A LOWER ESTIMATE FOR CENTRAL PROBABILITIES ON POLYCYCLIC GROUPS

G. ALEXOPOULOS

Abstract

We give a lower estimate for the central value $\mu^{* n}(e)$ of the nth convolution power $\mu * \cdots * \mu$ of a symmetric probability measure μ on a polycyclic group G of exponential growth whose support is finite and generates G. We also give a similar large time diagonal estimate for the fundamendal solution of the equation $(\partial / \partial t+L) u=0$, where L is a left invariant sub-Laplacian on a unimodular amenable Lie group G of exponential growth.

0 . Introduction.

0.1 The discrete case. Let G be a discrete finitely generated group, e its identity element and μ a probability measure on G.

We assume that μ is symmetric i.e. that $\mu(g)=\mu\left(g^{-1}\right), g \in G$ and that its support $\operatorname{supp} \mu=\{g \in G: \mu(g) \neq 0\}$ generates G.

We denote by μ^{n} the nth convolution power $\mu * \cdots * \mu$ of $\mu(\mu * \nu(g)=$ $\left.\sum_{h \in G} \mu(h) \nu\left(h^{-1} g\right), g \in G\right)$.

We fix a set of generators $\left\{x_{1}, \ldots, x_{p}\right\}$ of G and we denote by $\gamma(n)$ the volume growth function of G defined by

$$
\gamma(n)=\left\{g \in G: g=x_{i_{1}}^{\varepsilon_{1}} \cdots x_{i_{n}}^{\varepsilon_{n}}, \varepsilon= \pm 1,1 \leq i_{j} \leq p, 1 \leq j \leq n\right\}, \quad n \in \mathbb{N} .
$$

We say that G has polynomial volume growth, if there are constants $c, d>0$ such that $\gamma(n) \leq c n^{d}, n \in \mathbb{N}$ and exponential volume growth if $\gamma(n) \geq c e^{d n}, n \in \mathbb{N}$.

We say that G is polycyclic (cf. [13]) if it admits a finite sequence of subgroups

$$
G=G_{0} \geq G_{1} \geq \cdots \geq G_{k}=\{e\}
$$

such that G_{i} is normal in G_{i-1} and G_{i-1} / G_{i} is cyclic.
The polycyclic groups are "essentially" those discrete groups that can be realised as lattices of connected solvable Lie groups (cf. [13]). They have either polynomial or exponential volume growth ($c f$. [11]), a result that it is not true for general finitely generated discrete groups (cf. [7]).

We say that G is virtually polycyclic (or polycyclic by finite) if it admits a normal polycyclic subgroup Γ such that G / Γ is finite.

In this article we shall prove the following:

Received by the editors August 14, 1989; revised March 7, 1991 .
AMS subject classification: 31C05, 43A05, 60B15.
Key words and phrases: Polycyclic groups, volume growth, convolution power, heat kernel.
(c) Canadian Mathematical Society 1992.

Theorem 1. Let G be a virtually polycyclic group of exponential volume growth and μ a symmetric probability measure on G whose support is finite and generates G. Then there are constants $A, a>0$ such that

$$
\mu^{n}(e) \geq A e^{-a n^{\frac{1}{3}}}, \quad n \in 2 \mathbb{N} .
$$

The same ideas also give the following result, which has also been proved by V. A. Kaimanovich [10] (cf. also A. Raugi [12])

Corollary 2. Let G and μ be as in Theorem 1. Then every bounded harmonic function u (i.e. such that $\left.u(g)=\sum_{x \in G} u(g x) \mu(x), g \in G\right)$, is constant.

Theorem 1 should be compared with the following:
Theorem 3 (cf. N. Th. Varopoulos [21]). Let G be a discrete group of exponential volume growth and μ a symmetric probability measure on G, whose support is finite and generates G. Then there are constants $B, b>0$ such that

$$
\mu^{n}(e) \leq B e^{-b n^{\frac{1}{3}}}, \quad n \in \mathbb{N}
$$

So Theorem 1 shows that the exponent $\frac{1}{3}$ is indeed optimal.
0.2 The continuous case. The above results have continuous analogues. More precisely, let G be a connected Lie group and $d g$ a left invariant Haar measure on G. Let g be the Lie algebra of G which we identify with the left invariant vector fields on G.

Having fixed a compact neighborhood V of the identity element e of G, we define the volume growth function $\gamma(n), n \in \mathbb{N}$ and the distance function $\rho(x, y), x, y \in G$ as follows

$$
\begin{array}{r}
\gamma(n)=d g \text {-measure }\left(V^{n}\right), \quad n \in \mathbb{N} \\
\rho(x, y)=\rho\left(x^{-1} y\right), \rho(x)=\inf \left\{n \in \mathbb{N}: x \in V^{n}\right\}, \quad x, y \in G .
\end{array}
$$

We say that G has polynomial volume growth if there are constants $c, d>0$ such that

$$
\gamma(n) \leq c n^{d}, \quad n \in \mathbb{N}
$$

and exponential volume growth if

$$
\gamma(n) \geq c e^{d n}, \quad n \in \mathbb{N}
$$

Connected Lie groups have either polynomial or exponential volume growth ($c f$. [8]), a property not shared by the discrete finitely generated groups (cf. [7]).

In this article we shall assume that G is unimodular, amenable and has exponential volume growth. In our context, amenability means that if Q is the radical of G (i.e. the maximal solvable subgroup of G), then G / Q is a compact semisimple Lie group (cf. [15]).

Let X_{1}, \ldots, X_{n} be left invariant vector fields on G that satisfy Hörmander's condition, i.e. together with their successive Lie brackets $\left[X_{i_{1}},\left[X_{i_{2}},\left[\cdots\left[X_{i_{s}-1}, X_{i_{s}}\right] \cdots\right]\right]\right.$, they generate \mathfrak{q}. Then according to a classical theorem of L.Hörmander [9] the operators $L=-\left(X_{1}^{2}+\cdots+X_{k}^{2}\right)$ and $\partial / \partial t+L$ are hypoelliptic.

We denote by $p_{t}(x, y), x, y \in G, t>0$ the fundamental solution of the equation $(\partial / \partial t+$ $L) u=0$. Observe that the fact that L is a left invariant and symmetric operator implies that $p_{t}(x, y)=p_{t}\left(x^{-1} y\right)$ and $p_{t}(x, y)=p_{t}(y, x), x, y \in G, y>0$.

THEOREM 4. Let G be a connected, unimodular, amenable Lie group of exponential volume growth and $L, p_{t}(x, y)$ as above. Then there are constants $a, A>0$ such that

$$
\begin{equation*}
p_{t}(x, x) \geq A e^{-a t^{\frac{1}{3}}}, \quad x \in G, t \geq 1 . \tag{0.1}
\end{equation*}
$$

A consequence of the proof of the above theorem is the following:
Corollary 5. Let G and L be as in Theorem 4. Then every bounded harmonic function (i.e. every $u \in C^{\infty}(G)$ satisfying $\|u\|_{\infty}<+\infty$ and $L u=0$ in G) is constant.

As in the discrete case, we also have the following:
Theorem 6 (cf. N. Th. Varopoulos [20]). Let G, L and $p_{t}(x, y)$ be as in Theorem 4. Then for all $\varepsilon>0$ there are constants $B, b>0$ such that

$$
\begin{equation*}
p_{t}(x, y) \leq B e^{-b t^{\frac{1}{3}}} e^{-\frac{\partial^{(x, y)}}{(4+e t)}}, \quad x, y \in G, t \geq 1 . \tag{0.2}
\end{equation*}
$$

So, putting together (0.1) and (0.2) we have a description of the asymptotic behavior of the central value $p_{t}(x, x), x \in G$ of the kernel $p_{t}(x, y), x, y \in G$, as $t \rightarrow \infty$.

Of course, one could ask the question, if a similar lower Gaussian estimate for $p_{t}(x, y)$, i.e. an estimate of the type

$$
\begin{equation*}
A e^{-B t^{\alpha}} e^{-\frac{\rho^{2}(x, y)}{C t}} \leq p_{t}(x, y), \quad x, y \in G, t \geq 1 \tag{0.3}
\end{equation*}
$$

for some $\alpha \in(0,1)$, could be true.
It is easy to see that (0.3) is not true. Indeed, if we fix a $\beta \in\left(\frac{\alpha+1}{2}, 1\right)$, then (0.3) would imply that there are constants $A^{\prime}, B^{\prime}>0$ such that

$$
A^{\prime} e^{-B^{\prime} t^{\beta-1}} \leq p_{t}(x, y), x, y \in G, \quad \rho(x, y) \leq t^{\beta}, t \geq 1
$$

This estimate, together with the assumption that G has exponential volume growth, would imply that there is a constant $C^{\prime}>0$ such that

$$
1>\int_{\left\{y \in G: \rho(x, y) \leq t^{\beta}\right\}} p_{t}(x, y) d y \geq A^{\prime} e^{-B^{\prime} t^{2 \beta-1}} e^{C^{\prime} t^{\beta}}, \quad t \geq 1
$$

which is absurd.
Finally, we point out that results similar to Theorem 1 and Corollary 2 can be stated for the heat kernel and the bounded harmonic functions on the covering \widetilde{M} of a compact Riemannian manifold M when the group of the covering is polycyclic. They can be proved in a similar way.

1. Some technical lemmas for random walks in \mathbb{R}^{p}. This section is directly inspired from [18].

Let $X_{k}, k \in \mathbb{N}$ be independent, identically distributed random variables, with values in \mathbb{R}^{p} such that

$$
E\left[X_{k}\right]=0, E\left[X_{k}^{2}\right]<+\infty, \quad k \in \mathbb{N}
$$

Also let

$$
Z_{k}=X_{1}+\cdots+X_{k}, \quad k \in \mathbb{N}, Z_{0}=0 \text { a.s. }
$$

and

$$
M_{n}=\sup _{1 \leq i \leq k}\left|Z_{i}\right|, \quad k \in \mathbb{N} .
$$

LEMMA 1.1. There are constants $\varepsilon>0, a_{0}>0$ and $k_{0} \in \mathbb{N}$ such that for all $k \geq k_{0}$, $m \geq 1$ and $\lambda_{1}, \lambda_{2} \in \mathbb{R}^{p}$ satisfying $\left|\lambda_{1}\right| \leq \frac{\sqrt{k}}{10},\left|\lambda_{2}\right| \leq \frac{\sqrt{k}}{10}, a \sqrt{k} \leq m$ and $a \geq a_{0}$ we have

$$
\begin{equation*}
P\left[\sup _{1 \leq i \leq k}\left|\lambda_{1}+Z_{i}\right| \leq 2 m,\left|\lambda_{2}+Z_{k}\right| \leq \frac{\sqrt{k}}{100}\right]>\varepsilon . \tag{1.1}
\end{equation*}
$$

PROOF. It follows from Kolmogorov's inequality that there is a constant $b>0$ such that

$$
P\left[M_{k} \leq m\right] \geq 1-b \frac{k}{m^{2}}
$$

and from this that

$$
P\left[\frac{M_{k}}{\sqrt{k}} \leq a\right] \geq 1-\frac{b k}{a^{2} k}=1-\frac{b}{a^{2}}
$$

Hence

$$
\begin{equation*}
P\left[\frac{M_{k}}{\sqrt{k}} \leq a\right] \rightarrow 1 \quad(a \rightarrow+\infty) \tag{1.2}
\end{equation*}
$$

On the other hand it follows from the central limit theorem that there is $\varepsilon_{1}>0$ and $k_{0} \in \mathbb{N}$ such that for all $k \in \mathbb{N}$ and $\lambda \in \mathbb{R}^{p}$ satisfying $k \geq k_{0}$ and $|\lambda| \leq \frac{\sqrt{k}}{2}$ we have

$$
\begin{equation*}
P\left[\left|\frac{Z_{k}}{\sqrt{k}}+\frac{\lambda}{\sqrt{k}}\right|<\frac{1}{1000}\right]>\varepsilon_{1} . \tag{1.3}
\end{equation*}
$$

Putting (1.2) and (1.3) together we have (1.1).
LEMMA 1.2. There are constants $c_{1}, c_{2}>0, m_{0} \geq 1$ and $k_{0} \in \mathbb{N}$ such that for all $k \geq n_{0}, k \in \mathbb{N}$ and $m \geq m_{0}$ we have

$$
\begin{equation*}
P\left[M_{k} \leq m\right] \geq c_{1} e^{-c_{2} \frac{k}{m^{2}}} \tag{1.4}
\end{equation*}
$$

Proof. Let a_{0}, ε and k_{0} be as in Lemma 1.1 and put $m_{0}=2\left[a_{0} \sqrt{k_{0}}\right]+1$.
We shall consider two cases:

CASE 1. $a_{0} \sqrt{k} \leq m, k \geq k_{0}, m \geq m_{0}, k, m \in \mathbb{N}$.
In this case, it follows from (1.1) that

$$
P\left[M_{k} \leq m\right] \geq \varepsilon \geq \varepsilon e^{-c \frac{k}{m^{2}}}, \quad \forall c>0
$$

CASE 2. $\quad a_{0} \sqrt{k} \geq m, k \geq k_{0}, m \geq m_{0}, k, m \in \mathbb{N}$.
Let $k_{1}=\left[\frac{m^{2}}{2 a_{0}^{2}}\right]-1$. Then we have

$$
k=\left[\frac{k}{k_{1}}\right] k_{1}+k_{2}, k_{2} \leq k_{1}, k_{1} \geq k_{0}, \sqrt{2} a_{0} \sqrt{k_{1}} \leq m, a_{0} \sqrt{k_{2}+k_{1}} \leq m
$$

and applying (1.1) we find that

$$
P\left[M_{k} \leq m\right] \geq \varepsilon \varepsilon^{\left[\frac{k}{k_{1}}\right]-1}
$$

and the lemma follows.
2. The entropy of random walks. In this section we shall recall the definition and some properties of the entropy of random walks on groups (cf. [2], [4], [17], [22]), which we shall need to prove the Corollaries 2 and 5.

More precisely, let G be a locally compact, compactly generated group and $d g$ a left invariant Haar measure on G.

Let f be a density on G, i.e. such that $f(g) \geq 0, g \in G$ and $\int f(g) d g=1$, whose support supp $f=\overline{\{g \in G: f(g)>0\}}$ generates G.

Let $Z_{k}, k=0,1,2, \ldots$ be the random walk on G defined by

$$
Z_{0}=0, \text { a.s. and } P\left[Z_{k+1} \in A \mid Z_{k}=g\right]=\int_{A} f\left(g^{-1} x\right) d x, \quad k=0,1,2, \ldots
$$

(A is a Borel subset of G).
We say that a function u is f-harmonic if and only if

$$
u(g)=\int u(g x) f(x) d x, \quad g \in G
$$

We denote by f^{k} the k th convolution power $f * f * \cdots * f$ of $f\left(f * h(g)=\int f(x) h\left(x^{-1} g\right) d x\right.$, $g \in G)$ and we make the additional assumption that

$$
\int\left|f^{k}(g) \log f^{k}(g)\right| d g<+\infty, \quad n=1,2, \ldots
$$

(we put $t \log t=0$ for $t=0$).
We call the entropy of the random walk Z_{k} or of the pair $H(G, f)$ the limit

$$
H(G, f)=\lim _{k \rightarrow+\infty}-\frac{1}{k} \int f^{k}(g) \log f^{k}(g) d g .
$$

It can be proved that the limit exists and is finite.
Theorem 2.1 (cf. [2], [4]). Let G and f be as above. Then $H(G, f)=0$ if and only if every bounded f-harmonic function u (i.e. such that $\left.u(g)=\int u(g x) f(x) d x, g \in G\right)$ is constant.

Theorem 2.2 (cf. [2], [4]). Let G and f be as above. Then

$$
-\frac{1}{k} \log f^{k}\left(Y_{k}\right) \rightarrow H(G, f),(k \rightarrow+\infty), \text { in } L^{1}(G) .
$$

Furthermore, when G is discrete or f is continuous with compact support we also have convergence a.s.
3. The proof of Theorem 1 and Corollary 2. Since G is polycyclic by finite it has a normal subgroup $\Gamma \triangleleft G$, such that G / Γ is finite. Now, according to the structure theory of the polycyclic groups ($c f$. [13]), Γ admits finitely generated subgroups Γ^{*} and N such that

1) N is nilpotent, $N \triangleleft \Gamma^{*}, N \triangleleft G$ and Γ^{*} / N is abelian
2) $\Gamma^{*} \triangleleft \Gamma, \Gamma^{*} \triangleleft G$ and Γ / Γ^{*} is finite.

Let π^{\prime} be the natural map $\pi^{\prime}: G \rightarrow G / B$.
The group Γ^{*} / N being a finitely generated abelian group can be written as $\Gamma^{*} / N=$ $D C$, where D is a subgroup of Γ^{*} / N isomorphic with \mathbb{Z}^{p} for some $p \in \mathbb{N}$ and C a finite subgroup of Γ^{*} / N. So, if $B=\left(\pi^{\prime}\right)^{-1}(C)$, then Γ^{*} / B is isomorphic with \mathbb{Z}^{p}. Using this isomorphism we shall identify Γ^{*} / B with \mathbb{Z}^{p}. B, being a finite extension of a nilpotent group, has polynomial volume growth.

We shall first prove Theorem 1 and Corollary 2 in the case $G=\Gamma^{*}$, since the proof in that case is simpler and the ideas are better illustrated. The extension G / Γ^{*}, being finite, presents only an additional technical difficulty. In Section 3.2, we shall explain how we can deal with it.
3.1 Case 1: $G=\Gamma^{*}$. Let $\left\{e_{1}, \ldots, e_{p}\right\}$ be the standard basis of \mathbb{Z}^{p} and $x_{1}, \ldots, x_{p} \in G$ such that $\pi\left(x_{i}\right)=e_{i}, 1 \leq i \leq p$ where π denotes the natural map $\pi: G \rightarrow G / B$. Then every $g \in G$ can be written in the form

$$
g=y x_{p}^{n_{p}} \cdots x_{1}^{n_{1}}, \text { with } y \in B \text { and } n=\left(n_{p}, \ldots, n_{1}\right) \in \mathbb{Z}^{p}
$$

Fixing $\left\{g_{1}, \ldots, g_{s}\right\}$ and $\left\{h_{1}, \ldots, h_{r}\right\}$ sets of generators of G and B respectively we put

$$
\begin{gathered}
|x|_{G}=\inf \left\{n: x=g_{i_{1}}^{\epsilon_{1}} \cdots g_{i_{n}}^{\epsilon_{n}}, 1 \leq i_{j} \leq s, \epsilon_{j}= \pm 1,1 \leq j \leq n\right\} \\
|y|_{B}=\inf \left\{n: y=h_{i_{1}}^{\epsilon_{1}} \cdots h_{i_{n}}^{\epsilon_{n}}, 1 \leq i_{j} \leq r, \epsilon_{j}= \pm 1,1 \leq j \leq n\right\} \\
\theta=\sup \left\{\left|x_{i}^{\epsilon_{1}} h_{j}^{\epsilon_{2}} x_{i}^{-\epsilon_{1}}\right|_{B}, \epsilon_{1}= \pm 1, \epsilon_{2}= \pm 1,1 \leq i \leq p, 1 \leq j \leq r\right\} \\
\delta=\sup \left\{\left|x_{i}^{\epsilon_{1}} x_{j}^{\epsilon_{2}} x_{i}^{-\epsilon_{1}} x_{j}^{-\epsilon_{2}}\right|_{B}, \epsilon_{1}= \pm 1, \epsilon_{2}= \pm 1,1 \leq i, j \leq p\right\} .
\end{gathered}
$$

We also put

$$
|n|=\left|n_{p}\right|+\cdots+\left|n_{1}\right| \text { for } n=\left(n_{p}, \ldots, n_{1}\right) \in \mathbb{Z}^{p}
$$

Observe that if $x=x_{p}^{n_{p}} \cdots x_{1}^{n_{1}}$ and $y \in B$ then

$$
\begin{equation*}
\left|x y x^{-1}\right|_{B} \leq|y|_{B} \theta^{|n|} . \tag{3.1}
\end{equation*}
$$

Lemma 3.1. Let $x=x_{p}^{n_{p}} \cdots x_{1}^{n_{1}}, n=\left(n_{p}, \ldots, n_{1}\right), \epsilon \in\{-1,1\}$ and $i \in\{1, \ldots, p\}$. Then there is $c>0$ such that

$$
\begin{equation*}
x x_{i}^{\epsilon} x^{-1}=y x_{i}^{\epsilon}, \text { with } y \in B,|y|_{B} \leq c e^{c|n|} . \tag{3.2}
\end{equation*}
$$

Proof. The lemma will be proved by induction on $|n|$. It is trivially true when $|n|=$ 0 . So, assume that it is true for $|n| \leq \ell$. We shall prove that it also true for $|n|=\ell+1$.

Let $j=\min \left\{i: n_{i} \neq 0\right\}$ and put $n_{j}^{\prime}=\frac{n_{j}}{\left|n_{j}\right|}\left(\left|n_{j}\right|-1\right), \epsilon^{\prime}=n_{j}-n_{j}^{\prime}, x^{\prime}=x_{p}^{n_{p}} \cdots x_{j}^{n_{j}^{\prime}}$, $n^{\prime}=\left(n_{p}, \ldots, n_{j}^{\prime}, 0, \ldots, 0\right)$ and $z=x_{j}^{\epsilon^{\prime}} x_{i}^{\epsilon} x_{j}^{-\epsilon^{\prime}} x_{i}^{-\epsilon}$. Then

$$
x x_{i}^{\epsilon} x^{-1}=x^{\prime} x_{j}^{\epsilon^{\prime}} x_{i}^{\epsilon} x_{j}^{-\epsilon^{\prime}}\left(x^{\prime}\right)^{-1}=x^{\prime} z x_{i}^{\epsilon}\left(x^{\prime}\right)^{-1}=x^{\prime} z\left(x^{\prime}\right)^{-1} x^{\prime} x_{i}^{\epsilon}\left(x^{\prime}\right)^{-1} .
$$

Now, it follows from (3.1) that

$$
\left|x^{\prime} z\left(x^{\prime}\right)^{-1}\right|_{B} \leq \delta \theta^{\left|n^{\prime}\right|}
$$

and by the inductive hypothesis that there is $w \in B$ such that

$$
x^{\prime} x_{i}^{\epsilon}\left(x^{\prime}\right)^{-1}=w x_{i}^{\epsilon}, \quad|w|_{B} \leq c e^{c\left|n^{\prime}\right|}
$$

So, if the constant c, chosen in the begining, is such that $c>\max (\delta, \log \theta)$, we have

$$
x x_{i}^{\epsilon} x^{-1}=y x_{i}^{\epsilon}, y=x^{\prime} z\left(x^{\prime}\right)^{-1} w,|y|_{B} \leq \delta \theta^{\left|n^{\prime}\right|}+c e^{c\left|n^{\prime}\right|} \leq c e^{\left.c| | n^{\prime} \mid+1\right)}=c e^{c|n|}
$$

which proves the inductive step and the lemma follows.
Lemma 3.2. Let $n=\left(n_{p}, \ldots, n_{1}\right), \epsilon \in\{-1,1\}$ and $i \in\{1, \ldots, p\}$. Then there is $c>0$ such that

$$
\begin{equation*}
x_{p}^{n_{p}} \cdots x_{1}^{n_{1}} x_{i}^{\epsilon}=y x_{p}^{n_{p}} \cdots x_{i}^{n_{i}+\epsilon} \cdots x_{1}^{n_{1}} \text { with } y \in B,|y|_{B} \leq c e^{c|n|} . \tag{3.3}
\end{equation*}
$$

Proof. The lemma follows from (3.1), (3.2) and the observation that, if

$$
z=x_{i}^{n_{i}} \cdots x_{1}^{n_{1}} x_{i}^{\epsilon}\left(x_{i}^{n_{i}} \cdots x_{1}^{n_{1}}\right)^{-1} x_{i}^{-\epsilon}, \text { and } y=x_{p}^{n_{p}} \cdots x_{i+1}^{n_{i+1}} z\left(x_{p}^{n_{p}} \cdots x_{i+1}^{n_{i+1}}\right)^{-1}
$$

then

$$
x_{p}^{n_{p}} \cdots x_{1}^{n_{1}} x_{i}^{\epsilon}=x_{p}^{n_{p}} \cdots x_{i+1}^{n_{i+1}} z x_{i}^{n_{i}+\epsilon} \cdots x_{1}^{n_{1}}=y x_{p}^{n_{p}} \cdots x_{i}^{n_{i}+\epsilon} \cdots x_{1}^{n_{1}} .
$$

COROLLARY 3.3. Let $x=x_{p}^{n_{p}} \cdots x_{1}^{n_{1}}, w=x_{p}^{m_{p}} \cdots x_{1}^{m_{1}}, n=\left(n_{p}, \ldots, n_{1}\right), m=$ $\left(m_{p}, \ldots, m_{1}\right)$ and $y, z \in B$. Then there is $c>0$ such that

$$
\begin{equation*}
y x z w=v x_{p}^{n_{p}+m_{p}} \cdots x_{1}^{n_{1}+m_{1}}, \text { with } v \in B,|v|_{B} \leq c\left[|y|_{B}+|z|_{B} e^{c|n|}+e^{c| | m|+|n|)}\right] . \tag{3.4}
\end{equation*}
$$

Proof. The corollary follows from (3.1) and (3.3) and the observation that $y x z w=$ $y\left(x z x^{-1}\right) x w$.

Corollary 3.4. There is a constant $c>0$ such that every $g \in G$ can be written in the form

$$
g=y x_{p}^{n_{p}} \cdots x_{1}^{n_{1}}, \text { with } y \in B,|y|_{B} \leq c e^{c|g|_{G}},|n| \leq|g|_{G}, n=\left(n_{p}, \ldots, n_{1}\right)
$$

PROOF. Since all the generators g_{i} can be written in the form $g_{i}=z w$, with $z \in B$ and $w=x_{p}^{m_{p}} \cdots x_{1}^{m_{1}}$ and $g=g_{i_{1}} \cdots g_{i_{q}}$ with $q=|g|_{G}$, the corollary follows after applying (3.4) $|g|_{G}$ times.

Let $X_{k}, k=1,2, \ldots$ be independent identically distributed random variables with values in G and $P\left[X_{k}=g\right]=\mu(g), g \in G$ and denote by $Z_{k}, k=0,1,2, \ldots$ the right random walk in G defined by

$$
Z_{0}=e \text { a.s. and } Z_{k}=X_{1} X_{2} \cdots X_{k}, \quad k=1,2, \ldots
$$

Also let $S_{k}=\left(S_{k, p}, \ldots, S_{k, 1}\right), k=0,1,2, \ldots$ be the random walk in \mathbb{Z}^{p} defined by

$$
S_{0}=0 \text { a.s. and } S_{k}=\pi\left(X_{1}\right)+\pi\left(X_{2}\right)+\cdots+\pi\left(X_{k}\right), \quad k=1,2, \ldots
$$

Observe that $S_{k}=\pi\left(Z_{k}\right)$.
We put

$$
X^{S_{k}}=x_{p}^{S_{k, p}} \cdots x_{1}^{S_{k, 1}}
$$

Then it follows from (3.4) that there is $c>0$ such that

$$
\begin{equation*}
Z_{k}=Y_{k} X^{S_{k}} \text {, with } Y_{k} \in B,\left|Y_{k}\right|_{B} \leq c\left[e^{c\left|S_{1}\right|}+\cdots+e^{c\left|S_{k-1}\right|}\right] \text {. } \tag{3.5}
\end{equation*}
$$

Let us also recall that it follows from Kolmogorov's inequality that there is $b>0$ such that

$$
\begin{equation*}
P\left[\max _{1 \leq i \leq k}\left|S_{i}\right| \leq m\right] \geq 1-b \frac{k}{m^{2}}, \quad k \in \mathbb{N}, m>0 \tag{3.6}
\end{equation*}
$$

Also let c be as in (3.5) and put

$$
\begin{aligned}
D_{k}^{m}=\{g \in G: & g=y x_{p}^{n_{p}} \cdots x_{1}^{n_{1}}, \\
& \left.\left|n_{p}\right|+\cdots+\left|n_{1}\right| \leq m, y \in B,|y|_{B} \leq c k e^{c m}\right\}, \quad k \in \mathbb{N}, m>0
\end{aligned}
$$

Then, it follows from (3.5) and (3.6) that

$$
\begin{equation*}
P\left[Y_{k} \in D_{k}^{m}\right] \geq P\left[\sup _{1 \leq i \leq k}\left|S_{i}\right| \leq m\right] \tag{3.7}
\end{equation*}
$$

We have the following estimate of the number of elements $\left|D_{k}^{m}\right|$ of the set D_{k}^{m}, which follows from the fact that B has polynomial volume growth

$$
\begin{equation*}
\left|D_{n}^{m}\right| \leq a_{1} e^{a_{2}(m+\log k)} \tag{3.8}
\end{equation*}
$$

(a_{1}, a_{2} are constants, $a_{1}, a_{2}>0$)
Proof of Theorem 1. The first thing to observe is that

$$
\begin{equation*}
\mu^{2 k}(e)=\sup _{g \in G} \mu^{2 k}(g), \quad k \in \mathbb{N} . \tag{3.9}
\end{equation*}
$$

This follows from the hypothesis that μ is symmetric using the Hölder inequality:

$$
\begin{aligned}
\mu^{2 k}(g) & =\sum_{x \in G} \mu^{k}(x) \mu^{k}\left(x^{-1} g\right) \leq\left[\sum_{x \in G}\left(\mu^{k}(x)\right)^{2}\right]^{\frac{1}{2}}\left[\sum_{x \in G}\left(\mu^{k}\left(x^{-1} g\right)\right)^{2}\right]^{\frac{1}{2}} \\
& =\left[\sum_{x \in G}\left(\mu^{k}(x)\right)^{2}\right]=\mu^{2 k}(e)
\end{aligned}
$$

Now it follows from Lemma 1.2 that there are constants $c_{1}, c_{2}>0, m_{0} \geq 1$ and $k_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
P\left[\sup _{1 \leq i \leq k}\left|S_{i}\right| \leq m\right] \geq c_{1} e^{-c_{2} \frac{k}{m^{2}}}, \quad m \geq m_{0}, k \geq k_{0}, k \in \mathbb{N} . \tag{3.10}
\end{equation*}
$$

Putting (3.6), (3.7), (3.8), (3.9) and (3.10) together we have that for all $m \geq m_{0}, k \geq k_{0}$ and $k \in 2 \mathbb{N}$

$$
\mu^{k}(e) \geq P\left[Y_{k} \in D_{k}^{m}\right]\left|D_{k}^{m}\right|^{-1} \geq c_{1} a_{1}^{-1} e^{-c_{2} \frac{k}{m^{2}}-a_{2} m-a_{2} \log k}
$$

Theorem 1 follows by optimising with respect to m.
Proof of Corollary 2. We shall prove that the entropy $H(G, \mu)=0$. Then Corollary 2 will be a consequence of Theorem 2.1.

Let $D_{k}=D_{k}^{k^{3 / 4}}$. Then it follows from (3.6) and (3.7) that

$$
\begin{equation*}
P\left[Z_{k} \in D_{k}\right] \geq 1-b \frac{1}{\sqrt{k}}, \quad k \in \mathbb{K} . \tag{3.11}
\end{equation*}
$$

Hence

$$
P\left[Z_{k} \notin D_{k}\right] \rightarrow 0, \quad(k \rightarrow+\infty)
$$

which, in view of Theorem 2.2, implies that

$$
\begin{equation*}
\frac{1}{k} \sum_{g \nexists D_{k}} \mu^{k}(g) \log \mu^{k}(g) \rightarrow 0, \quad(k \rightarrow+\infty) \tag{3.12}
\end{equation*}
$$

On the other hand it follows from Jensen's inequality that

$$
\begin{aligned}
-\frac{1}{k} \sum_{g \in D_{k}} \mu^{k}(g) \log \mu^{k}(g) & =-\frac{1}{k}\left|D_{k}\right| \sum_{g \in D_{k}} \frac{1}{\left|D_{k}\right|} \mu^{k}(g) \log \mu^{k}(g) \\
& \leq-\frac{1}{k}\left|D_{k}\right|\left[\sum_{g \in D_{k}} \frac{1}{\left|D_{k}\right|} \mu^{k}(g)\right] \log \left[\sum_{g \in D_{k}} \frac{1}{\left|D_{k}\right|} \mu^{k}(g)\right] \\
& =-\frac{1}{k} \mu^{k}\left(D_{k}\right) \log \frac{\mu^{k}\left(D_{k}\right)}{\left|D_{k}\right|} \\
& =-\frac{1}{k} \mu^{k}\left(D_{k}\right) \log \mu^{k}\left(D_{k}\right)+\frac{1}{k} \mu^{k}\left(D_{k}\right) \log \left|D_{k}\right|
\end{aligned}
$$

which, combined with the fact that

$$
\left|D_{K}\right| \leq e^{k^{3 / 4}}, \quad k \in \mathbb{N}
$$

implies that

$$
\begin{equation*}
\frac{1}{k} \sum_{g \in D_{k}} \mu^{k}(g) \log \mu^{k}(g) \rightarrow 0, \quad(k \rightarrow+\infty) \tag{3.13}
\end{equation*}
$$

Putting (3.12) and (3.13) together we have that $H(G, \mu)=0$ and Corollary 2 follows.
3.2 The general case. Let π and π^{\prime} be the natural maps

$$
\pi: G \rightarrow G / B, \text { and } \pi^{\prime}: G \rightarrow G / \Gamma^{*}
$$

Let $X_{k}, k=0,1,2, \ldots$ and $Z_{k}, k=0,1,2, \ldots$ be as in Section 3.1 and put

$$
S_{k}=\pi\left(Z_{k}\right), \quad \xi_{k}=\pi^{\prime}\left(Z_{k}\right)
$$

Let us also view ξ_{k} as a Markov chain with state space G / Γ^{*} and denote by $\nu(k)$ the number of passages of ξ_{k} from the state $e \Gamma^{*} \in G / \Gamma^{*}$ during the first k units of time. Then it follows from the theory of Markov chains with a finite number of states (cf. [14]) that there is $\alpha \in(0,1)$ such that $\forall \epsilon>0$

$$
\begin{equation*}
P\left[\left|\frac{1}{k} \nu(k)-\alpha\right|>\epsilon\right] \rightarrow 0, \quad(k \rightarrow+\infty) \tag{3.14}
\end{equation*}
$$

Let τ_{k} be the time of the k th passage of ξ_{k} from the state $e \Gamma^{*}$. Then it follows from (3.14) that $\forall \beta$ such that $0<\beta<\alpha$

$$
\begin{equation*}
P\left[\tau_{(\alpha-\beta) k}<k, \tau_{(\alpha+\beta) k}>k\right] \rightarrow 1, \quad(k \rightarrow+\infty) \tag{3.15}
\end{equation*}
$$

Furthermore identifying Γ^{*} / B with \mathbb{Z}^{p}, we have that the random variables

$$
S_{\tau_{k-1}}^{-1} S_{\tau_{k}}, \quad k=1,2, \ldots
$$

are independent identically distributed and take values in $\Gamma^{*} / B=\mathbb{Z}^{p}$.
Hence it follows from Kolmogorov's inequality that there is a constant $b>0$ such that

$$
\begin{equation*}
P\left[\left|S_{\tau_{(\alpha-\beta) k}}^{-1} S_{\tau_{i}}\right| \leq m,(\alpha-\beta) k<i<(\alpha+\beta) k\right] \geq 1-2 b \beta \frac{k}{m^{2}} \tag{3.16}
\end{equation*}
$$

Let $\left\{v_{1}, \ldots, v_{q}\right\}$ be a set of generators of G / B and put for $w \in G / B$

$$
|v|=\inf \left\{n \in \mathbb{N}: v=v_{i_{1}}^{\epsilon_{1}} \cdots v_{i_{n}}^{\epsilon_{n}}, 1 \leq i_{j} \leq q, \epsilon_{j}= \pm 1,1 \leq j \leq n\right\} .
$$

Choosing β very small in (3.15) and then applying (1.1) together with (3.16) we have that there are constants $c>0, \varepsilon>0, a_{o}>0, k_{0} \in \mathbb{N}$ such that for all $k \geq k_{0}, m \geq 1$ and $w_{1}, w_{2} \in G / B$ satisfying $\left|w_{1}\right| \leq \frac{\sqrt{k}}{10},\left|w_{2}\right| \leq \frac{\sqrt{k}}{10}, a \sqrt{k} \leq m$ and $a \geq a_{0}$ we have

$$
\begin{gather*}
P\left[\sup _{1 \leq i \leq k}\left|w_{1} S_{i}\right| \leq 2 m,\left|w_{2} S_{k}\right| \leq \frac{\sqrt{k}}{100}\right]>c \tag{3.17}\\
P\left[\sup _{1 \leq i \leq(\alpha-\beta) k}\left|w_{1} S_{\tau_{i}}\right| \leq 2 m,\left|w_{2} S_{\tau_{(\alpha-\beta) k}}\right| \leq \frac{\sqrt{k}}{200},\right. \\
\left.\left.\sup _{(\alpha-\beta) k<i<(\alpha+\beta) k} \mid S_{\tau_{(\alpha-\beta) k}}^{-1} S_{\tau_{i}}\right] \leq \frac{\sqrt{k}}{200}\right]>\varepsilon
\end{gather*}
$$

which is an analogue of (1.1) for the random walk $S_{k}, k=0,1,2, \ldots$. Once we have (3.17) we can prove in exactly the same way an analogue of the inequality (1.4), i.e. that there are constants $c_{1}, c_{2}>0, m_{0} \geq 1$ and $k_{0} \in \mathbb{N}$ such that for all $k \geq k_{0}, k \in \mathbb{N}$ and $m \geq m_{0}$ we have

$$
\begin{equation*}
P\left[\sup _{1 \leq i \leq k}\left|S_{i}\right| \leq m\right] \geq c_{1} e^{-c_{2} \frac{k}{m^{2}}} \tag{3.18}
\end{equation*}
$$

From now on the proof of Theorem 1 and Corollary 2 is exactly the same with their proof in the case when G / Γ^{*} is trivial. The only modification, of course, is that now we shall have to fix elements $z_{1}, \ldots, z_{\ell} \in G$ such that $G / \Gamma^{*}=\left\{z_{1} \Gamma^{*}, \ldots, z_{\ell} \Gamma^{*}\right\}$ and $x_{1}, \ldots, x_{p} \in \Gamma^{*}$ as in Section 3.1 and we write every $g \in G$ in the form

$$
g=y x z_{i}, \text { with } y \in B, x=x_{1}^{n_{1}} \cdots x_{1}^{n_{1}}, \quad 1 \leq i \leq \ell .
$$

4. The proof of Theorem 4 and Corollary 5. The proof of Theorem 4 and Corollary 5 is similar to the proof of Theorem 1 and Corollary 2. So we shall try to use similar notations.

Let Q, N and M be the radical the nil-radical and a Levi subgroup of G, respectively (cf. [15]). Q and N are, respectively, closed solvable and nilpotent subgroups of G. M is a semisimple subgroup of G. The assumption that G is amenable implies that M is compact. Furthermore

$$
\begin{equation*}
G=Q M \text { and }[G, G] \subseteq N M \tag{4.1}
\end{equation*}
$$

($[G, G]$ is the closed analytic subgroup of G generated by the elements $[g, h]=$ $g h g^{-1} h^{-1}, g, h \in G$ of $\left.G\right)$.

It follows from (4.1) that $G / N M$ is a connected abelian Lie group. Hence it can be written as

$$
G / N M=D C
$$

where D and C are closed subgroups of $G / N M, C$ is compact and D is isomorphic with \mathbb{R}^{p} for some $p \in \mathbb{N}$. Let π^{\prime} be the natural map $\pi^{\prime}: G \rightarrow G / N M$ and put

$$
B=\pi^{\prime-1}(C) .
$$

Then B, being a compact extension of a nilpotent group, has polynomial volume growth.
Let π denote the natural map $\pi: G \rightarrow G / B$. Since G / B is isomorphic with \mathbb{R}^{p} there are left invariant vector fields X_{1}, \ldots, X_{p} on G such that the map

$$
\phi: \mathbb{R}^{p} \rightarrow G / B, \phi: t=\left(t_{p}, \ldots, t_{1}\right) \rightarrow \pi\left(\exp t_{p} X_{p} \cdots \exp t_{1} X_{1}\right)
$$

is a Lie group isomorphism. Using ϕ we shall identify G / B with \mathbb{R}^{p}.
Observe that every $g \in G$ can be written in the form

$$
g=y x \text { with } x=\exp t_{p} X_{p} \cdots \exp t_{1} X_{1} \text { and } y \in B .
$$

We put

$$
|t|=\left|t_{p}\right|+\cdots+\left|t_{1}\right| \text { for } t=\left(t_{p}, \ldots, t_{1}\right) \in \mathbb{R}^{p}
$$

We fix a symmetric compact neighborhood $V \subseteq G$ of the identity element e of G and $U \subseteq B$ a symmetric compact neighborhood of e in B and we put

$$
\begin{gathered}
|x|_{G}=\inf \left\{n \in \mathbb{N}: x \in V^{n}\right\} \\
|y|_{B}=\inf \left\{n \in \mathbb{N}: y \in U^{n}\right\} \\
\theta=\sup \left\{\left|\exp s X_{i} y \exp -s X_{i}\right|_{B}, y \in U,|s| \leq 1,1 \leq i \leq p\right\} \\
\delta=\sup \left\{\left|\exp s X_{i} \exp r X_{j} \exp -s X_{i} \exp -r X_{j}\right|_{B},|s| \leq 1,|r| \leq 1,1 \leq i, j \leq p\right\} .
\end{gathered}
$$

Observe that, if $\rho(.,$.$) is as in Section 0.1, then \rho(e, g)=|g|_{G}, g \in G$.
Arguing in the same way as in Section 4, we can prove successively that there is a constant $c>0$ such that for all $y, z \in B, x=\exp t_{p} X_{p} \cdots \exp t_{1} X_{1}, w=$ $\exp s_{p} X_{p} \cdots \exp s_{1} X_{1}, t=\left(t_{p}, \ldots, t_{1}\right), s=\left(s_{p}, \ldots, s_{1}\right) \in \mathbb{R}^{n}, r \in \mathbb{R},|r| \leq 1,1 \leq i \leq p$ we have

$$
\begin{gather*}
\left|x y x^{-1}\right|_{B} \leq|y|_{B} \theta^{\theta t \mid} \tag{4.1}\\
x \exp r X_{i} x^{-1}=h \exp r X_{i}, \text { with } h \in B,|h|_{B} \leq c e^{c|t|} \tag{4.2}\\
\exp t_{p} X_{p} \cdots \exp t_{1} X_{1} \exp r X_{i}=v \exp t_{p} X_{p} \cdots \exp \left(t_{i}+r\right) X_{i} \cdots \exp t_{1} X_{1} \\
\quad \text { with } v \in B,|v|_{B} \leq c e^{c|t|}
\end{gather*}
$$

$$
\begin{align*}
& y x z w=v \exp \left(t_{p}+s_{p}\right) X_{p} \cdots \exp \left(t_{1}+s_{1}\right) X_{1} \\
& \tag{4.4}\\
& \quad \text { with } v \in B,|v|_{B} \leq c\left[|y|_{B}+|z|_{B} e^{c|t|}+e^{c(|t||s|)}\right]
\end{align*}
$$

and that all $g \in G$ can be written as

$$
\begin{equation*}
g=y \exp t_{p} X_{p} \cdots \exp t_{1} X_{1}, \text { with }|y|_{B} \leq c e^{c|g|_{G}},|t| \leq|g|_{G}, t=\left(t_{p}, \ldots, t_{1}\right) . \tag{4.5}
\end{equation*}
$$

Let $f(g)=p_{1}(e, g), g \in G$. Then it follows from (0.2) that there are constants $c, d>0$ such that

$$
\begin{equation*}
|f(g)| \leq c e^{-d|g|_{G}^{2}}, \quad g \in G \tag{4.6}
\end{equation*}
$$

and from this that there are constants $c, d>0$ such that

$$
\begin{equation*}
\int_{\left\{g \in G:|g|_{G} \geq m\right\}} f(g) d g \leq c e^{-d m^{2}}, \quad m>0 . \tag{4.7}
\end{equation*}
$$

Also, if f^{n} denotes the nth convolution power $f * \cdots * f$ of $f\left(f * h(g)=\int f(x) h\left(x^{-1} g\right) d x\right.$, $g \in G)$, then $f^{n}(g)=p_{n}(e, g), g \in G$.

Proceeding as in Section 3, we consider independent identically distributed random variables $X_{k}, k=1,2, \ldots$, with values in G and $P\left[X_{k} \in A\right]=\int_{A} f(g) d g(A$ a Borel subset of G). Then it follows from (4.7) that there are constants $c, d>0$ such that

$$
\begin{equation*}
P\left[\sup _{1 \leq i \leq k}\left|X_{i}\right|_{G} \geq m\right] \leq c k e^{-d m^{2}}, \quad m>0 \tag{4.8}
\end{equation*}
$$

Let $Z_{k}, k=0,1,2, \ldots$ be the right random walk in G defined by

$$
Z_{0}=e \text { a.s. and } Z_{k}=X_{1} X_{2} \cdots X_{k}, \quad k=1,2, \ldots
$$

Also let $S_{k}=\left(S_{k, p}, \ldots, S_{k, 1}\right), k=0,1,2, \ldots$ be the random walk in \mathbb{R}^{p} defined by (recall that G / B has been identified with \mathbb{R}^{p})

$$
S_{0}=0 \text { a.s. and } S_{k}=\pi\left(X_{1}\right)+\pi\left(X_{2}\right)+\cdots+\pi\left(X_{k}\right), \quad k=1,2, \ldots
$$

Observe that $S_{k}=\pi\left(Z_{k}\right)$.
We put

$$
X^{S_{k}}=\exp S_{k, p} X_{p} \cdots \exp S_{k, 1} X_{1} .
$$

Then it follows from (4.4) that there is $c>0$ such that

$$
\begin{gather*}
Z_{k}=Y_{k} X^{S_{k}}, \text { with } Y_{k} \in B \\
\left|Y_{k}\right|_{B} \leq c\left[e^{c\left|X_{1}\right| G}+e^{c\left(\left|S_{1}\right|+\left|X_{2}\right| G\right)}+\cdots+e^{c\left(\left|S_{k-1}\right|+\left|X_{k}\right| G\right.}\right] . \tag{4.9}
\end{gather*}
$$

It follows from Kolmogorov's inequality that there is $b>0$ such that

$$
\begin{equation*}
P\left[\max _{1 \leq i \leq k}\left|S_{i}\right| \leq m\right] \geq 1-b \frac{k}{m^{2}}, \quad k \in \mathbb{N}, m>0 \tag{4.10}
\end{equation*}
$$

Let c be as in (4.9) and put

$$
\begin{gathered}
D_{k}^{m}=\left\{g \in G: g=y \exp t_{p} X_{p} \cdots \exp t_{1} X_{1},\left|t_{p}\right|+\cdots+\left|t_{1}\right|\right. \\
\left.\leq m, y \in B,|y|_{B} \leq c k e^{2 c m}\right\}, \quad k \in \mathbb{N}, m>0 .
\end{gathered}
$$

Then, it follows from (4.8), (4.9), (4.10) and Lemma 1.2 that there are constants $a, b, c, d>0$ such that that

$$
\begin{align*}
P\left[Y_{k} \in D_{k}^{m}\right] & \geq P\left[\sup _{1 \leq i \leq k}\left|S_{i}\right| \leq m, \sup _{1 \leq i \leq k}\left|X_{i}\right|_{G} \leq m\right] \tag{4.11}\\
& \geq a e^{-b \frac{m}{k^{2}}}-c k e^{-d m^{2}}, \quad m>0, k \in \mathbb{N}
\end{align*}
$$

We also have the following estimate of the volume $\left|D_{k}^{m}\right|$ of the set D_{k}^{m}, which follows from the fact that B has polynomial volume growth

$$
\begin{equation*}
\left|D_{n}^{m}\right| \leq a_{1} e^{a_{2}(m+\log k)} \tag{4.12}
\end{equation*}
$$

(a_{1}, a_{2} are constants, $a_{1}, a_{2}>0$).
Proof of Theorem 4. Arguing in the same way as in the proof of Theorem 1, we can see that

$$
f^{k}(e)=p_{k}(e, e)=p_{k}(x, x)=\sup _{y \in G} p_{k}(x, y), \quad x \in G
$$

and that

$$
p_{t}(x, x) \geq p_{[t]+1}(x, x)=f^{[t]+1}(e)
$$

($[t]$ is the integral part of $t \in \mathbb{R}$).
This observation, together with (4.11) and (4.12) implies that there are constants a, b, $c, d, a_{1}, a_{2}>0$ such that

$$
p_{t}(x, x) \geq\left[a e^{-b \frac{t}{m^{2}}}-c k e^{-d m^{2}}\right] a_{1} e^{-a_{2}(m+\log t)}, \quad m>0, t \geq 1
$$

and Theorem 4 follows by optimising with respect to m.
Proof of Corollary 5. We observe that if u is a bounded harmonic function then $u(x)=\int p_{t}(x, y) u(y) d y, x \in G$, hence $u(x)=\int u(x y) f(y) d y, x \in G$ and therefore u is a bounded f-harmonic function. Arguing in the same way as in the proof of Corollary 2 , we can prove that every bounded f-harmonic function is constant and the corollary follows.

References

1. A. Avez, Harmonic functions on groups, Diff. Geom. and Relativity, (1976), 27-32.
2. G. Alexopoulos, On the mean distance of random walks on groups, Bull. Sci. Math. (2) III(1987), 189-199.
3. Y. Derrienic, Quelques applications du théorème ergodique sous-additif, Astérisque 74, 183-201.
4. \qquad Entropie, théorèmes limites et marches aléatoires, Lecture Notes in Math. 1210.
5. R. I. Grigorchuk, Degrees of growth of finitely generated groups and the theory of invariant means, Math. USSR, Izvestiya 25(1985).
6. M. Gromov, Groups of polynomial growth and expanding maps, Publications mathématiques de l’ I.H.E.S. 53(1981).
7. Y. Guivarc'h, Lois de grands nombres et rayon spectrale d' une march aléatoire sur un group de Lie, Astérisque 74(1980), 47-99.
8. \qquad Croissance polynômiale et périodes des fonction harmoniques, Bull. Soc. Math. France, 101 (1973), 333-379.
9. L. Hörmander, Hypoelliptic second order differential operators, Acta Math. 119(1967), 147-171.
10. V. A. Kaimanovich, Brownian motion and harmonic functions on coverings of manifolds. An entropy approach, Soviet Math. Doklady (3) 33(1986), 812-816.
11. J. Milnor, Growth of finitely generated solvable groups, J. Diff. Geom. 72(1968), 447-449.
12. A. Raugi, Fonctions harmoniques sur les groupes localement compacts à base dénombrable, Bull. Soc. Math. France, Mémoire 54(1977), 5-118.
13. M. S. Ragunathan, Discrete subgroups of Lie groups, Springer-Verlag.
14. A. N. Shiryayev, Probability, Springer-Verlag, 1984.
15. V. S. Varadarajan, Lie groups, Lie algebras and their Representations, Springer-Verlag, 1984.
16. N. Th. Varopoulos, Analysis on Lie groups, J. Funct. Analysis (2) 76(1988), 346-410.
17. Information theory and harmonic functions, Bull. Sci. Math. (2^{e}) 110(1986), 347-389.
18. \longrightarrow A potential theoritic property of solvable groups, Bull. Sci. Math. ($2^{\mathrm{e})} \mathbf{1 0 8}(1983)$, 263-273.
19. Théorie du potentiel sur les groupes et les variétés, C.R. Acad. Sci. Paris (6) 302 I (1986), 203-205.
20. \longrightarrow Analysis and geometry on groups, Proceeding of the I.C.M., Kyoto, (1990), to appear.
21. Groups of superpolynomial growth, preprint, 1990.
22. A. M. Vershik and V. A. Kaimanovich, Random walks on discrete groups: Boundary and entropy, The Annals of Probability (3) 11(1983), 457-490.
23. J. A. Wolf, Growth of finitely generated solvable groups and curvature of Riemannian manifolds, J. Diff. Geom. 2(1968), 421-446.

Université de Paris-Sud
Mathématiques, Bât. 425
91405 Orsay Cedex
France

