to check that 2d − n − 1 ≤ ct(X f ). Indeed, by Lemma 2.1, we
immediately have

ct(X f ) = mdr(X f ) + d − 2 ≥ (
nd − 1

2
− n) + d − 2 > 2d − n − 1,

where the last inequality follows from n ≥ 3 and d ≥ n + 1.
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2.1 Proof of Theorem 1.1

To prove_eorem 1.1, we ûrst need the following lemma.

Lemma 2.3 Assume X f ∶ f = 0 is a nodal hypersurface in Pn of degree d ≥ n + 1 and
n ≥ 3. Let G ∈ St such that t < 2d − n − 1 and Gx j ∈ J( f ) for all j = 0, . . . , n; then
G ∈ J( f ).

Proof Assume

Gx i =
n

∑
k=0

H ik
∂ f
∂xk

, i = 0, . . . , n,

with H ik ∈ St+2−d , i , k = 0, . . . , n, then

0 = x i(x jG) − x j(x iG) =
n

∑
k=0

(x iH jk − x jH ik)
∂ f
∂xk

.

Note that

t + 3 − d + n ≤ (2d − n − 2) + 3 + n − d = d + 1 ≤ nd − 1
2

,

so by Lemma 2.1, we get x iH jk − x jH ik ∈ J( f ) for all i , j, k = 0, . . . , n while all these
polynomials have degree t + 3 − d < (2d − n − 1) + 3 − d = d − n + 2 ≤ d − 1, so they
must all vanish identically; in particular,

x iH jk − x jH ik = 0, i /= j,

thus, x i ∣H ik . It follows that G ∈ J( f ) as desired.

Proof of_eorem 1.1 We ûrst remark that_eorem 1.1 holdswhen d = n+1. In fact,
in this case, J( f )d−n−1 = J( f )0 = 0 and (S/J( f ))d−n−1 = S0 = C consists of constants.
Since 1 ∈ (S/J( f ))d−n−1 and φ([P])(1) = [P], one sees easily that φ is injective.

_us, in the sequel of the proof, we will focus on the case d > n + 1.
Aiming at a contradiction, we assume that there exists P ∈ Sd ∖ J( f )d such that

φ([P]) = 0.
_en there exists aQ ∈ S l , 0 ≤ l < d−n−1 such that PQ ∉ J( f ) and l is chosen to be

maximal. By themaximality of l ,we have (PQ)x j ∈ J( f ) for all j = 0, . . . , n. Note that
PQ ∈ S l+d and l + d < 2d − n− 1, hence by Lemma 2.3, PQ ∈ J( f ), contradiction.

3 Hodge Theory for Nodal Hypersurfaces

Let X f ∶ f = 0 be a nodal hypersurface in Pn of degree d ≥ n + 1 and n ≥ 3. _e coho-
mology groups under consideration below all haveC as coeõcients unless otherwise
explicitly pointed out.
By the Lefschetz hyperplane theorem for singular varieties (see [9]), we have

H i
(X f ) = H i

(Pn
), i < n − 1,

and
Hn−1

(Pn
)Ð→ Hn−1

(X f )
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is injective. Let

Hn−1
0 (X f ) = Coker(Hn−1(Pn

)→ Hn−1
(X f )) ,

be the primitive cohomology of X f . _enHn−1
0 (X f ) admits amixedHodge structure.

Moreover, let U f = Pn ∖ X f be the complement of X = X f ; then Hn(U f ) also admits
amixedHodge structure and Hn(U f ) and Hn−1

0 (X f ) are closely related.

3.1 Relation Between H∗(U f ) and H∗(X f )

Let X∗
f be the smooth locus of X f and let

Hn−1
0 (X∗

f ) = Coker (Hn−1
(Pn

)Ð→ Hn−1
(X∗

f )) .

_en Hn−1
0 (X∗

f ) has a natural mixed Hodge structure. Moreover, as is shown in [2,
Chapter 6, Corollary 3.11], there is a natural residue isomorphism

(3.1) R f ∶Hn
(U f )

∼
Ð→ Hn−1

0 (X∗
f )

which is also an isomorphism ofmixedHodge structures of type (−1,−1).
Let i∶X∗

f → X f be the inclusion. We have the naturally induced homomorphisms
in cohomology

i∗∶Hn−1
(X f )Ð→ Hn−1

(X∗
f ),

i∗0 ∶Hn−1
0 (X f )Ð→ Hn−1

0 (X∗
f ).

Moreover, i∗ , i∗0 are also morphisms ofmixed Hodge structures. Our discussion will
be divided into two cases.

3.1.1 Case 1: n is odd

When n is odd, the variety X f is a Q-homology manifold, i.e., for any point x ∈ X f ,
H i(X f , X f ∖ {x},Q) = Q if i = 2(n − 1) and 0 otherwise. Moreover, we have the
following claim.

Claim 3.1 i∗ and i∗0 are both isomorphisms.

Proof Indeed,wehave a long exact sequence ofmixedHodge structureswith respect
to the pair (X f , X∗

f ):

(3.2) Ð→ Hn−1
(X f , X∗

f )Ð→ Hn−1
(X f )

i∗
Ð→ Hn−1

(X∗
f )Ð→ Hn

(X f , X∗
f )

Let x i , i = 1, . . . , r be all the nodes in X f ; then X∗
f = X f ∖ {x1 , . . . , xr}, and further-

more, by the excision theorem,

Hn−1
(X f , X∗

f ) =
r
⊕
i=1

Hn−1(X f , X f ∖ {x i}) = 0,

since X f is a Q-homology manifold and n − 1 /= 0, 2(n − 1) for n ≥ 3. Similarly,
Hn(X f , X∗

f ) = 0. _us, it follows from (3.2) that i∗ and i∗0 are both isomorphisms.
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Note that theweights ofHn−1(X f ) are≤ n−1, since X f is compactwhile theweights
of Hn−1(X∗

f ) are ≥ n − 1 since X∗
f is smooth (see [11, p. 131, Table 5.1]), hence both

Hn−1(X∗
f ) and Hn−1(X f ) have pure Hodge structures of weight n − 1 and it follows

from the isomorphism (3.1) that Hn(U f ) has a pureHodge structure of weight n + 1.
Let

R f = (i∗0 )−1
○ R f ∶Hn

(U f )Ð→ Hn−1
0 (X f ).

_en R f is an isomorphismofmixedHodge structures of type (−1,−1). It follows that
we have isomorphisms

R f ∶ F pHn
(U f )

∼
Ð→ F p−1Hn−1

0 (X f )

for all p. In particular, there are isomorphisms

R f ∶Grp+1
F Hn

(U f )
∼
Ð→ Grp

FH
n−1
0 (X f ), p = n − 1, n − 2.

3.1.2 Case 2: n is even

When n is even, X f is no longer a Q-homology manifold. However, there is still an
explicit description of the relations between Hn(U f ) andHn−1

0 (X f ). Note that in this
case Hn−1(Pn) = 0, and thus

Hn−1
0 (X f ) = Hn−1

(X f ), Hn−1
0 (X∗

f ) = Hn−1
(X∗

f ), and i∗ = i∗0 .

Moreover, there exists an exact sequence ofmixedHodge structures
(3.3)

⋅ ⋅ ⋅Ð→ Hn−1
(X f , X∗

f )Ð→ Hn−1
(X f )

i∗
Ð→ Hn−1

(X∗
f )Ð→ Hn

(X f , X∗
f )Ð→ ⋅ ⋅ ⋅ .

To make use of this exact sequence, we ûrst give the following claim.

Claim 3.2 For k = n− 1, n, Hk(X f , X∗
f ) has a pureHodge structure of type (ρk , ρk)

for some ρk ∈ N.

Proof Let a1 , . . . , am be the nodes in X f and let B i ∋ a i , i = 1, . . . ,m be a small ball
in Pn around a i such that B i ∩ B j = ∅ for i /= j.
By the excision theorem and conic structure theorem (see [2, Chapter 1, _eo-

rem 5.1],

Hk
(X f , X∗

f ) =
m
⊕
i=1

Hk
(B i ∩ X f , B i ∩ X f ∖ {a i}) ≃

m
⊕
i=1

Hk−1
(K i), k = n − 1, n,

where K i is the link of X f around a i (i = 1, . . . ,m).
For each i, K i has the homotopy type of the unit sphere bundle of tangent bundle

of Sn−1. Indeed, locally around a i , X f is deûned as z2
1 +⋅ ⋅ ⋅+z2

n = 0,where (z1 , . . . , zn)
is the local coordinate system of Pn centered at a i . _en K i can be described as

K i = {(z1 , z2 , . . . , zn) ∈ Cn
∶

n

∑
j=1

z2
j = 0, and

n

∑
j=1

∣z j ∣
2
= є2} ,
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where є > 0 is small. Let

z j =
є

√
2
(v j +

√
−1w j), j = 1, . . . , n,

v = (v1 , . . . , vn), w = (w1 , . . . ,wn);

then
K i = {(v ,w) ∈ Rn

×Rn
∶ ∣v∣2 = ∣w∣

2
= 1 and ⟨v ,w⟩ = 0} ,

which is the unit sphere bundle of tangent bundle of Sn−1.
It follows that

Hk−1
(K i) = C, k = n − 1, n.

Note also that Hk−1(K i) = Hk(B i ∩X f , B i ∩X f ∖{a i}) = Hk(X f , X f ∖{a i}) admits
a natural mixedHodge structure. In particular,

1 = dimHk−1
(K i) = ∑

w∈N
dimGrWw Hk−1

(K i) = ∑
w∈N

∑
p+q=w

dim(GrWw Hk−1
(K i))

p,q ,

where GrWw Hk−1(K i) is a pureHodge structure of weight w and

GrWw Hk−1
(K i) = ⊕

p+q=w
(GrWw Hk−1

(K i))
p,q

is theHodge decomposition. By theHodge symmetry, we have

(GrWw Hk−1
(K i))

p,q
= (GrWw Hk−1(K i))q ,p .

It follows that there exists ρk , i ∈ N such that

GrWw Hk−1
(K i) = 0, if w /= 2ρk , i ,

(GrW2ρk , i
Hk−1

(K i))
p,q

= 0, if p /= q,

dim (GrW2ρk , i
Hk−1

(K i))
ρk , i ,ρk , i

= 1.

In particular, Hk−1(K i) is pure of type (ρk , i , ρk , i).
Note that themixedHodge structure onHk−1(K i) depends only on the local struc-

ture of X f around a i (see [8,_eorem 3.4]). Since all the a i ’s are nodes, Hk−1(K i) is
naturally isomorphic to Hk−1(K j) as mixedHodge structures for any i , j, hence there
exists ρk ∈ N such that

ρk ,1 = ρk ,2 = ⋅ ⋅ ⋅ = ρk ,m = ρk ,
and thus Hk(X f , X∗

f ) is pure of type (ρk , ρk) for k = n − 1, n.

By [2, Proposition (C28), Appendix C] (see also [8, Proposition 3.8]), it follows
that 2ρn−1 ≤ n − 2. _us,

Grp
FH

n−1
(X f , X∗

f ) = 0, for p = n − 2, n − 1.

Moreover, by the discussions above [2, Chapter 6, Example 3.18],Hn−1(K i) hasweight
n, namely, 2ρn = n, and thus, for n ≥ 6,

Grp
FH

n
(X f , X∗

f ) = 0, for p = n − 2, n − 1.

_erefore, it follows from (3.3) that we have an isomorphism

i∗0 ∶Grn−1
F Hn−1

0 (X f ) = Fn−1Hn−1
0 (X f )

∼
Ð→ Grn−1

F Hn−1
0 (X∗

f ) = F
n−1Hn−1

0 (X∗
f )
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for n ≥ 4. Furthermore, we have isomorphisms

i∗0 ∶Grn−2
F Hn−1

0 (X f )
∼
Ð→ Grn−2

F Hn−1
0 (X∗

f ),

i∗0 ∶ Fn−2Hn−1
0 (X f )

∼
Ð→ Fn−2Hn−1

0 (X∗
f )

for n ≥ 6; but for n = 4, we only have injections

i∗0 ∶Grn−2
F Hn−1

0 (X f ) ↪Ð→ Grn−2
F Hn−1

0 (X∗
f ),

i∗0 ∶ Fn−2Hn−1
0 (X f ) ↪Ð→ Fn−2Hn−1

0 (X∗
f ).

Using the residue isomorphism (3.1), we denote

Fn−1
(U f , X f ) = R−1

f ( i∗0 (Fn−2Hn−1
0 (X f ))) ⊆ Fn−1Hn

(U f )

for n ≥ 4 (and n is even). _en clearly, Fn−1(U f , X f ) = Fn−1Hn(U f ) for n ≥ 6.
We still denote by R f its restriction to Fn−1(U f , X f ). _en

i∗0 ∶ Fn−2Hn−1
0 (X f )Ð→ R f (Fn−1

(U f , X f ))

is an isomorphism, and we have an isomorphism

R f = (i∗0 )−1
○ R f ∶ Fn−1

(U f , X f )
∼
Ð→ Fn−2Hn−1

0 (X f ).

3.1.3 Conclusion

In conclusion, no matter whether n is even or odd, we always have isomorphisms

R f ∶GrnFHn
(U f )

∼
Ð→ Grn−1

F Hn−1
0 (X f ),(3.4)

R f ∶ Fn−1
(U f , X f )/FnHn

(U f )
∼
Ð→ Grn−2

F Hn−1
0 (X f )(3.5)

where Fn−1(U f , X f ) = R−1
f (i∗0 (Fn−2Hn−1

0 (X f ))) is a subspace of Fn−1Hn(U f ) con-
taining FnHn(U f ), and R f = (i∗0 )−1 ○ R f .

3.2 Cohomology of X f

Denote by

Ω =
n

∑
i=0

(−1)ix idx0 ∧ ⋅ ⋅ ⋅ ∧ dx i−1 ∧ d̂x i ∧ dx i+1 ∧ ⋅ ⋅ ⋅ ∧ dxn ,

where (̂ ⋅ ) means that the term is omitted. As is shown in [2, Chapter 6], any coho-
mology class in F pHn(U f ) can be represented by a form

ω(h) = hΩ
f n−p+1

with h ∈ S(n−p+1)d−n−1. Hence, by (3.4), we see that any element in Grn−1
F Hn−1

0 (X f )
can be represented by

R f ([
h1Ω
f

])
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with h1 ∈ Sd−n−1, and similarly, by (3.5), any element in Grn−2
F Hn−1

0 (X f ) can be rep-
resented by

R f ([
h2Ω
f 2

])

with h2 ∈ S2d−n−1.
Such results agree with [7, _eorem 2.2], where the following formulae are given

for n > 3:
GrnFHn

(U f ) = (S/J( f ))d−n−1 , Grn−1
F Hn

(U f ) = (S/J( f ))2d−n−1 ,
and for n = 3,

GrnFHn
(U f ) = (S/J( f ))d−n−1 , Grn−1

F Hn
(U f ) = (I( f )/J( f ))2d−n−1 ,

where I( f ) is the saturation of J( f ), which is also equal to the radical of J( f ) for a
nodal hypersurface (see [4, Remark 2.2]).

Putting together all the discussions above in this section, we obtain the following
proposition.

Proposition 3.3 Let X f ∶ f = 0 be a nodal hypersurface in Pn of degree d ≥ n + 1.
(i) When n ≥ 3, there is an isomorphism

Λ f ∶ (S/J( f ))d−n−1 Ð→ Grn−1
F Hn−1

0 (X f ), Λ f (h1) = R f ([
h1Ω
f

]) .

(ii) When n > 4, there is an isomorphism

Λ f ∶ (S/J( f ))2d−n−1 Ð→ Grn−2
F Hn−1

0 (X f ), Λ f (h2) = R f ([
h2Ω
f 2

]) .

(iii) When n = 3, there is an isomorphism

Λ f ∶ (I( f )/J( f ))2d−n−1 Ð→ Grn−2
F Hn−1

0 (X f ), Λ f (h2) = R f ([
h2Ω
f 2

]) .

(iv) When n = 4, there is an isomorphism

Λ f ∶ S′/J( f )2d−n−1 Ð→ Grn−2
F Hn−1

0 (X f ), Λ f (h2) = R f ([
h2Ω
f 2

]) ,

where S′ ⊆ S2d−n−1 is a vector subspace containing J( f )2d−n−1 obtained via
S′/J( f )2d−n−1 = ω−1(Fn−1

(U f , X f )/FnHn
(U f )) ,

where ω is the isomorphism

ω∶ (S/J( f ))2d−n−1 Ð→ Grn−1
F Hn

(U f ), ω(h2) = [
h2Ω
f 2

]

established in [7,_eorem 2.2], and Fn−1(U f , X f ) is obtained in (3.5).
In all the formulae above, R f denotes the residuemap.

As a corollary, we have the following.

Corollary 3.4 Let X f ∶ f = 0 be a nodal hypersurface in Pn of degree d ≥ n + 1.
(i) If n ≥ 3, the dimension dim Fn−1Hn−1

0 (X f ) depends only on n and d.
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(ii) If n ≥ 3 is odd or n ≥ 6 is even, the dimension dim Fn−2Hn−1
0 (X f ) depends only

on n and d and possibly the number of nodes in X f .

Proof Note that
dim Fn−1Hn−1

0 (X f ) = dimGrn−1
F Hn−1

0 (X f ),
dim Fn−2Hn−1

0 (X f ) = dimGrn−1
F Hn−1

0 (X f ) + dimGrn−2
F Hn−1

0 (X f ).
If n > 4, the results follow from Proposition 3.3 and Lemma 2.2, and the dimen-

sions depend only on n and d. When n = 3, X f is a Q-homology manifold and the
Hodge numbers of X f depend only on n, d, and the number of nodes in X f ; see also
[3].

4 Variations of Mixed Hodge Structures

Let X f ∶ f = 0 be a nodal hypersurface in Pn of degree d ≥ n + 1. When n is odd,
assume that n ≥ 3, while when n is even, assume that n ≥ 6.

4.1 Topological Triviality

Recall that B f ⊆ Sd parameterizes all nodal hypersurfaces with the same number of
nodes as X f . Let U ⊆B f be a contractible smooth subvariety containing f such that
it gives an eòective deformation for X f . Set

XU = {(x , g) ∈ Pn
×U ∶ x ∈ Xg},

which can be seen as the union of all nodal hypersurfaces parameterized by U.
_en by the First _om Isotopy Lemma (see [2, Chapter 1, Section 3]), there is a

homeomorphism Φ satisfying the commutative diagram

(Pn ×U,XU)
Φ //

p1
%%

(Pn , X f ) ×U

p2
yy

U,
where p1 , p2 are natural projections. In fact, Φ can be obtained by integrating some
well-controlled stratiûed vector ûeld; for a proof, see [10]. From now on, we ûx such
a homeomorphism.

In particular, for any g ∈ U, there is a canonical homeomorphism Φg ∶Pn → Pn ,
which induces homeomorphisms Φg ,X ∶X f → Xg and Φg ,U ∶U f → Ug with Φ f = Id.

Moreover, we have an induced isomorphism of groups

Φ∗
g ,X ∶Hn−1

0 (Xg)
∼
Ð→ Hn−1

0 (X f ).

Hence, dimHn−1
0 (Xg) is constant for g ∈ U.

In addition, by Corollary 3.4, under our assumption on n, the dimensions
dim Fn−1Hn−1

0 (Xg) and dim Fn−2Hn−1
0 (Xg)

are constant with respect to g ∈ U. Via the identiûcation

Φ∗
g ,X ∶Hn−1

0 (Xg)
∼
Ð→ Hn−1

0 (X f ),
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it follows that (Fn−1Hn−1
0 (Xg), Fn−2Hn−1

0 (Xg)) can be identiûed with

(Φ∗
g ,XFn−1Hn−1

0 (Xg),Φ∗
g ,XFn−2Hn−1

0 (Xg)) ,

which are two subspaces of Hn−1
0 (X f ) of ûxed dimension. _erefore, we have the

well-deûnedmap as in (1.2):

P∶U ∋ g z→ (Φ∗
g ,XFn−1Hn−1

0 (Xg),Φ∗
g ,XFn−2Hn−1

0 (Xg)) ∈ F,

where F is the following �ag manifold

F = {(E1 , E2) ∶ E1 ⊆ E2 are vector subspaces of Hn−1
0 (X f ) and

dim E1 = dim Fn−1Hn−1
0 (X f ) and dim E2 = dim Fn−2Hn−1

0 (X f )} .

When n is odd, all the Hodge numbers of Xg are constant for g ∈ U, and P is just
two components of the periodmap in the theory of variation ofHodge structures; see
[12, Part III, Chapter 10].

4.2 Infinitesimal Deformation

Now we consider the diòerential of P. Note that a component of dP f is themap

dP f ∶TfUÐ→ Hom (Fn−1Hn−1
0 (X f ),Hn−1

0 (X f )/Fn−1Hn−1
0 (X f )) ;

for the properties of tangent spaces of �ag manifolds,we refer to [12, Part III, Chapter
10], and for analogous treatments for smooth hypersurfaces, see [13, Part II, Chapter
6]. Recall that Proposition 3.3 implies that any element in Fn−1Hn−1

0 (X f ) is of the
form

ω(h1) = R f ([
h1Ω
f

]) .

_e following lemma holds.

Lemma 4.1 For h ∈ TfU ⊆ Sd , we have

dP f (h)(ω(h1)) = dP f (h)(R f ([
h1Ω
f

])) = R f ([−
hh1Ω
f 2

]) mod Fn−1Hn−1
0 (X f ).

Its proof is a little lengthy, so we postpone it to the end of this section; instead, we
ûrst derive_eorem 1.2 from Lemma 4.1.

4.3 Proof of Theorem 1.2

From Lemma 4.1 and Proposition 3.3, the image of dP f is contained in

Hom (Fn−1Hn−1
0 (X f ), Fn−2Hn−1

0 (X f )/Fn−1Hn−1
0 (X f )) =

Hom (Grn−1
F Hn−1

0 (X f ),Grn−2
F Hn−1

0 (X f )) .
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Moreover, we get the following commutative diagram:

(4.1) TfU
dP f //

i1
��

Hom(Grn−1
F Hn−1

0 (X f ),Grn−2
F Hn−1

0 (X f ))

i2
��

(S/J( f ))d
φ // Hom((S/J( f ))d−n−1 , (S/J( f ))2d−n−1),

where φ is given in (1.1). i1 is the composite TfU ⊆ Sd → Sd/J( f )d ,which is injective,
since U is an eòective deformation. i2 is deûned as follows: for

η ∈ Hom (Grn−1
F Hn−1

0 (X f ),Grn−2
F Hn−1

0 (X f ))

and h1 ∈ (S/J( f ))d−n−1,

i2(η)(h1) = −Λ−1
f (η(Λ f (h1))) ,

where Λ f is the isomorphism given in Proposition 3.3.
By _eorem 1.1, φ is injective, hence φ ○ i1 is injective. _us, it follows from (4.1)

that dP f is injective, hence_eorem 1.2 follows.

Remark 4.2 _e result is probably also true for n = 4. We exclude this case, be-
cause we do not know whether the dimension dim Fn−2Hn−1

0 (Xg) or equivalently
dimGrn−2

F Hn−1
0 (Xg) is constant for g ∈ U in this case.

4.4 Proof of Lemma 4.1

_e proof is almost the same as that in [13, Part II, Chapter 6] where variations of
smooth hypersurfaces are considered. However, to avoid any possible confusion, we
give the details here.
From the topological triviality of the family Xg , g ∈ U, it follows that there exists

a small contractible neighbourhood N ∋ f in U, such that for any g ∈ N, Xg is a
deformation retract of

XN ∶= ⋃
g∈N

Xg ⊆ Pn .

Set UN = Pn ∖ XN . _en UN is a deformation retract of Ug for every g ∈ N. For
g ∈ N, let τg ∶UN ↪ Ug be the natural inclusion; then the induced homomorphism in
cohomology

τ∗g ∶Hn
(Ug)Ð→ Hn

(UN)

is an isomorphism.
_e diòerential dP f can be computed as follows: for any h ∈ TfU ⊆ Sd , choose a

curve g(t) ∶ (−є, є) → N ⊆ U such that g(0) = f and d g
d t (0) = h. For any element in

Fn−1Hn−1
0 (X f ) of the form

ω(h1) = R f ([
h1Ω
f

]) ,

let
ωt(h1) = Rg(t)([

h1Ω
g(t)

])
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give an element of Fn−1Hn−1
0 (Xg(t)). _en

dP f (h)(ω(h1)) =
d
dt

∣
t=0

Φ∗
g(t),X(ωt(h1))mod Fn−1Hn−1

0 (X f ).

We have

d
dt

∣
t=0

Φ∗
g(t),X(ωt(h1)) =

d
dt

∣
t=0

R f (Φ∗
g(t),U([

h1Ω
g(t)

]))

= R f (
d
dt

∣
t=0

Φ∗
g(t),U([

h1Ω
g(t)

])) ,

where Φ∗
g ,U is the homomorphism induced by the map Φg ,U ∶U f → Ug . Note that

Φ∗
g(t),U ∶H

n(Ug(t))→ Hn(U f ) is equal to the composition

Hn
(Ug(t))

τ∗g(t)
ÐÐ→ Hn

(UN)
(τ∗f )−1

ÐÐÐ→ Hn
(U f ).

Hence,

d
dt

∣
t=0

Φ∗
g(t),X(ωt(h1)) = R f (

d
dt

∣
t=0

(τ∗f )
−1τ∗g(t)[

h1Ω
g(t)

])

= R f ((τ∗f )
−1 d
dt

∣
t=0

[ τ∗g(t)
h1Ω
g(t)

]) .

Note that τ∗g(t) acting on forms is a restriction map; it follows that

d
dt

∣
t=0

[τ∗g(t)
h1Ω
g(t)

] =
d
dt

∣
t=0

[
h1Ω
g(t)

∣
UN

]

= [
d
dt

∣
t=0

h1Ω
g(t)

∣
UN

] = [ −
hh1Ω
f 2

∣
UN

] .

_erefore,

d
dt

∣
t=0

Φ∗
g(t),X(ωt(h1)) = R f ((τ∗f )

−1
[ −

hh1Ω
f 2

∣
UN

]) = R f ([ −
hh1Ω
f 2

]) .

Now the proof of Lemma 4.1 is complete.

Remark 4.3 To prove _eorem 1.2, it is essential for us to obtain a diagram like
(4.1). In fact, when Y. Zhao [15] proved the inûnitesimal Torelli theorem for nodal
surfaces, he used such a diagram implicitly; however, he did not give any proofs. We
believe that a detailed proof is indeed needed, and this is why our discussions above
always include the case n = 3.
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