LINEARIZATION OF A CONTRACTIVE HOMEOMORPHISM

LUDVIK JANOS

1. Introduction. Let X be a topological space and $\phi: X \to X$ a continuous self-mapping of X. We say that ϕ is *linearized in* L by Φ if there exists a topological embedding $\mu: X \to L$ of the space X into the linear topological vector space L such that for all $x \in X$, $\mu(\phi(x)) = \Phi(\mu(x))$, where Φ is a continuous linear operator on L.

Let X be metrizable and let $\alpha \in [0, 1)$. We say that $\phi: X \to X$ is a *topological* α -contraction on X if there exists a metric $\rho(x, y)$ on X inducing the given topology such that

$$\forall x, y \in X: \rho(\phi(x), \phi(y)) \leq \alpha \rho(x, y).$$

If ϕ is a homeomorphism and at the same time a topological α -contraction, we shall say that ϕ is a topologically α -contractive homeomorphism.

Let $\alpha > 0$. We shall say that ϕ is a *topological* α -homothety on X if there is a metric $\rho(x, y)$ on X, inducing the given topology, such that

$$\forall x, y \in X: \rho(\phi(x), \phi(y)) = \alpha \rho(x, y).$$

Our main objective in this paper will be to show that if X is a compact metrizable space and $\phi: X \to X$ is a topologically α -contractive homeomorphism (for some $\alpha \in (0, 1)$), then ϕ can be linearized in a separable Hilbert space as a homothety.

2. Proof of the theorem.

THEOREM. Let X be a compact metrizable space, $\alpha \in (0, 1)$, and $\phi: X \to X$ a topologically α -contractive homeomorphism. Then, for every $\beta \in (0, 1)$ there exists a topological embedding $\mu: X \to H$ of X into a separable Hilbert space H such that $\forall x \in X: \mu(\phi(x)) = \beta\mu(x)$.

Proof of the theorem. According to the theorem, proved in (1), the mapping ϕ is a topological α -homothety for every $\alpha \in (0, 1)$, i.e., there exists a metric ρ on X such that

$$\forall x, y \in X: \rho(\phi(x), \phi(y)) = \alpha \rho(x, y).$$

We shall show, first of all, that (X, ρ) can be embedded isometrically in the larger metric space (X^*, ρ^*) , over which ϕ can be extended as an α -homothety *onto*.

Received April 4, 1967.

1387

LUDVIK JANOS

Let $A_0 = X - \phi(X)$ and $A_{n+1} = \phi(A_n)$ for $n = 0, 1, 2 \dots$ We observe that the sets A_n are all mutually homeomorphic and disjoint, and that X can be represented in the form:

$$X = \left[\bigcup_{n=0}^{\infty} A_n\right] \cup \{a\},\$$

where $a \in X$ is the fixed point of ϕ . The mapping ϕ has an inverse on $\phi(X)$ and we have that $\phi^{-1}(A_n) = A_{n-1}$ for $n = 1, 2 \dots$

Let us now introduce the family of sets A_{-1}, A_{-2}, \ldots as mutually disjoint abstract copies of A_0 and disjoint with X. Let us introduce mappings $\phi_n: A_n \to A_{n+1}$ for $n = -1, -2, \ldots$ to be one-to-one and onto. Now we can introduce the set X^* as

$$\left[\bigcup_{-\infty}^{+\infty}A_n\right]\cup\{a\}$$

and the mapping $\phi^* \colon X^* \to X^*$ in the following way:

if $x \in A_n$ for $n \ge 0$, we put $\phi^*(x) = \phi(x)$,

if $x \in A_n$ for n < 0, we put $\phi^*(x) = \phi_n(x)$,

and finally we put $\phi^*(a) = \phi(a)$.

It is obvious that ϕ^* is one-to-one and maps X^* onto itself.

Define n(x) = n for $x \in A_n$ and

1

$$n(a) = \infty, \qquad n(x, y) = \min\{n(x), n(y)\}.$$

With this notation we define a metric ρ^* on X^* by the formula

$$\phi^*(x, y) = \alpha^n \rho((\phi^*)^{-n}(x), (\phi^*)^{-n}(y)),$$

where n = n(x, y).

Since $n(\phi^*(x), \phi^*(y)) = 1 + n(x, y)$, we see that $\rho^*(\phi^*(x), \phi^*(y)) = \alpha \rho^*(x, y)$ for all $x, y \in X^*$; henceforth, we shall denote the function ϕ^* by ϕ and ρ^* by ρ , on X^* .

Our next objective will be to show that for every $\beta \in (0, 1)$ there exists a countable family of functions $f_i(x) \in C(X^*)$ such that

(1) $f_i(\phi(x)) = \beta f_i(x)$ for all i = 1, 2, ...,

(2) the family is uniformly bounded on X, i.e., there exists $M \ge 0$ such that $|f_i(x)| \le M$ for all i = 1, 2, ... and all $x \in X$,

(3) the family is point-separating on X, i.e., for any $t_1, t_2 \in X$ there exists an index *i* such that $f_i(t_1) \neq f_i(t_2)$.

Let $x \in A_0$ and denote by d(x) the distance between x and $\phi(X)$, namely, $d(x) = \rho(x, \phi(X))$. The function d(x) is positive since $\phi(X)$ is compact. Denote by N(x, r) a spherical neighbourhood of the radius r > 0 about $x \in A_0$ in X^* (we are working in X^*):

 $t \in N(x, r) \Leftrightarrow \rho(x, t) < r,$

if r < d(x), then $N(x, r) \cap \phi(X) = 0$,

and it is easily seen that if $r < \frac{1}{2}d(x)$, then all images $\phi^n(N(x, r))$ are mutually disjoint.

1388

Let us denote by \mathscr{R}_x the set of all r > 0 such that

(i) $N(x, r) \cap \phi(X) = 0$,

(ii) the family $\phi^n(N(x, r))$ is disjoint.

It is easy to see that \mathscr{R}_x is an interval $(0, R_x)$, where $R_x > 0$.

Let us now associate to every $x \in A_0$ and every $r \in (0, R_x)$ a continuous function g(x, r; t) of t on X^* in such a way that:

(i) $g(x, r; t): X^* \to [0, 1],$

(ii) g(x, r; x) = 1,

(iii) g(x, r; t) = 0 for $t \in N^{c}(x, r)$ (complement of N(x, r) in X^{*}).

The fact that all $\phi^n[N(x, r)]$ are disjoint enables us to define the function $f(x, r; t): X^* \to [0, \infty)$ as follows:

The number β is chosen arbitrarily from (0, 1). Continuity of f(x, r; t) can be easily seen since it can be represented in the form

$$\sum_{-\infty}^{+\infty}\beta^n g(x, r; \phi^{-n}(t)),$$

the sum being uniformly converging on each set of the form

$$\left[\bigcup_{i=n}^{\infty}A_i\right]\cup\{a\}.$$

The function f(x, r; t) obviously satisfies the equation

$$f(x, r; \phi(t)) = \beta f(x, r; t)$$

and is bounded on X since $\phi^{-n}[N(x, r)] \cap X = 0$ for all n = 1, 2, ... and therefore

$$\sup_{t\in X} f(x,r;t) = \sup_{t\in X} g(x,r;t) = 1.$$

Let Q be a dense and countable subset of A_0 and let $t_1, t_2 \in X$ be arbitrarily given different points of $X: t_1 \neq t_2$. Then at least one of them, say t_2 , is not equal to a and, therefore, there exists $x \in A_0$ such that $\phi^n(x) = t_2$ for some $n \ge 0$. Consider the neighbourhood N(x, r) for some rational $r \in (0, R_x)$ and choose $q \in Q, q \in N(x, \frac{1}{2}r)$. Then, evidently, $\frac{1}{2}r \in (0, R_q)$, and the function $f(q, \frac{1}{2}r, t)$ separates points t_2 and a, since $f(q, \frac{1}{2}r, t_2) = \alpha^n f(q, \frac{1}{2}r, x) > 0$ for $x \in N(q, \frac{1}{2}r)$, and $f(q, \frac{1}{2}r, a) = 0$; thus, if $t_1 = a$, our proof is complete. If $t \neq a$, then $y = \phi^{-n}(t_1)$ for some $y \in A_0$ and $n \ge 0$. If we choose the rational number r such that $r \in (0, R_x), r < \rho(x, y)$, and choose $q \in N(x, \frac{1}{2}r)$, then we have, again, that $f(q, \frac{1}{2}r, t_2) \neq 0$, $f(q, \frac{1}{2}r, y) = 0$, and therefore

$$f(q, \frac{1}{2}r, t) = 0,$$

and we have shown that the family f(q, r, t) where $q \in Q$ and r rational numbers from $(0, R_2)$, satisfies our conditions. If we index this function of our

LUDVIK JANOS

family by natural numbers $f_n(t)$, we may construct the desired embedding $\mu: X \to H$ by the formula

$$\mu(t) = \{f_1(t), \frac{1}{2}f_2(t), \frac{1}{3}f_3(t), \ldots\}.$$

References

1. Ludvik Janos, One-to-one contractive mappings on compact spaces, Notices Amer. Math. Soc. 14 (1967), 133.

University of Florida, Gainesville, Florida