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SKELETON C*-SUBALGEBRAS 

HUAXIN LIN 

ABSTRACT. We study skeleton C*-subalgebras of a given C*-algebra. We show that 
if A is a unital (non-unital but <r-unital) simple C*-algebra, M is any unital (nonuni-
tal) matroid C* -algebra, then A contains a skeleton C*-subalgebra B with a quotient 
which is isomorphic to M. Other results for skeleton C*-subalgebras are also obtained. 
Applications of these results to the structure of quasi-multipliers and perturbations of 
C*-algebras are given. 

1. Introduction. Matrix algebras f^i, the C*-algebras o f n x n matrices over C, 
and ^C, the C*-algebra of compact operators on an infinite dimensional, separable Hilbert 
space are often called elementary C*-algebras for the obvious reasons. Matroid 
C*-algebras may be viewed as a generalization of elementary C*-algebras. Though non-
elementary matroid C*-algebras are quite different (they are antiliminal, for instance) 
from elementary ones, they inherit many properties from elementary C*-algebras. They 
are "matroid". Next, of course, are (simple) AF C*-algebras. The class of AF C*-algebras 
is one of the best understood classes of C*-algebras. They have a rich but managable 
structure of projections and provide many interesting and important examples. The rea­
son that AF C*-algebras are better understood is that they are approximately finite di­
mensional and therefore "matrix-like". 

In [20] and [25], fundamental approximate identities were studied. For example, 
S. Zhang ([25]) showed that every a -unital (non-unital) simple C*-algebra with real 
rank zero has a fundamental approximate identity. The existence of such an approximate 
identity provides some "matrix-like" structure inside the C*-algebra. For example, we 
showed in [20] that a C*-algebra with fundamental approximate identity has a "skele­
ton" algebra with a quotient isomorphic to %^. In this note we introduce formally the 
concept of "skeleton": 

DEFINITION 1.1. Let A be a C*-algebra. A C*-subalgebra B is called a skeleton C*-
subalgebra if the hereditary C*-subalgebra generated by B is A. 

It should be noted that if A is unital, A has a skeleton C*-subalgebra which is isomor­
phic to C. Therefore, we do not search for a trivial skeleton but for a rich skeleton with 
nice properties. We will show that if A is a a -unital (non-unital) simple C*-algebra then 
for any unital (non-unital) matroid C*-algebra fW, there is a skeleton C*-subalgebra B of 
A such that B has a quotient which is isomorphic to fAf. This shows that every a-unital 
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simple C*-algebra has a "matrix-like" structure. For a simple C*-algebra A with real rank 
zero, stable rank one and unperforated K0(A), there is a simple AF skeleton B of A such 
that Ko(A) = KQ(B) and for every projection p in A there is a projection q in B such that 
p ~ q (in the sense of Murray and von Neumann). Applications of these results are given 
in Section 3. 

1.2. Let A be a C*-algebra, a, b G A. We write (see [10]) a < b if there are JC, y G A 

such that a = xby. lfa,b£ A+, a < b, then, by [10,1.7], there is z G A such that z*z = a, 

zz* G Her(&), the hereditary C*-algebra generated by b. 

1.3. Given e > 0, let/e be the continuous function on R defined by 

[0 / < § 

U t>e. 

1.4. Given z in A with polar decomposition (in A**) z = u\z\ and e > 0 we know 
from [10, 1.3] that w/e(|z|) is in A. For any x € Her(|z|), 

\\uf£(\z\)x-uA\ <WfA\z\)x-x\\^0 

as e —• 0. Therefore, ux eA for any x G Her(|z| ). 

In fact the mapping (p defined by 

(f(x) — UXU* 

is an isomorphism from Her(|z|) onto Her(|z*|) (see [10, 1.7]). If a,b G A+, we write 
a ^ & if there is z G A such that z*z = a, zz* = b. If a ~^ Z?, then there is a partial 
isometry w G A**, where z — u \ z\ is the polar decomposition, such that the mapping ip = 
uxu* is an isomorphism from Her(a) onto Her(Z?). Moreover, if d G Her(a)+,Z/ G Her(Z?)+ 
are such that (p(a') = b' then [u(d)l/2][u(d)1/2]* = b' and [u(d)]/2]*[u(d)1/2] = d. 
Therefore, d ~(f> b'. We write a<^b'\î there is 2/ G Her(Z?) such that a ~<$> b'. Clearly, 
the relation < «/> is transitive and the relation "~^ " is an equivalence relation. 

1.5. There is another relation " ~ r " introduced by G.K. Pedersen [20, 5.26]. (See 

also [13] for the case of infinite sums.) If x,y G A+, we write x ~T y if there are z* G A, 

/ = 1,2,..., n, such that x = £?=1 z*z/, y = £?=1 W*> and w r i t e x < y if tnere is 

/ G A+ such that x ~T / , / < .y- If ̂  has a trace r , then T(JC) = r (y) if JC ~ r y. (See [20, 

5.26] or [13].) 

1.6. We will use the notation (P(A) for the Pedersen ideal of the C*-algebra A. 
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2. Scaling Approximate Identities and Skeleton C*-subalgebras. 

LEMMA 2.1. Let A be a C*-algebra, a and b two positive elements in (P(A). Ife > 0 
is such thatf£(b) generates !P(A) as an ideal, then there are ax,a2,...,an G P(A)+ such 
that 

n 

a=^ai,a2< a3 < < f£/2{b), 
i=l ~ T ~ T ~ T 

a\ < $au i = 1,2,... ,n and a\ < <j>f£/2(b). 

PROOF. There are xt, yt E A, / = 1,2,..., m such that 
m 1 , m m >> 

a = Z*ïfeV>)yi < 7z[£xife(b}x^ZyUe(b)yi). 
i = l Z \=1 /=1 J 

We may write a < £?=1 n, where 0 < rt < f£(b). It follows from [22, 1.4.10] that there 
are z, G A such that a = £?=1 z*z; and z,z* < n,i = 1,2,..., w. Therefore we may write, 
by 1.4, 

« = XI ai anc* a* ^0 ^> bt G Her^(&)), / = 1 ,2 , . . . , n. 
i=i 

We will adjust the fc,-'s and a/'s so that 

bx<bx <--<bn<f£/2(b), 

at ~ r bt, a\ < ^cif, 

i = 2 , 3 , . . . , n and a\ ~^ b\. 
We use induction on n. If n = 2, a — a\ + a2 , ax-^^ bt, and bt G Her(/e(&)), / = 1,2. 

Since 
bx <{f£/2(b)-b2)+b2, 

applying [22, 1.4.10] we obtain c\,dx,d\,^ such that ci ^ rfi, Cj ~<f> d[,b\ = ci +c'p 

d\ <f£/2(b) - bx, and d\ < d2. Set ^ = d[ and fc'2 = b2 + d\. Then ^ < bf
2 <f£/2(b). 

Since ai ~^ bu there are *i, t!x > 0 such that ai = fi + ^, ri ^ ci, and r7, ^ c^. Set 
a\ = ix and a2 — ai + *i- Then a = â  + a2, â  ^ frp a2 ~^ b'2. 

Now assume that a = jyjLi at, 

bi<b3<..-<bn<fe/2(b), 

ai~Tbi, a2<<f>ai, i — 3,4,. . . ,n, 

a2 ~^ b2 andZ?! <f£/2(b). 

Since ?̂i < (f£/2(b)-bn)+bn, applying [22,1.4.10] we obtaincn,c'n,dn,d!n > 0 such 
that 

bx = cn + c'n, cn ~4> d„, 4 ~4> ^ , 

4 <f£/2(b) ~ bn, and < < bn. 
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Set b\ = < , b'n = bn+ dn. Then b\ < b'n < f£/2(b). There are tn, /„ > 0 such that 
tn + in = au tn ~</> cn, 1n ~</> c'n. Set â  = Ç a'n = an + Ç Then a'n ~T b'n < fe/2(b), 
a\ ~<t> b\ <f£/2(b\ and a = a\ + Y%=1 at + (a„ + a!n) and 

Repeating this argument with a\,b\ and bn-\, we get ̂  = tn-\ + f̂ , f„_i ~<t> dn-X < 

bn-bn-xJn_x ~<f> < _ ! < V - l , * n - l , 4 - l , < _ i > 0 . S e t ^ = <_ 1 , f e /
n _ 1 = V - l + 4 » - l , 

tf" = C-iX-l = ^n-l + f l n- l - T h e n 

b'[<b'n_x<bn<b'n<fe/2{b\ 

y2 < b3 <. •. < &„_! < ^ _ ! < ^n < &;, 

n - 3 

i=2 

and a" -.0 Z//, a'n_x = an-X + fn_i ~T b'n_v a'n ~<f> fej,. 
Proceeding in this way, we can write 

n 

/=i 

(fen+1 = fej2{b)), t\ ~<i> d[ < b2, b\ = bi + d;, 2 < / < n. We have 

n 

Û = *i + XXa* + fi) md b't = bt + du 2 <i <n. 
i=2 

Set b\ = ^i ; then 

and #{ = a/ + ti ~T b'j, 2 < i < n, a\ ~</> b\. 
This completes the proof. • 

DEFINITION 2.2. Let A be a a-unital C*-algebra and { en} be an approximate identity 
for A. Denote en — en-X by gn (eo = 0). If there is a sequence of positive numbers { £*} 
and a subsequence of positive integers { n(k)} such that 

( i ) fek(gn(k)) > gn> gn+\ for n(fc) < H < n(k + 1 ) , 
~ r ~ T 

(ii) gn(*) < <f>gn for w(fc- 1 )< « < n(k) andg,^ < tfe^ignik-i)), 

(iii) gn(2k-\) -L n̂ if w > «(2^ - 1) or « < n(2A:- 3), 

(ÎV) gn(2Jk)(En(2Jk-2)</<n(ife)^i) = \J2n(2k-2)<i<n(2k)gi)gn(2k) = gn(2k), 

where A: = 1,2,..., then we say that { e„} is a scaling approximate identity. 

It should be noted that if { en} is a fundamental approximate identity, then { en} is a 
scaling approximate identity. 
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THEOREM 2.3. If A is a a-unital (non-unital) simple C* -algebra, then A contains a 
scaling approximate identity. 

PROOF. Let a be a strictly positive element of A. By taking a proper sequence of 
continuous functions hn, we can construct (by taking e'n = hn(a)) an approximate identity 
{e'n} such that for each n, there is 0 < an < en — en+\ (eo — 0), an(en — en-\) = 
(en — en-\)an — an, an ^ 0, and an _L em — em-\ if n / m. Moreover, en G P(A). Set 
gn = en — en-\, bn — gn— an,n — 1,2, Applying Lemma 2.1, we obtain 

t>2 = r2,i + r2,2 + . . . + r2>m(2) 

such thatO < r2,,-+i < /e,(fli) </e ,(gi), r2,m(2) < <j>r2,i and r2,m(2) < <i>f£l(a\) <f£l(g\), 

/ = 1,2,..., m(2) — 1, for some 1 > e\ > 0 and r2^ ^ 0, / = 1,2,..., m(2). 
We also obtain 

«2 = f2,m(2)+l + * * ' + ^2,m(2)+m/(2) 

such that 
0 < ^2,m(2)+/+l < r2,m(2)+i < /e2( r2,m(2))> 

f"2,m(2)+m'(2) < <£ ^2,m(2)+/» « = 1, . . . , m ( 2 ) — 1, 

f*2,m(2)+m'(2) < <^/e2(r2,m(2)), 

for some 1 > £2 > 0, and r2,m(2)+i ^ 0, / = 1,2,..., ra'(2). 
Repeating this process, we get a sequence of nonzero positive elements as follows: 

£3 = r3ti + r3,2 + • • • + r3,m(3), 

«3 = ^3,m(3)+l + * * ' + ^3,m(3)+m'(3), 

0* = fk,m(k)+l + ' ' * + rk,m(k)+m'(k), 

such that 
n,i+l < n,i < f£2k-\{rk-l,m(k-l)+m'(k-l)), 

n,m(k) < <t> n,i, i= 1,2,..., m{k) - 1, 

fk,m(k) < </>/e*-i ( rfc-1 ,m(&-1 )+m'(J:-1 ) ) 

for some 1 > ek-i > 0, and 

rk,m(k)+i+l < rk,m(k)+i < f2e(rk,m(k))' ~ T ~ T 

fk,m(k)+m'(k) < <j) rk,m(k)+i> * = 1, 2 , . . . , W (&) — 1, 

fkMk)+m'(k) < 4>f£2k(rk,m(k)) 

https://doi.org/10.4153/CJM-1992-022-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1992-022-7


SKELETON C*-SUBALGEBRAS 329 

for some 1 > £2* > 0. 

Now set 

e\ = e'i, e2 = e\ + r2,\, £3 = ^ + r2,i + r2>2, 

^m(2)+i = ^1 + r2,i + • • • + r2,m(2) = e\ + ft2, 

^m(2)+2 = ex + b2 + r2>m(2)+i, 

£m(2)+m'(2)+l = ^1 + ^2 + 7*2,m(2)+l + * ' ' + ^2,m(2)+m'(2) = *?i + ^2 + «2 = £ 2 , 

m(*) 

^+m(^)+r;:;(m(n)+m'(n)) = * * - l + ^ ^ ' n = * * - ! + ^ ' z n=l 

^2+m(*)+£*:1
2(m(«)+m'(n))+l = * * - l + 6 * + r*,m(*)+l, 

Takew( l )= l , n ( 2 ) = l+m(2),n(3) = 1 + m(2) + m'(2) , . . . ,n(2k) = l+m(2) + --- + 

m(Jfc - 1), and n(2ik + 1) = 1 + m(2) + • • • + m{k - 1) 4- m\k - 1), fc = 1,2, . . . . From the 

construction one can check easily that { en}, { n*} and { £&} satisfy the conditions (i) to 

(iv) in 2.2. • 

THEOREM 2.4. Lef SI be a C*-algebra with a scaling approximate identity {en}. 

Then A has a skeleton C*-subalgebra B such that B has a quotient which is isomorphic 

to<K. 

PROOF. We will keep the notation of 2.2. 

We first claim that there are g® > 0, 1 < / < k and uf, 1 < i < k - 1, k = 1,2, . . . , 

such that 

(1) g? < #f\ if / < *, gf e Her(/^n(20), 

(2) ("n("n*-^^(^T(^=^^(2o) , 
where a^ = ^2*> & = 1» 2, 

We will prove the claim by induction on k. Assume that the claim is true for all k! <k. 

Since gn(2(k+i)) < <t>feUk-\Mik\ there is 4+i in A such that 

(4+l )*(4+l ) = /<*+! (*n(2(*+l))), 

Define uf+l = 4°4+i> 1 < i < k. Then 

= ("t+l)Vo»(*H(2(*)))(«t+i)-

https://doi.org/10.4153/CJM-1992-022-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1992-022-7


330 HUAXIN LIN 

Since fak(gn(2(k))) is a unit for Her(/^(g„(2(*)))), 

(4+1 ) (ULl) = fak+l(Sn(2(k+l)))' 

Set 

1 < / < fc; t h e n ^ j G Her(/"£2/.(gn(2/))). This completes the proof of the claim. 

Let Xk(t) denote the characteristic function of the set [0, S2k\- Set p[ ~ — x*(#n(2*)) 
andp^ = u®pf~l)(u®)*. Then pj^ are closed projections (with respect to A) in A**. 
Set 4 = E/U/40 » 4 *s a*so a c l° s ed projection in A**. Let B2 be the C*-subalgebra 
generated by [u2

l\ eni}, . . . , ^ + i the C*-subalgebra generated by [Bk, 4+i » (̂Jfc+D) _ 

£n(2*)}- Notice that e'k commutes with en(2(i+i)) — en(2î) and w-+i> 1 < / < / : . It is a routine 
exercise that e'kBk is isomorphic to $ 4 (/: > 2). 

Now for fixed m, for k>m, 
m 

en{2m)e'k — e'ken{2m) = YlPk ' 
i = l 

So {̂ „(2m) 4 } (^ — m ) is a decreasing sequence of closed projections in A**. So 
{^n(2m)4} converges strongly to a positive element gm in A**. Hence gm is an upper 
semi-continuous function or the quasi-state space of A (see [20, 3.11]). By a standard 
compactness argument, qm ^ 0, and hence qm is a nonzero projection in A**. Now { qm} 
is an increasing sequence of projections, so qm /* q for some nonzero projection q in 
A**. Furthermore, ^ —• g strongly. 

Since ej. commutes with every element of Bt, 2 < i <k, we conclude that q commutes 
with every element of Bt, 2 < i. It is routine to check that qBt is isomorphic to 5^, / > 2. 
Denote by B the C*-subalgebra generated by { Bt : / = 2 ,3 , . . . } ; then g commutes with 
every element of B. Thus there is *-homomorphism from B onto Bq. Moreover, one can 
easily check that Bq is isomorphic to %,. m 

LEMMA 2.5. Let A be a non-elementary simple C* -algebra and a be a nonzero pos­
itive positive element ofP(A). Then for every k, there is a skeleton C* -subalgebra B of 
Her(a) and a closed projection p in A** such thatp commutes with each element in B and 
such thatpB is isomorphic to fM*. 

PROOF. Since A is simple, so also is Her(#). If sp(a) is finite, then Her(a) has an 
identity e. There is a positive element b in Her(#) with infinitely many points in sp(fr). 
So sp(e + b) has infinitely many points. Since Her(e + b) = Her(a), we may assume 
that sp(a) has infinitely many points. There are continuous functions h\,h2,...,hk and 
hf

l9h
,
2,...9h

,
kon sp(<2) such that 

(1) fl<EWfl). 

(2) h!t{a) ± hj(a) if y ± i, 

/3) tii(a)hi(a) = h^h^a) = hf
t(a), 

||/*;.(fl)|| - \\hi(a)\\ = 1, i = l , 2 , . . . , * . 
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Repeated application of [10, 1.8] shows that there are nonzero elements b\ G Ah^a) such 
that 

b\>b'2>...>b'k 
pa pa pa 

(see [10, 2.3]); we may assume thatO < b\ < 1, and that ||6-|| = 1, / = 1,2,... X Take 
b\ — b'k and apply [10, 1.7] repeatedly; we obtain bt G Ah>(a), \\bi\\ = 1, and zt G Her(a) 
such that 

z*zt = b\, z/z* = bi9 i = 2 , . . . , k. 

There are ut G Her(a) such that 

u*Ui=fl/s(bi\ 

"iW* = / l / 8 ( W 

(see 1.4), / = 1,...,/:. 
Let X1/4W denote the characteristic function of [1/4,1]. Set/?, = Xi/4(^/) and/? = 

£?=i A- Then p is a closed projection in A**. It is easy to see that/7 commutes with /i,-(a), 
/ = 1,2,...,/:, and commutes with w,, 1 = 1, . . . , k. 

Let B denote the C*-subalgebra generated by 

{ hi(a), i= 1,2,...,/:, ut, i— 2 ,3 , . . . , k}. 

Then £f=1 /i,(a) > a. So B is a skeleton C*-subalgebra of Her(a). Moreover, /? commutes 
with each element of B. It is a routine exercise that /?# is isomorphic to #4 . • 

THEOREM 2.6. Lef A be a a-unital, non-unital, non-elementary simple C* -algebra. 
Then for any non-unital matroid C*-algebra 9{, there is a skeleton C*-subalgebra B of 
A such that B has a quotient isomorphic to 9/1. 

PROOF. AS in the proof of 2.3, there is an approximate identity { en} for A satisfying 
the following conditions: 

(i) enem = emen = em, if n > m; 
(ii) there are an in A such that 0 < an < en — en-\(eo = 0) and an(em — em-\) = 

(em - em-\)an = 0 if m ^ n; 
(iii) (en - en-i)(em - em-i) = 0 if \n - m\ > 2 and ||é>n|| = 1. 
Suppose that 

0 < < / ( l ) < r ( l ) < < 7 ( 2 ) < r ( 3 ) < . . . 

is a sequence of integers such that 9/i is the following inductive limit: 

-* fq{\)K\) ^ r <lr{\)q(2) J fq(2)H2) r 1*2)4.3) - j 

fyKrti) —>MKX) —• ^ (2 ) — • % # ) —• MqQ) —• • ' ' • 

Here r(n) \ q(n +1), and/mn is the homomorphism consisting of adding n — m rows and 
columns of zeros to each matrix in 9/tm, and gmn = 1 (g> lp, i.e. 

-x o ••• On 
0 x ••• 0 

gmn(x) 

0 0 pxp 
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wherep = *. We set s(n) = *^±p, t(n) = r(rc) - q(n) andgn = en - £?„_i, n = 1,2,.... 
As in Lemma 2.5, there are Ji(1), d2{X\..., ^(i) (1) and U2, W3,..., uq(\) in Her(«i ) such 

thatO<4- (1), \\diil)\\ = l,d<l)±d/l)ifi^j,md 

nii)«r=/i/8(*(i))-

Moreover, if we take e\ = Y^lp^, where/?-1} = Xi/4(^/(1))» and#i the C*-subalgebra 
generated by {gi,w/, / = 2 ,3 , . . . ,g( l )} , then e\ commutes with each element of B\ 
and e\B\ is isomorphic to fW (̂i). 

Repeated application of [10, 1.8] shows that there are elements d\ G Her(<2/+i), (/ = 

l ,2, . . . , f( l)) such that 

/ i / 2 ( d i ( 1 ) ) > ^ i > 4 > - - - > < 
' v ' cv ex» ev ex: 

'0) 

(see [10, 2.3]). As in the proof of Lemma 2.5, there are d/2) G Her(a,-+i) with dt
(2) > 0, 

| | ^ 2 ) | | = l , i = 1 , 2 , . . . , ^ , ^ ^ - 1, 

and u) G A such that 

W W ) =/./8^(2))> 

)' = 2,3,. . . ,f(l) + l.Set 

«So = "i'MuHi- y = 2,3,...,9(i), 

/>?' = Xi/4(4
(2))< i= l ,2 , . . . , r ( l ) + l. 

Then 

/ = 2,3,...,f(l)+l,and 

(MfV1
2,)("fV,2T = / f </&.>• J = W + 2,...,*1), 

where p]2) are closed projections. Let e2 = E j i 1 } /^ ; then ^y-fa) = / ^ - r o ^ — Z7/̂ » 
7 = f(l) + 2 , . . . , r(l), e2e\ — e!xe'2 = ^jl1

f
)
(1)+2/?j2) and e'2 commutes with each element of 

#2, where #2 is the C*-subalgebra generated by {B\, uf\ i = 1,2,..., t(l) + 1, ^ D + I — 
^1}. It is a routine exercise to check that e2B2 is isomorphic to fH<i)- Moreover, e'2#i 
is isomorphic to 5W (̂i). If we identify e2B2 with fH<i), and e2#i with f ^ i ) , then the 
isomorphism ^#1 —• e^i^i = ^2^1 gives the homomorphism/^D^i) from fM î) into 

fH<i)» and we may write e\B\ -—>e2B2. 
We assume that there are C*-subalgebras B\,B2,..., Bm,... satisfying the following: 
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(1) B2« is generated by {B2«-i,^-,«0+1' u?"^ ' = 2,3, . . . , f (n)+1}; 
(2) there are dt

(2n) > 0, ||rf/2n)|| = T, / = 1,2,..., t(n) + 1, such that 

^ G H e r ^ , ^ , , . ) , / = l,2,.. . ,r(n), 

« C . € Her(f1/2(^"-»)), 

(«î2"))*(«i2-))=/i/«(«'i(2")). 

(Mf«))( t tP"))*=/ l /8(^)), 
/ = 2,3,...,f(n) + 1; 

(3) if we set ^ = u ^ u ^ J = 2 ,3 , . . . ,*(n) andp?n) = Xi/4(4 (2 , , )). / -
l,2,...,f(w) + l,then 

(u?"y^)(u?"Wny=p?n)> 
i = 2,3, ...,f(w) + 1, and 

( M f V , 2 T ( " J 2 v n = M2,!), 
(«f"V1

2",)(«fnV1
2'IT = /'f") 

where pfn) < pf^l) a r e closed projections,;' = t(ri) + 2,..., r{n), andpfn> < 

pf"-l\ 
(4) if we set 4„ = E ^ / ^ t h e n ^ . , = éln_xéln = £ * 4 ) + 1 p f» and 4 , com-

mutes with each element of B2n, ^2rfi^n is isomorphic to fH<«) and e2n#2n-i = 
e2ne2n-\B2n-i is isomorphic to f^(„>; 

(5) if we identify e'2nB2n with f^n) and e2n-i#2n-i with 5W (̂„), the isomorphism 
4n-i^2«-i to 4«52« given by x —• e'2nx (x G e2n_xB2n-\) gives the homomor-
phism: 

(6) B2n+{ is generated by { B2n, ufn+l\ i = 2,3 j(n)} ; 
(7) wfn+1) E Her(/,

1/2(^i(2n))) i = 2 , . . . , s(«), and there are 

*<2»+1)€Her(r1/2(rf1^)), 

4 (2n+1) > 0, | |4 (2n+1) | | = 1, dt
(2n+l) JL d/2n+l\ 

i jL j9 ij = 1,2,..., s(n)y such that 

(«r 0 ) *^ 0 ) =/v8(^(2"+i))' 
(« r 'o^ 'T =/i/8(*(2"t,)). 

i=2 ,3 , . . . , 2 (n ) ; 
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(8) if we set 

uMk-\)rin) = ufn)ufn~l), j = 2 , 3 , . . . , s(n), k = 2 , 3 , . . . , s(ri), 

P?n+l) = XV4(di(2n+1)), ' •= 1.2,. -An), 

then 
/„(2n+l) (2«+l ) \* / (2n+l)„(2n+l)\ _ n(2n+\) 
\ui P\ J \ui P\ J ~ Pi 

i — 2 , 3 , . . . ,s(n), and 

(ufn+])pfn+l)Y(ufn+l)pfn+l)) = pfn+l\ 
((2n+l)(2n+l)\((2n+l)(2n+l)\* _ _(2#i+l) 
\UJ Pi )\Uj P\ ) ~Pj 

j = s(n) + 1 , . . . , q(n + 1), where p- n+ are closed projections; 

(9) i f w e s e t 4 n + 1 = E/?fn+1), then e'2n^e'2n = 4 / 2 n + 1 = e'2n+l, e'2n+x commutes 

with each element of B2n+\- Moreover, e2n+lB2n+i is isomorphic to Mq(n+\) and 

e2n+lB2n is isomorphic to M^n). 

(10) if we identify e2n+lB2n+i with Af^+i) and e2nB2n wi thM^) , then the isomorphism 

from e2nB2n to e2n+\B2n given by x —+ e2n+lx,x G e2nB2riJ gives the homomor-

phism: 

^2n^2n • ^2n+1^2n. 

If m - 2n, then, as in Lemma 2.5, there are </<m+1), d{
2

m+l\ . . . , d ^ and 

w r ^ H e r ( / l / 2 ( ^ ) ) , 

i = 2 ,3 , . . . ,s(rc), such that ^ ( m + 1 ) > 0, | |^ ( m + 1 ) | | = 1, d*m+l) JL df/m+1) if i ^ y 

and 

(«J-»)'^») =/l/g(rflc-)), 

( « r o ^ r o * =/./8(4(m+i))< 
/ = 2 , 3 , . . . , s(fr). Set Bm+\ equal to the C*-subalgebra generated by 

and 

Then 

{ Bmy ujn+ \ i = 2 , 3 , . . . , s(n)} 

p^-xi/^d^y 1 = 1,2,... ^ n ) , 

"j^-OK*) = 4m)"f+1)' 7 = 2 , 3 , . . . , 5(n), * = 2 , 3 , . . . , s(n). 

/ (m+l) (m+l ) \* / (m+l) (m+l)\ _ (m+l) 
VM/ KI ; v"i P\ ) — P\ 
( (m+l) ( m + l ) \ / (m+l) (m+l)\* (m+l) 
[u\ }p\ }){u) }p\ }) =p) \ 
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/ = 2 ,3 , . . . ,s(ri), and 

/ (m+l) (m+l ) \* / (m+l) n (w+l) \ 

=p(rl\ 
(u(m+l) n(m+l))(u{m+l) nim+l)Y 

- uim).xm+l)(m+l)(m+l)((m+l)\*((m)\* 

- uk Uj px px yuj j yuk j 
- Am)(m+l)(m+\)(m+l)((m+\)\*((m)\* 
- uk uj P\ P\ \uj ) \uk ) 
_ (m+l) 
- Pj+ik-DKn)9 

j = 2 ,3 , . . . , s(n), k = 2 ,3 , . . . , s{ri), where p^l\)rin) a r e c^osec^ projections. If 
we set e'm+l = Ylf^l)pf+l\ then 4 + 1 ^ m = e>mem+x = e'm+x and ^ + 1 commutes 
with each element in Bm+\. It is a routine exercise to check that e'm+xBm+\ is iso­
morphic to ^Mq(n+\)- Moreover, if we define a map ip from e!mBm onto emJrXBm 

by (f(x) = dm+xx then the map is an isomorphism. If we identify em+xBm+\ with 
tMq(n+i) and e'mBm with fM „̂), the map <p gives the homomorphism: 

^m^w * ? m+l & m+l-

If m = 2n — 1, repeated application of [10, 1.8] shows that there are elements d't G 
Her(a™-i,(,)+!+,), i= 1,2,..., f(n), such that 

/i/2(4m))>4> 4 >•••><») 

(see [10, 2.3]). As in the proof of Lemma 2.5, there are 

4<m+1) € H e r ^ ^ J . 

4(n)+1
(m+1> G H e r f t / ^ " 0 ) ) , 

d,-(m+,)>0,||d,-(m+1)|| = l , i = 1,2,...,f(n)+l,and ^m + 1 )€Asuch that 

(MrTWm + , >)=/v8(^ ( m + i )) 
and 

i = 2,3,...,f(n) + l. 
Set 

(«row^T-zi/s^1^ 

and 

«&?Hm)C»l. 7 = 2,3,...,**). 

/>,(m+1) = X,/4^m+1,)> i = 1,2,... ,/(»)+!. 
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Moreover, 

Then 
^ / w + l ) f m + l ) W fm+l) rm+l)\ - Jm+^ 
\ui P\ ) \ui P\ ) — P\ 

(M<-+1 vrl)) {«irlvrl)y = p(rI\ «•=2,3,..., *«>+1. 
/ (m+1) ( m + l ) \ V / m + l ) (m+l)\ 
V'Wo^l J \Uj+t(n)Pl ) 

=i»r>(»ci)*(»r),(«r))(«ori)) 

- ,7(m)jy(m+l) (m+l) (m+l)/ ( m + l ) \ * / (ro)\* 
~ uj Ut(n)+\P\ P\ \Ut(n)+\) \uj J 

= PM%> j = 2,3,...,q(n), 

where p j ^ are closed projections and p{™$ <pf\ 7 = 1,2 #(n). 

Set ̂ + 1 = E^Vf+1); then 

J n(m) _ Am) 1 _ (ro+1) / _ 1 9 ^ „ \ 

Kl) 
/ / _ / / _ v ^ „(m+l) em+\em emem+\ £ tf 

and e^+1 commutes with each element in Bm+\, where Bm+\ is the C*-subalgebra gener­
ated by 

{Bm,u{^x\ i = l , 2 , . . . , f ( n ) + l, ^ , , 0 - H I - ^ 1 } . 

It is a routine exercise to check that e'm+lBm+i is isomorphic to fM r̂t). Moreover, if we 
define a map ip from ^„#m onto e'm+lBm by <£>(*) = eJ„+1Jc then the map is an isomor­
phism. If we identify e'm+lBm+\ with 5l^„) and £^#m with 5l^(n), the map (/? gives the 
homomorphism: 

/ p fqin),in} j D 

For fixed n, {e'ne'm} is a decreasing sequence of closed projections (m > n). So 
{ e'ne'm} converges strongly to a positive element qm in A**. Hence <?m is an upper semi-
continuous function on the quasi-state space of A (see [20, 3.11]). By a standard com­
pactness argument, qm ^ 0, and hence qm is a nonzero projection in A**. Now { qm} is 
an increasing sequence of projections, and so qm / q for some nonzero projection q in 
A**. Furthermore, e'm —• q strongly. 

Since e'm commutes with every element in Bt, 1 < / < m, we conclude that q com­
mutes with every element of Bm. It is then easy to see that qBm is isomorphic to e'mBm. 
If B denotes the C*-subalgebra generated by { Bm, m — 1,2,..., m}, then q commutes 
each element of B. So there is a homomorphism from B onto qB. By the construction of 
{ Bm}, it is easily checked that qB is the norm closure of the following inductive limit: 

n fqimi) ~ 8r{\)q{2) __ fq(2)r{2) _ £r(2)<7(3) 

# # i — x 7 # 2 — • <7#3 — > q B 4 — • ^ 5 — • • • • • 
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Therefore qB is isomorphic to (M. Since £J[=1 t(k) —• oo as n —» oo, and ^y;« r(jk)+1 G 
B, B is a skeleton C*-subalgebra of A. This completes the proof. • 

We also have the following: 

THEOREM 2.7. Let A be a unital and non-elementary simple C* -algebra. Then for 
any unital matroid C*-algebra M, there is a skeleton C* -subalgebra B of A such that B 
has a quotient which is isomorphic to *M. 

2.8. Real rank of a C*-algebra has been defined by L. G. Brown and G. K. Pedersen 
in [5]. A C*-algebra is said to have real rank zero if the invertible selfadjoint elements 
are norm dense in As.a. • A C*-algebra has real rank zero if and only if the elements in ASM. 
with finite spectra are dense in As.a., and if and only if A has (HP), i.e. every hereditary 
C*-subalgebra of A has an approximate identity consisting of projections (see [5, 2.6]). 
Trivial examples of C*-algebras with real rank zero are von Neumann algebras and AF 
C*-algebras. 

THEOREM 2.9. Let Abe a separable C* -algebra with real rank zero and stable rank 
one. IfKo(A) is unperforated, then there is a skeleton C-subalgebra B of A such that B 
is an AF C*-algebra with KQ(B) = KQ(A). Moreover, for every projection p in A, there is 
a projection q in B such that p is equivalent (in the sense of Murray and von Neumann) 
to q. 

PROOF. KQ{A) is a countable, unperforated ordered group. It follows from [2, 6.5.1] 
and [24,1.6] that Ko(A) has the Riesz interpolation property (see [15, A3.1]). Therefore, 
KQ(A) is a dimension group ([15, 3.1]). In other words, 

^o(A) = l i m { Z ( ^ , ^ } . 

Suppose that { en} is an approximate identity for A consisting of projections. Set 

P\ = eu pn = en-en-u « = 2 , 3 , . . . . 

If A is unital, we assume that /?i = 1, pn = 0 if w > 1. Without loss of generality, we 
may assume that \p\] G Z ( r , ) and [p\] = (/c(l),fc(2),...,/c(n)), where k(i) is a nonzero 
integer. Suppose that [#i] = (1,0,. . . ,0). Then [#i] < \p\\. Since A has cancellation 
(see [2, 6.5.1]),/?i > q\ (in the sense of Murray and von Neumann). Therefore there is 

a projection q\l\ < p\ such that 

*ïîî e Wil] md [PI ~ ?i!i] = (*(D " l>kQ)> • • • ^ (n) ) . 

Recursively, we can construct projections 

1 <j<k{i),i= 1,2 r(l), such that 

q™ ~ < $ and [<$>] = ( ( w T Ô T , 0 , . . . , 0). 
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Moreover, Y,ijéij ~ Pi- L^ V\J ^ e partial isometries in A such that (v,y) (v-^) = 

fl^WMY-fl- 2<;<««•). .•=i,2....,n. 
It is routine to check that the C*-subalgebra B\ generated by { v\j\ 2 < j < k(i), 

i= 1,2,..., r\} is isomorphic to 

^ 4 ( D e ^4(2) ©•••©f%- l )> 

and #o(#i) = ^ ( r , )- We may assume that [e2] = \p\ +pi\ = [p\] + [p2] € T{n) and 

[pi +P2] = (m(l),m(2),...,m(r2)). 

Suppose that, in Z ( r 2\ 

[^i!î] = (*n-*2i fe<i),i,0 0). 

Repeating the above argument, we can construct projections qf) < q\v\, 1 < j < 
k(i), i= 1,2,... ,^(1), such that 

i 

$>~#>.nd[#>]=(CXu>,...,0). 

Let us do the same for each q^). If [p2 — p\] = (s(l),s(2),...,s(r2)) (some of s(i) may 

be zero.) Let us add s(i) orthogonal but equivalent projections qfj in (p2 —pi)A(p2 ~P\) 

for each /. Suppose that vfj are partial isometries in A such that (VC))*(V/J)) — qf\ ^ d 

(i2))(i2T = C2<^'<-(o,/=i,2,...(,, 
The C*-subalgebra B2 generated by { v-^, 2 < j < m(i), i = 1,2,..., r2} is isomor­

phic to 
3»4(1) © Hn(2) 0 • ' ' © Hnin), 

Bi C £2, 

and K0(B2)^ Z(r2). 
Continuing this way, we get a sequence of C*-subalgebras B\ C B2 C • • C Bn C 

#n+i C . . . such that 

£« = 34(»)(i) © fH«(")(2) © • • • © ^ww(riI) 

for some integers m(w)(/), i = 1,2,..., rn, Ko(Bn) = Z (r"}, and the embedding: Z?n —> #„+1 

gives a homomorphism: 
Z(r„)J^Zr„+1> 

Let 5 be the C*-subalgebra generated by { U^xBn}. Then B is an AF C*-algebra and 
Ko(B) = lim Z(r"}. Since <?n e B, Bisa skeleton C*-subalgebra of A. Ifp is a projection 

in A, we may assume that [p] G Z(rn). Therefore there is q G £„ C 5 such that/7 is 
equivalent to q (in the sense of Murray and von Neumann). • 
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REMARK 2.10. Separable AF C*-algebras have real rank zero, stable rank one and 
unperforated Ko(A). Theorem 2.9 shows that separable C*-algebras with real rank zero, 
stable rank one and unperforated KQ(A) are somewhat similar to separable 
AF C*-algebras. However, a recent result of M. D. Choi and G. A. Elliott ([7]) pro­
vides examples (namely, irrational rotation C*-algebras) of simple C*-algebras with real 
rank zero, stable rank one and unperforated KQ(A) which are not approximate finite-
dimensional. (Note these simple C*-algebras have cancellation [23]. Hence, by [2,6.5.7], 
they have stable rank one.) The author would like to raise the following question: 

Are separable nuclear (simple) C*-algebras with real rank zero, stable rank one, 
unperforated KQ-groups and trivial K\-flows (see [26]) approximate finite dimen­
sional? 

3. Applications. 

3.1. Let A be a C*-algebra and denote by A** its enveloping von Neumann algebra. An 
element x in A** is a multiplier if xa and ax are in A for all a in A, x is a left multiplier if 
xa is in A for all a in A, x is a right multiplier if ax is in A for all a in A, and x is a quasi-
multiplier if axb is in A for all a and bin A. We denote the collections of multipliers, left 
multipliers, right multipliers and quasi-multipliers by M(A), LM{A), RM(A) and QM(A) 
respectively. If B is a skeleton C*-subalgebra of A, then M(B) C M(A), LM(B) C LM(A), 
RM(B) C RM(A) and QM(B) C QM(A) (see [19, 3.7]). (It should be noted that the above 
inclusions do not hold if B is merely a C*-subalgebra of A.) Therefore the results in §2 
may help us to determine the structure of M(A), LM{A), RM(A) and QM(A). 

It is easy to see that LM(A) + RM(A) C QM(A). The question whether LM{A) + 
RM(A) = QM(A) was raised in [1]. The problem has been studied in [4], [19], [20], 
[21], among other articles. In this section we will give applications of the results in § 2 
to this problem. 

Recall that a C*-algebra is scattered if it is type I and has scattered spectrum À (see 
[16]). Let X be a scattered topological space. Define X[0] = X, X[i] = X\ {isolated point 
of X}. If X[a] is defined for some ordinal number a, define X[a+\] — X\ {isolated points 
in X} ; if f3 is a limit ordinal, define X^] = r\a<pX[a]. We set À (X) = a, where a is the 
least ordinal such that X[a] is discrete. 

The following is a generalization of [19, Theorem 6.3] (see [20, Theorem 3] also). 

THEOREM 3.2. Let A be a C*-algebra with a scaling approximate identity and B a 
unitalC*-algebra. ThenQM(B®A) = LM(B®A)+RM(B®A) implies that B is scattered 
and À (B) < oo. 

PROOF. It follows from 2.4 that there is a skeleton C*-subalgebra A0 of A such that 
there is a *-homomorphism from Ao onto 30 Thus B® Ao is a skeleton C*-subalgebra of 
B®A and there is a *-homomorphism </? such that (f(B 0 Ao) = B ® %^. By [19, 3.1], if 
QM(B®A) = LM(B®A)+RM(B®A), then QM(B®A0) = LM(B®A0)+RM(B®A0). It 
follows from [19,4.13] that if QM(B (g) K) = LM(B®K)+RM(B®K), then, by [19,6.3] 
(note that the "only if" part of [19, 6.3] works for a-unital C*-algebras), B is scattered 
and À (B) < oo. • 
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THEOREM 3.3. Let Abe a a-unital simple C-algebra. Then QM(A) = LM(A) + 
RM(A) if and only if A is elementary or A is unital 

PROOF. Only the "only if" part needs a proof. Assume that A is non-unital and non-
elementary. Take a non-elementary stable matroid C*-algebra 9vt. By Theorem 2.6, there 
is a skeleton C*-subalgebra B of A such that B has a quotient which is isomorphic to !M. 
If QM(A) = LM(A) + RM(A% then, by [10, 3.1], QM(B) = LM(B) + RM(B). Therefore, 
by [19, 4.3], QM(M) = LM(M) + RM{M). This contradicts Theorem 6.3 in [19], since 
M is a stable matroid C*-algebra. • 

THEOREM 3.4. Let A be a G-unital C*-algebra and B a a-unital, non-unital and 
non-elementary simple C*-algebra. Then 

QM(A ®B)^ LM(A 0 5 )+ RM(A <g> B). 

PROOF. Suppose that M is a non-elementary matroid C*-algebra. It follows from 
Theorem 2.6 that there is a skeleton C*-subalgebra Bo of B such that B0 has a quotient 
which is isomorphic to 9V[ (g) ^ . Therefore A®B has a skeleton C*-algebra A ® 5 with a 
quotient isomorphic to A ® fW ® AT. The conclusion then follows from the proof of 3.3. 

• 

3.2. L. G. Brown in [4] showed the connection between the problem of whether 
QM(A) = LM(A)+RM(A) and the problem of perturbations of C*-algebras. Perturbations 
of C*-algebras have been studied in several different ways (see [6], [8], [9], [17] and 
[18]). One of them is to ask whether an almost isometric (\\(f\\ — 1 and || <p\\ — 1 are 
small) complete order automorphism tp of a C*-algebra is close to an isometry. 

THEOREM 3.6. If A is a a -unital, non-elementary simple C*-algebra without identity, 
then there exists a sequence {(/?«} of complete order automorphisms of A such that 

lim \\ipn\\ = 1, 
n—•oo 

l i m H * . - 1 1 | = 1, 
n — • o o 

but 
inf{ || 0 — Lpn\\ : n = 1,2,..., 6 automorphisms of A} > 0. 

PROOF. By Theorem 3.3, QM(A) ^ LM(A) + RM{A), and so Theorem 7 in [20] 
applies. • 

ADDED IN PROOF. N. C. Phillips pointed out to us that there are examples of separa­
ble C*-algebras with real rank zero, stable rank one, unperforated ^o-groups and trivial 
K\ -flows but not nuclear and so not AF. Thanks to his remark, we now add the condition 
of nuclearity to the original question in Remark 2.10. 
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