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1. Introductory Discussion and Summary.

Let x = (xx, x2, • • •, xn) be a normal random vector with zero expectation
vector and with a variance-covariance matrix which has 1 for its diagonal
elements and p for its off-diagonal elements. Consider the quantity

/ / • • dxn,

where

0(x) = [{1 + {n- 1)P}(1 - P)]-i[{l +(n- 2)p} £ A -
(1.2)

= (1 - P)-1®.*- /»{! + (« -
Thus 7B(A; p) is the probability that each of » normally distributed, equally
correlated and standardized random variables with common correlation p
shall not fall short of h. Clearly 1 — In(h; p) is also the distribution function
of the random variable max, x{, and this supplies one application (cf. [3]) of
In(h; p). A second application relates to the familiar one-factor model in
factor analysis for the special case of equal weights [8]. Another situation in
which knowledge of In(h; p) is important is in some models of test design in
psychology. Other applications will arise or probably exist at present.

In a previous paper [8] (see also [8] for further references), In(h; p) was
expressed as the product of the density funcion of x at the cut-off point
h = (h,h, — , h) and an infinite power series in h. In this paper it will be
shown for A > 0 that In(h; p) can be expressed asymptotically as the
product of the density function at h and an infinite series in negative powers
of h. This result can be regarded as the generalization for n > 1 of the well-
known asymptotic expansion of Mill's ratio

(1.3) £° e-'t>*dtle-^>*~x-1(l -x-* + 1.3a;-» - 1.3.5ar« + • • •) {x > 0).

1 Sponsored in part by ONR at Stanford University, July-August, W60.
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254 Harold Ruben [2]

2. The Asymptotic Development of In(h; p)

Under the transformation

(2.1) „ ' = 1

yi = (l-p)-1'22biix, (i = 2, 3, • • • , « ) ,

where ((&ti)), i, j = 1, 2, • • • , « , is orthogonal with 6W = n""1/*, ( l . i ) reduces to

(2.2) In(h; p) = (2w)-"/« f • • • f e-^>dyx • • • dyn
J R J

with R defined by

(2.3) R: [1 + (« - l)p]vi [«(1 - p)]-i/»yi + i biiVj 2> (1 - P)-V2A

(* = 1,2, •••.»)

[8]. R is a polyhedral half-cone in j'-space with vertex at the point (r0,
0, 0, • • •, 0), where

(2.4) r0 = [»/{l + (n- l)p}]^h,

such that the angle between any two faces of the cone is arc cos (— p); further,
the axis of the cone passes through the origin in ^-space. In{h; p) is, then,
the probability measure, under an M-dimensional spherical normal distribu-
tion with unit standard deviation in any direction, of a regular, symmetri-
cally oriented polyhedral half-cone with common dihedral angle arc cos (—/>),
and with vertex at a distance r0 from the centre of the distribution. Let P be
any point within the cone distant r from the centre of the distribution, TJ
from the axis of the cone and x from the vertex of the cone in a direction
parallel to the axis. The probability-mass of an infinitesimal element of
volume Ax at P is

(2.5) (2«)-"/««-^«rfT = (27r)-1/ag-(r0+«)1/2^a.- (2w)-««-i)/i«Hrl/i<JS,

where dS is the measure of an infinitesimal element in the (n — l)-flat
orthogonal to the axis of the cone and distant x from the vertex (cf. [5]).
Consider the probability-mass in that portion of the cone (an infinitesimal
"slab") demarcated by two adjoining (n — l)-flats orthogonal to the
axis of the cone and distant x and x + dx from the vertex of the cone. It is
easily shown that the intersection of the first of these two flats with the cone
is a regular (n — l)-dimensional simplex with centroid at the foot of the
perpendicular from P to the axis of the cone and with edges of length

[ 2 » { l + ( » - l ) p } / ( l - / , ) ] ! / • * .
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[3] An asymptotic expansion for a class of multivariate normal integrals 255

Let KN(l) denote the probability measure, under an iV-dimensional spherical
normal distribution with unit standard deviation in any direction, of a
regular iV-dimensional simplex with centroid at the centre of the distribution
and with edges of length I. Then according to (2.5) the probability measure
of the infinitesimal slab is

(2.6)
_

Consequently, the probability measure of the cone is

(21) J . i\ i ; J

Jo
where

and r0 is given by (2.4). Formula (2.7) which is of considerable intrinsic
interest may be used also to develop the required asymptotic expansion of
Jn(h; p) for h > 0. From here on we shall then assume that h> 01.

The if-functions are closely related to Godwin's G-function [1], [2]
introduced in connection with the distribution of the absolute mean deviation
in normal samples, and some further statistical applications of the functions
have been discussed in [4] and [5]. Clearly, Kjf(x) is bounded by 1. Again,
it has been shown elsewhere [7] that KN(x) has a power series expansion
with infinite radius of convergence. Consequently, Watson's lemma [10]
(p. 236) may be used to obtain a valid asymptotic expansion for the integral
in (2.7) by expanding exp(— x2/2)Kn_1(h:) in its Taylor series at x = 0 and
integrating term by term. In fact, let

(2-9) v«-x(*) - V«-i(*; A) ̂  e^HK^ta) = ff
i-0

where the CB_M a r e fu n c t i°n s OI ^ (a^d therefore of p). Then (2.7) gives with
the aid of Watson's lemma,

1 The centre of the distribution is interior or exterior to the halfcone according as to whether
h < 0 or h > 0. The integral formula for I,(A; p) in (2.7) is valid for all h, but for the asymp-
totic expansion developed subsequently (equ. (2.22)) h > 0 . (1,(0; p) is known to be equal to
the normed measure of a regular (n—1)-dimensional spherical simplex with common dihedral
angle arc cos (—p). The reader is referred to [9] where tables of such normed measures are
provided for n = 1(1) 51 - » and p = 1/i, » - 1(1) 12.)
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(2.10) /.(A; p) ~ (2*0-1/2^/2 f cB_Mr0-
('+1)-

<-0

This is the required formula. It should be noted that the probability density
in the original distribution at the point (h, h, • • •, h) is

(2.11) (2rc)-"/2{l + (» -

thereby justifying the assertion at the end of the introductory Section.
It now remains to determine the coefficients cn_M in (2.10) (cn_lt- =

Vn-i(O))- O n differentiating (2.9) ; times at x = 0 we obtain after some
simplification

±{ i^-^^y. tt-oi->
c n- l ,n-X+2*— 2.K 2) / T \I A an-l,n-l+2» VK — u> l> )>

(2.12) cn_1>m = 0 (w = 0, 1,2, • • - , « - 2 ) ,

0 {r = 0, 1, • • •),

i-0

where the a's are defined by

(aNii = K$(0)lj\). In the derivation of (2.12) use has been made of the
fact that

= 0 (r = 0, 1, 2, • • •)•

Formula (2.13) in its turn derives by induction from the following recursion
relationship between the a's proved elsewhere [7]:

(2.14) "»>>

(s = 1, 2, • • •) ,

[(s — l)/2] denoting, as usual, the integral part of (s — l)/2. Though (2.14)
may be exploited to derive explicit expressions for the non-zero a's these
are more easily obtained recursively by repeated application of (2.14) on
noting that, trivially,

(2.15) a°>'=° & - - l . » . - " ) .
{ } = 1 (7 = 0).

This yields for the first there non-zero an_lf,
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[5] An asymptotic expansion for a class of multivariate normal integrals 257

(2.16) a n_l n_1 = _ _ ^ _ _ ^ - j y j ,

_ w1/2 n — 1 1

» ( W 1 ) ( W + 7 W 6 ) !
I • i n-l,n+3 gn-i^fn-D/a 3 2 n (H + 3) !

((2.14) shows that the non-zero a's oscillate in sign).
On applying (2.16), (2.17) and (2.18) in (2.12), the first there non-zero c's

are obtained:

(2 20) C"-1'B+1 = ( "

(2.21)

Thus from (2.10),

7B(A; p) ~

where the first three coefficients in the asymptotic expansion are given by
(2.19), (2.20) and (2.21) (further coefficients may be obtained in the manner
shown). A slightly more convenient form of (2.22) is

(2.23) X [1 - (i(n)
+{i(»)4+i(

where

( 2 2 4 )

and (n)m denotes n(n + 1) • • • (n -\- m — 1). It will be noted that the present
asymptotic expansion is particularly suitable for large h (i.e., the cut-off
point is not near the centre of the distribution) and algebraically small p.
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Finally, observe that for n = 1 (2.22) reduces to (1.3), since y>0(x) =
= exp(— »2/2) and

(2-25) ^ w = ( - i ) ' ( 2 ; ) l / / ! .

(The polyhedral half-cone is here the interval [A, oo).) For n = 2, (2.22)
reduces to

(2.26) It(h;p)~x-ler#*(tlfl) [ 1 - (3+t^2 + (15 + 1«« + 3** V ].

This agrees with a formula obtained previously [6] for the probability meas-
ure, W(r0; a), r0 > 0, under a standardized circular normal distribution, of
a sector of angle a, vertex at a distance r0 from the centre of the distribution
and with one arm of the sector passing through the latter point. The rela-
tionship between 72 and W is

(2.27). Ia(h;P) = 2W(r0;dl2)

where 0 = 2 arc tan t2(p) = 2 arc tan{(l + p)/(l — p)}112. It has been shown
in [6] that the bivariate normal integral for arbitrary cut-off point may be
expressed in terms of the difference of two W-functions (and therefore of two
7a-functions).

3. The Accuracy of the Asymptotic Expansion

In this section we obtain upper bounds to the error induced by taking the
first m terms of the asymptotic expansion as an approximation to In(h; p).

Let <j> be the angle between the axis of the half-cone and the line joining
P and the vertex of the cone, and let f be the distance of P from this vertex.
Then (using the notation of Section 2)

rs = r? + fa + 2roi cos <f>,

and the probability-mass of an infinitesimal volume-element of content dx
at P is

£2 + 2rof cos

where dco is the solid angle subtended at the vertex of the cone by the
volume-element (or, equivalently, the surface-content of an infinitesimal
element on the surface of a unit sphere whose centre coincides with the
vertex of the cone). Thus the probability-mass of the half-cone is

(3.2) /„(*;/>)=
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[7] An asymptotic expansion for a class of multivariate normal integrals 259

where Q is the (n — 1)-dimensional regular spherical simplex (with common
dihedral angle arc cos (— p) formed by the intersection of the half-cone and
the surface of the unit sphere. Again, if

then the derivatives of Gn_x{g) at the origin, ^1^(0), are given by

(0) = ( _ ! ) < { n l + 2i)- (• = 0 , 1 , 2, • • •)

with all other derivatives vanishing. Therefore, repeated integration by
parts yields

(3.3) J o
 B-x^; 4 ; 2H\

+ Rm(r0 cos <f>),

where

Rm(r0 cos <f>) = (r0 cos
(3.4)

= (r0 cos

after a further single integration by parts. On using (3.3) and (3.4) in (3.2),

In(h;p) =
(3.5)

+ f i?m(r0 cos
Jo

where

(3.6)

In (3.5), the remainder after m terms is

(3.7) Em = (2n)-»/*e-<<*jQ Rn(r0 cos

An upper bound to \Em\ can be obtained from an upper bound to Rm(r0 cos 4>)
in (3.4). The latter upper bound is itself obtained by deriving first an upper
bound to G^^-^d) for £ ^ 0. If, then,

(3-8)

(3.4) gives
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(3.9) \Rm(r0 cos <t>)\ < An_h2m(r0 cos ^)

whence by (3.7)

l C 2 ) " 7 1 ^ ^ S (r» COS
(3.10) 1£ml

which is proportional to the (m + l)th term of the series

(3.11) (2*)-»/**-'S/s • | ( - 1)' ( W ~ 1 + 2*')! a n , ^ < « + .
< - o ^ * >

Consequently, (3.11) is a valid asymptotic expansion when r0 > 0 of
JB(A; p). Moreover, the series (3.11) must be identical with the series (2.22),
since a given function determines uniquely (if at all) a series of the form
2 cPlro> s o tha t (3.10) provides an upper bound to the error in using (2.22).

We now proceed to determine a value2 for An_12m. Let

(3.12) * - i = / ^ . o t f o d ) + PMHS) + '•' + / W - i ^ n - i t f ) .

where #,(£) are the Tchebycheff-Hemite polynomials orthogonal to the
weight function exp (—£2/2) and normalized so that the coefficient of
£' in Ht(g) is 1. On multiplying (3.12) by Ht(£) exp(—f2/2), and integrating
over the real line, we find

(3.13) /?B_1(,

The value of the denominator in (3.13) is well-known to be V( 2OT)/ !. In order
to evaluate the numerator, define

(j = 0, 1, • • -, n- 1).

Integration by parts gives the recursion relationship

and on successive application of (3.14)

= (» — 1)(» — 2) • • • (« - ;>„_!

= (» - 1)(« - 2) • • • (» - /) f °°
J —0

whence

• That An_ltm < oo is evident from the fact that all derivatives of Gn_,(|) are products of
polynomials in f and exp (—f*/2).
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[9] An asymptotic expansion for a class of multivariate normal integrals 261

y-i.# = (» - 1)(» - 2) • • • (« - /)2<

(3.15) (n — 1 — / even),

= 0 (» —. 1 — / odd).

On substituting (3.15) and (3.13) and using the duplication formula for the
gamma function, we obtain

(3.16) / ? - 1 ' ' 2<-

= 0 (» - 1 - / odd).

Reverting to (3.12),

i-0

and therefore

(3.17) Gfc1""-^) = ( - l)«-i

1-0

on recalling that

(3.18) ^

An upper bound to |#n_i+y+2m(f)iexp(— f2/2) in (3.17) is readily deduced
from the well-known identity

J —OO

Hence, on applying (3.18),

( - l)*HJ£)e-?t* = f°° {iz
J —OO

from which we obtain (for f real),

(3.19)

Thus, from (3.16), (3.17) and (3.19),

(3.20) ' "~1 ' ' ' ~ n j 2«B-1-«/2(i(» — 1 — /))
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2 ) denoting summation over all non-negative integral / ^ n — 1 such that
n — 1 — j is even.

If n is odd, set / = 2t in (3.20). Then

(n — W(n-l)/2
v^_

— 1) — i)

and, on using the gamma duplication formula in the form

the latter inequality simplifies to

(3.21)
(» = 1, 3, • • •)•

Similarly if » is even, set j = 2t + 1 in (3.20). Then

("-*>/« (n — \\\

(3.22) ' "-1

• 2m+'+"/2r(« + i + \{n + 1)) (» = 2, 4, • • •)

and, on using the gamma duplication formula in the form

7i-V2r(m + i + | (n + 1)) = {2m + n + 2»)!/{(w + ^ « + i) !22m+«+2'},

the last inequality reduces to

(3.23) J w lm + 2n +
(n = '£,*,-• • •).

Formula (3.21) and (3.23) provide the required inequalities in the sense
that their right-hand members (refer to (3.8)) may be substituted for
An_1>Zm in (3.10) to supply the desired upper bound for the error after m
terms. A weaker (but at the same time simpler) upper bound may be obtained
by noting that in (3.21)

^ (2« — 2 + 2m)!,

whence
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[11] An asymptotic expansion for a class of multivariate normal integrals 263

(2»-2 + 2m)lW* 1

(2» - 2 4- 2m)! ^

(3.24) _ (2« — 2 4- 2m)! / 1 \ m+n~1 <B^»/a In — 1 4-
= ( n - l + m)l 'W Ji \ s

(n = 1, 3, • • •)•

Similarly, for n even, observe that in (3.23)

whence

V ' '

(2n 2 4- 2m\' f"-8)/

2m+"-1
 sr0 (w 4- n — 1 — s

2m)! / i \ »»+»-i (»^)/2 /» — 1 + m\

^)T'\2/ i I s /(» - 1 + m)!
f» = 2, 4, • • •)•

The inequalities (3.24) and (3.25) may be combined in the following single
inequality valid for all n (odd or even):

(» = 1, 2, • • •)•

Thus an upper bound to the ( » - l + 2w)th derivative of Gn_1(i) is
provided by the product of (2w — 2 4- 2m)!/(» — 1 4- m)! and the cumu-
lative sum of the first (or last) [(« 4- l)/2] probabilities in a binomial distri-
bution with index n — 1 4- m and parameter 1/2. (The latter cumulative sum
is, of course, readily available from various statistical tables.) This upper
bound may now be substituted for An_li2m in (3.10) to give the desired
simplified upper bound to the error after m terms in the asymptotic expan-
sion as a multiple of the (m 4- l)th term.
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