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Abstract

Let (G,G′) be a type I irreducible reductive dual pair in Sp(WR). We assume that

(G,G′) is in the stable range where G is the smaller member. Let K and K ′ be maximal

compact subgroups of G and G′ respectively. Let g = k ⊕ p and g′ = k′ ⊕ p′ be the

complexified Cartan decompositions of the Lie algebras of G and G′ respectively.

Let K̃ and K̃ ′ be the inverse images of K and K ′ in the metaplectic double cover

S̃p(WR) of Sp(WR). Let ρ be a genuine irreducible (g, K̃)-module. Our first main result

is that if ρ is unitarizable, then except for one special case, the full local theta lift

ρ′ = Θ(ρ) is equal to the local theta lift θ(ρ). Thus excluding the special case, the

full theta lift ρ′ is an irreducible and unitarizable (g′, K̃ ′)-module. Our second main

result is that the associated variety and the associated cycle of ρ′ are the theta lifts of

the associated variety and the associated cycle of the contragredient representation ρ∗

respectively. Finally we obtain some interesting (g, K̃)-modules whose K̃-spectrums are

isomorphic to the spaces of global sections of some vector bundles on some nilpotent

KC-orbits in p∗.

1. Introduction

1.1 Let WR be a finite-dimensional symplectic real vector space. Throughout this paper (G,G′)

will denote a type I irreducible reductive dual pair in Sp(WR). Such dual pairs are listed in

Table 1 in § 2.1.

We follow the notation in [How89] closely. Let S̃p(WR) be the metaplectic double cover of

Sp(WR). For any subgroup E of Sp(WR), let Ẽ denote its inverse image in S̃p(WR). We choose a

maximal compact subgroup U of Sp(WR) such that K := G ∩U and K ′ := G′ ∩U are maximal

compact subgroups of G and G′ respectively. Hence K̃ and K̃ ′ are maximal compact subgroups

of G̃ and G̃′ respectively. The choice of U determines a unique complex structure on WR with

the following property: there is a positive definite Hermitian form 〈 , 〉 on the resulting complex

vector space W so that the imaginary part of 〈 , 〉 coincides with the symplectic form on WR, and

U coincides with the unitary group attached to (W, 〈 , 〉). We choose the oscillator representation

of S̃p(WR) whose Fock model Y is realized as the space C[W ] of complex polynomials on W

with the Ũ action as described in Appendix A.1. Let ς denote the minimal Ũ-type of Y . It is a

one-dimensional representation of Ũ acting on the space of constant functions in C[W ]. Let ς|
Ẽ

denote the restriction of ς to Ẽ for any subgroup E of U.

Let g = k ⊕ p denote the complexified Cartan decomposition of the Lie algebra of G̃

corresponding to the maximal compact subgroup K̃. Likewise we define g′ = k′ ⊕ p′ for G̃′.
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Let ρ be an irreducible admissible genuine (g, K̃)-module. By [How89, (2.5)],

Y

/( ⋂
ψ∈Hom

g,K̃
(Y ,ρ)

kerψ
)
' ρ⊗Θ(ρ)

where Θ(ρ) is a (g′, K̃ ′)-module called the full (local) theta lift of ρ. Theorem 2.1 in [How89]
states that if Θ(ρ) 6= 0, then Θ(ρ) is a (g′, K̃ ′)-module of finite length with an infinitesimal
character and it has a unique irreducible quotient θ(ρ) called the (local) theta lift of ρ. Moreover
if θ(ρ1) and θ(ρ2) are nonzero, then they are isomorphic if and only if ρ1 and ρ2 are isomorphic.

It is a result of Protsak and Przebinda [PP08] that in the stable range, θ(ρ) is nonzero.
This partially generalizes a previous result of Li [Li89] which states that if ρ is irreducible and
unitarizable, then θ(ρ) is nonzero and unitarizable.

In order to state our first result, we exclude the following special case.
(†) The dual pair (G,G′) = (Sp(n,R),O(2n, 2n)) and ρ is the one-dimensional genuine

representation of S̃p(n,R).

Theorem A. Suppose (G,G′) is in the stable range where G is the smaller member. Let ρ be
an irreducible unitarizable genuine (g, K̃)-module. We exclude the case (†) above. Then

Θ(ρ) = θ(ρ)

as (g′, K̃ ′)-modules. In other words, Θ(ρ) is already irreducible and unitarizable.

The proof is given in § 2.2.
In case (†), Θ(ρ) is reducible by [Lok06, Lee’s appendix].
The above theorem is useful because invariants attached to Θ(ρ) are usually easier to

describe than those of θ(ρ). For example, we could deduce a formula for the K̃ ′-types of Θ(ρ) in
Proposition 2.1.

1.2 Before stating other results, we briefly review the definitions of some invariants of Harish-
Chandra modules. See Vogan [Vog91, § 2] for details.

Let (g,K) denote the Harish-Chandra pair of a real reductive group G. Let g = k⊕ p denote
the complexified Cartan decomposition the Lie algebra of G corresponding to the maximal
compact subgroup K. Let (%, V%) be a (g,K)-module of finite length and let 0 ⊂ F0 ⊂ · · · ⊂
Fj ⊂ Fj+1 ⊂ · · · be a good filtration of %, i.e. dimFj is finite,

⋃
j∈N Fj = V% and Up(g)Fq = Fp+q

for all q sufficiently large and for all p > 0. Then Gr % =
⊕
Fj/Fj−1 is a finitely generated

(S(p),K)-module where S(p) is the symmetric algebra on p.
Let A be the associated KC-equivariant coherent sheaf of Gr % on p∗ = Spec (S(p)). The

associated variety of % is defined to be AV(%) := Supp(A ) in p∗. Its dimension is called the
Gelfand–Kirillov dimension of %. It is a well-known fact that AV(%) is a closed subset of the null
cone of p∗.

Let AV(%) =
⋃r
j=1Oj where Oj are the distinct open KC-orbits in AV(%). By [Vog91,

Lemma 2.11] (cf. Proposition 4.3), there is a finite (S(p),KC)-invariant filtration 0 ⊂ A0 ⊂ · · · ⊂
Al ⊂ · · · ⊂ An = A of A such that Al/Al−1 is generically reduced on each Oj . For a closed
point xj ∈ Oj , let ixj : {xj} ↪→ p∗ be the natural inclusion map and let Kxj be the stabilizer of
xj in KC. Now

χxj :=
⊕

l(ixj )
∗(Al/Al−1)

is a nonzero finite-dimensional rational representation of Kxj . We call χxj an isotropy
representation of % at xj . Its image [χxj ] in the Grothendieck group of finite-dimensional rational
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Kx-modules is called the isotropy character of % at xj . The isotropy representation is dependent
on the filtration but the isotropy character is independent of the filtration.

We call {(Oj , xj , χxj ) : j = 1, . . . , r} the set of orbit data attached to the filtration {Aj}. On
the other hand, {(Oj , xj , [χxj ]) : j = 1, . . . , r} is independent of the filtration and we call it the
set of orbit data attached to %. Two orbit data are equivalent if they are conjugate to each other
by the KC-action. We define the multiplicity of % along Oj to be m(Oj , %) = dimC χxj and the

associated cycle of % to be AC(%) =
∑r

j=1m(Oj , %)[Oj ].
In summary, the associated variety, the associated cycle and isotropy character(s) are

invariants of %, i.e. they are independent of the choices of filtrations.
Suppose G is a member group of a type I reductive dual pair in S̃p(WR). Then by [Ada12],

[MVW87], [LST13] and [Sun12], the above invariants of % and of its contragredient %∗ are related
by an automorphism C of G. We call C a dualizing automorphism. We will review these in
Appendix B.

1.3 Now we describe a result about the associated variety of Θ(ρ).
Let g = k⊕ p and g′ = k′ ⊕ p′ as in § 1.1. In Appendix A.2 (also see [DKP02]), we recall the

definitions of the two moment maps

p∗ W
φoo φ′ // p′∗. (1)

The maps φ and φ′ are given explicitly in Table 2. For a KC-invariant closed subset S of p∗,
we define the theta lift of S to be θ(S) = φ′(φ−1(S)), which is a K ′C-invariant closed subset
of p′∗. Let N(p∗) := {x ∈ p∗ | 0 ∈ KC · x} be the nilpotent cone in p∗. Let NKC(p∗) be the set of
nilpotent KC-orbits in p∗. We define N(p′∗) and NK′C

(p′∗) in the same way. It is well known that

θ(S) ⊆ N(p′∗) if S ⊆ N(p∗).
Since Θ(ρ) has finite length, the associated variety AV(Θ(ρ)) of Θ(ρ) is a closed subvariety

of N(p′∗).

Theorem B. For any real reductive dual pair (G,G′) (not necessarily in the stable range) and
any irreducible admissible genuine (g, K̃)-module, there is an upper bound of the associated
variety of Θ(ρ) given by θ(AV(ρ∗)). In other words, we have

AV(Θ(ρ)) ⊆ θ(AV(ρ∗)).

The proof is given in § 3.4.
The above theorem is a correction to Nishiyama and Zhu [NZ04, Proposition 3.12].

1.4 We now assume (G,G′) is in the stable range where G is the smaller member. Given O ∈
NKC(p∗), it is a result of [Oht91], [DKP05] and [NOZ06] that there is a unique O′ ∈ NK′C

(p′∗)

such that O′ = θ(O). We call O′ the theta lift of O and we write O′ = θ(O). Moreover,

θ : NKC(p∗)→ NK′C
(p′∗)

O 7→ O′

is an injective map preserving the closure relations, i.e. θ(O2) ⊂ θ(O1) if O2 ⊂ O1.

Definition. We define the following notion of theta lifts of objects in the stable range.

(1) Let c =
∑

jmj [Oj ] be a formal sum of closures of nilpotent orbits. We define the theta

lift of the cycle c to be θ(c) :=
∑

jmj [θ(Oj)].
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(2) Let (O, x, χx) be an orbit datum where O ∈ NKC(p∗), x ∈ O and χx is a finite-

dimensional rational K̃x-module where K̃x is the stabilizer of x in K̃C. Let O′ = θ(O). Fixing
points x ∈ O, w ∈ W , x′ ∈ O′ such that φ(w) = x and φ′(w) = x′, we will define a group
homomorphism α : K ′x′ → Kx in Proposition 4.1. We define the theta lift of the orbit datum
(O, x, χx) to be (O′, x′, χx′) where

χx′ := ς|
K̃′
x′
⊗ (ς|

K̃x
⊗ χx) ◦ α.

We write θ(O, x, χx) = (O′, x′, χx′) which is well defined up to K̃C-conjugation. Similarly we
define the theta lift of (O, x, [χx]) to be θ(O, x, [χx]) := (O′, x′, [χx′ ]).

Theorem C. Suppose (G,G′) is in the stable range where G is the smaller member. Let ρ be a
genuine irreducible (g, K̃)-module. Suppose {(Oj , xj , [χxj ]) : j = 1, . . . , r} is the set of orbit data
attached to ρ∗. Then {θ(Oj , xj , [χxj ]) : j = 1, . . . , r} is the set of orbit data attached to Θ(ρ).

The next theorem is a corollary of Theorem C.

Theorem D. Suppose (G,G′) is in the stable range where G is the smaller member. Then

AV(Θ(ρ)) = θ(AV(ρ∗)) and AC(Θ(ρ)) = θ(AC(ρ∗)).

In particular if ρ is unitarizable and excluding (†), then AV(θ(ρ)) = θ(AV(ρ∗)) and AC(θ(ρ)) =
θ(AC(ρ∗)) by Theorem A.

The proofs of Theorems C and D are given in § 4.5. In these two theorems, we do not require
that ρ∗ is unitarizable. We will show in the proof of Lemma 4.4 that the dimension of every
θ(Oj) is equal to dim AV(Θ(ρ)), i.e. the Gelfand–Kirillov dimension of Θ(ρ). However there are
examples where Θ(ρ) is reducible and θ(ρ) has smaller Gelfand–Kirillov dimension than that of
Θ(ρ). In particular AV(θ(ρ)) does not contain any θ(Oj).

Theorem D overlaps with the previous work of [NOT01] and [Yam01] where G is a compact
group. It also extends the work [NZ04] where ρ is a unitarizable lowest weight module.

We would like to relate a recent result of [GZ14] where Gomez and Zhu show that the
dimensions of the generalized Whittaker functionals of the Casselman–Wallach globalizations of
ρ and Θ(ρ) are the same. It is a famous result of [MW87] that in the p-adic case, the dimension
of a space of generalized Whittaker functionals of an algebraic irreducible representation is equal
to the corresponding multiplicity in its wavefront cycle. Theorem D together with [GZ14] could
be interpreted as evidence for the corresponding phenomenon for real classical groups.

1.5 Let (g,K) and G be as in § 1.2. For a (g,K)-module % of finite length, we define VC(%) to
be the complex variety cut out by the ideal Gr (Ann U(g)%) in g∗, where Gr (Ann U(g)%) is the
graded ideal of Ann U(g)ρ in GrU(g) = C[g∗]. Alternatively VC(%) is the associated variety of
the (g⊕g,AdG)-module U(g)/Ann U(g)%. It is an (Ad∗G)C-invariant complex variety in g∗ whose
dimension is equal to 2 dim AV(%). By Proposition B.1, VC(%∗) = VC(%).

We recall that (G,G′) is a type I irreducible dual pair in the stable range where G is the
smaller member. The actions of G and G′ on the symplectic manifold WR give two moment maps
(see [DKP02])

g∗ WR ⊗R CφGoo φG′ // g′∗. (2)

For an Ad∗GC-invariant complex subvariety S of g∗, we define θC(S) = φG′(φ
−1
G (S)). This is an

Ad∗G′C-invariant complex subvariety of g′∗. We state a corollary of Theorem D.
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Corollary E. Suppose (G,G′) is in the stable range where G is the smaller member. Let ρ
be a genuine irreducible (g, K̃)-module. Then

VC(Θ(ρ)) = θC(VC(ρ)).

The proof is given in § 4.6.
The above corollary overlaps with [Prz93, Theorem 0.9] where Przebinda proves the identity

VC(θ(ρ)) = θC(VC(ρ)) for dual pairs and unitarizable ρ satisfying some technical conditions.

1.6 In § 5, we consider representations whose K̃-spectrums are the same as the global sections
of K̃C-equivariant algebraic vector bundles on nilpotent orbits. We will show that theta lifts in
the stable range preserve this property.

First we set up some notation. Let K be a compact group. Let O be a KC-homogeneous
space and let x ∈ O. Let π :KC→ O be the natural quotient map given by π(k) = (Ad∗k)x. Let
Kx be the stabilizer of x in KC. For a rational Kx-module (χx, Vx), we define the KC-equivariant
pre-sheaf L on O by L (U) = (C[π−1(U)]⊗CVx)Kx for all open subsets U of O. By [CPS83], L is
a KC-equivariant quasi-coherent sheaf with fiber χx at x. Moreover, by Theorem 2.7 in [CPS83],
χx ↔ L gives an equivalence of categories between the category of rational representations
of Kx and the category of KC-equivariant quasi-coherent sheaves on O ' KC/Kx. We define the
(C[O],KC)-module

IndKC
Kx
χx = (C[KC]⊗ Vx)Kx = H0(O,L ).

If (O, x, χx) appears in the orbit data attached to a filtration of a finite length (g, K̃)-module,
then we have

L is generated by its space of global sections IndK̃C
K̃x
χx. (3)

For the rest of this section we will assume that the data (O, x, χx) satisfy (3).
We exclude the following special cases:

(G,G′) = (Sp(2n,R),O(p, q)) where p = 2n or q = 2n;

(G,G′) = (Sp(2n,C),O(4n,C)).
(††)

Theorem F. Suppose (G,G′) is in the stable range where G is the smaller member. We exclude
the special case (††) above. Let ρ be an irreducible admissible genuine (g, K̃)-module. Let
(O, x, χx) be an orbit datum satisfying (3) such that, as K̃-modules,

ρ∗ ' IndK̃C
K̃x
χx.

Let (O′, x′, χx′) be the theta lifting of (O, x, χx). Then, as K̃ ′-modules,

Θ(ρ) ' Ind
K̃′C
K̃′
x′
χx′ .

The proof is given in § 5.2.

1.7 We relate our results to a conjecture of Vogan on geometric quantizations and unipotent
representations.

Definition [Vog91, Definition 7.13]. Let O ∈ NKC(p∗) and x ∈ O. The stabilizer Kx acts on the
cotangent space T∗xO = (k/kx)∗. We define the character γx of Kx by

γx(k) = det(Ad(k)|(k/kx)∗) ∀k ∈ Kx.
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A rational representation χx of the double cover K̃x is called admissible if

χx(exp(X)) = γx(exp(X/2)) · Id ∀X ∈ kx. (4)

An orbit datum (O, x, [χx]) is called an admissible orbit datum if χx is admissible. An orbit
O ∈ NKC(p∗) is called admissible if it is part of an admissible datum. A representation χx of K̃x

satisfying (4) is uniquely determined by its character [χx].

A (g, K̃)-module ρ is said to have K̃-spectrum determined by an admissible orbit datum
(O, x, [χx]) if

ρ|
K̃
' IndK̃C

K̃x
χx (5)

as a K̃-module. Such a representation ρ could be considered as a quantization of the orbit O.
In [Vog91, Conjecture 12.1], Vogan conjectured that, for every admissible orbit datum (O, x, [χx])
satisfying certain technical conditions, and where ∂O has codimension at least 2 in O, one can
attach a unipotent representation ρ to this orbit datum and ρ satisfies (5).

In § 6, we will show that the notion of admissibility is compatible with theta lifts in the stable
range.

Proposition G. Suppose (G,G′) is in the stable range where G is the smaller member. Let
(O, x, [χx]) be an admissible orbit datum for G̃. Then its theta lift θ(O, x, [χx]) is an admissible
orbit datum for G̃′.

The above is a direct consequence of Proposition 6.1.
Suppose (G,G′) is in the stable range where G is the smaller member and excluding the

special case (††). Let ρ be an irreducible unitarizable (g, K̃)-module whose K̃-spectrum is given
by some admissible orbit datum (O, x, [χx]). It follows from Appendix B.1 that ρ∗ is an irreducible
unitarizable (g, K̃)-module whose K̃-spectrum is given by the admissible orbit datum

C(O, x, [χx]) := (C(O),Ad∗C(x), [χx ◦ C])

where C is a dualizing automorphism on G̃. By Theorems A, F and Proposition G, θ(ρ) is
an irreducible unitarizable (g′, K̃ ′)-module whose K̃ ′-spectrum is given by the admissible orbit
datum θ(C(O, x, [χx])).

1.8 Finally we construct a series of candidates for unipotent representations. Let

G0, G1, G2, . . . , Gn, . . .

be a sequence of real classical groups satisfying the following properties.

(i) Each pair (Gn, Gn+1) is an irreducible type I reductive dual pair with Gn being the
smaller member excluding the special case (††).

(ii) The corresponding double covers G̃n of Gn for the dual pairs (Gn−1, Gn) and (Gn, Gn+1)
are isomorphic. We fix an isomorphism between these two double covers of Gn.

(iii) The covering group G̃0 has an irreducible genuine one-dimensional unitary representation
ρ0 such that ρ0|g0 is trivial.

It is clear that ρ0 is attached to the admissible datum ({0}, 0, ρ0|(K̃0)C
).

Let Cn be a dualizing automorphism on G̃n. Starting from ρ0, we define inductively
ρn+1 = θ(ρn) and (On+1, xn+1, χn+1) = θ(Cn(On, xn, χn)). The following theorem follows from
§ 1.7.
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Table 1. Stable range for irreducible Type I dual pairs.

G G′ Stable range

Case R Sp(2n,R) O(p, q) 2n 6 p, q
O(p, q) Sp(2n,R) p+ q 6 n

Case C U(n1, n2) U(p, q) n1 + n2 6 p, q

Case H O∗(2n) Sp(p, q) n 6 p, q
Sp(p, q) O∗(2n) 2(p+ q) 6 n

Complex groups Sp(2n,C) O(p,C) 4n 6 p
O(p,C) Sp(2n,C) p 6 n

Theorem H. The (gn, K̃n)-module ρn is an irreducible and unitarizable representation attached
to the admissible orbit datum (On, xn, χn). Moreover, as a K̃n-module,

ρn ' Ind
(K̃n)C
K̃xn

χn.

The above theorem generalizes a result of Yang [Yan10, Yan13] where he proves the above
theorem for ρ1. A related result on Dixmier algebras is given in [Bry03].

2. Theta lifts of unitary representations in the stable range

2.1 Let (G,G′) be a type I irreducible reductive dual pair in Sp(WR). We list them in Table 1
below. We say it is in the stable range with G being the smaller member if it satisfies the
conditions in the last column of the table.

We follow the notation in [How89]. By [How89, Fact 1], K ′ is a member of a reductive dual
pair (K ′,M) in Sp(WR). We form the following see-saw pair in Sp(WR).

G′ M

K ′ G

(6)

The complex Lie algebra of M has Cartan decomposition m = m(2,0)⊕m(1,1)⊕m(0,2) where m(1,1)

is the complexified Lie algebra of a maximal compact subgroup M (1,1) of M .

Let H̃ = {v ∈ Y | Xv = 0, ∀X ∈ m(0,2)} be the space of K̃ ′-harmonics in Y . As an M̃ (1,1)×
K̃ ′-module,

H̃ =
⊕
σ′∈̂̃K′

σ ⊗ σ′ (7)

where each σ is either zero or an irreducible genuine M̃ (1,1)-module uniquely determined by σ′.

Proposition 2.1. Suppose (G,G′) is in the stable range where G is the smaller member. Let ρ
be an irreducible genuine (g, K̃)-module. Then as K̃ ′-modules

Θ(ρ)|
K̃′ =

⊕
σ′∈̂̃K′

mσ′σ
′ ' (H̃ ⊗ ρ∗|

K̃
)K

where mσ′ is the multiplicity of σ′ in Θ(ρ). We have mσ′ = dim Hom
K̃

(σ, ρ).
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If ρ is the Harish-Chandra module of a discrete series representation of G̃, the above
proposition is [How83, Corollary 5.3].

Proof. Let L(σ) denote the (full) theta lift of σ′, which is a unitarizable lowest weight module

of M̃ . The fact that the pair (G,G′) is in the stable range implies that

L(σ) = U(m)⊗U(m(1,1)⊕m(0,2)) σ ' U(g)⊗U(k) σ (8)

as a g-module. The first equality follows from the Jantzen irreducibility criterion (see [EHW83,
§ 6]). In this case L(σ) is a Harish-Chandra module of a (limit of) holomorphic discrete series
representations (see [KV78, §§ II.8.2 and III.8.1]). The second equality follows from k = g ∩
(m(1,1) ⊕m(0,2)) and m = (m(1,1) ⊕m(0,2)) + g (see [How89, (3.4)]). Applying this to the see-saw
pair (6), we obtain

mσ′ = dim Hom
K̃′(σ

′,Θ(ρ)) = dim Hom
g,K̃

(L(σ), ρ) = dim Hom
K̃

(σ, ρ). (9)

This proves the proposition. 2

2.2 Let (ρ, Vρ) be an irreducible unitarizable Harish-Chandra module of G̃. For the rest of this
section we will prove Theorem A.

First we recall Li’s construction of θ(ρ) [Li89]. We denote an element in the inverse image of

g ∈M by g̃ ∈ M̃ . The actual choice of g̃ will not affect the calculation. Define

〈v1 ⊗ w1 , v2 ⊗ w2〉 =

∫
G
〈ρ∗(g̃)v1 , v2〉ρ∗〈g̃ · w1 , w2〉Y dg

for all v1⊗w1, v2⊗w2 ∈ Vρ∗⊗Y . All pairings are done in the completion of the Harish-Chandra
modules. We set

Rad(〈 , 〉) = {Φ ∈ Vρ∗ ⊗ Y | 〈Φ ,Φ′〉 = 0,∀Φ′ ∈ Vρ∗ ⊗ Y }.

Let
H = (Vρ∗ ⊗ Y )/Rad(〈 , 〉).

We claim that H ' θ(ρ) as irreducible unitarizable Harish-Chandra modules of G′. Indeed,
Li [Li89] uses smooth vectors in the definition of 〈 , 〉 and likewise defines H∞ = ((Vρ∗)

∞⊗Y ∞)/
Rad(〈 , 〉∞). Li [Li89, Theorem 6.1] shows that θ(ρ) is the Harish-Chandra module of H∞. Since

H is K̃ ′-finite and dense in H∞, it is equal to the Harish-Chandra module θ(ρ) of H∞. This
proves our claim.

We refer to (σ, Vσ) in (7) and L(σ) in (8). Then L(σ) is an irreducible unitarizable Harish-

Chandra module of M̃ and Y =
⊕

σ′ L(σ)⊗ σ′.
We set

〈v1 ⊗ w1 , v2 ⊗ w2〉σ
′
ρ∗ =

∫
G
〈ρ∗(g̃)v1 , v2〉ρ∗〈g̃ · w1 , w2〉L(σ) dg ∀vi ⊗ wi ∈ Vρ∗ ⊗ L(σ)

and define
H(σ′) = (Vρ∗ ⊗ L(σ))/Rad(〈 , 〉σ′ρ∗).

Now dimH(σ′) is the multiplicity of σ′ in H and we have

H =
⊕

σ′H(σ′)⊗ σ′.
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We consider the embeddings

H(σ′) = (Vρ∗ ⊗ L(σ))/Rad(〈 , 〉σ′ρ∗)
� � ι // HomG(V∞ρ∗ ⊗ L(σ)∞,C) �

� rest. // Homg,K(Vρ∗ ⊗ L(σ),C)

(10)
where ι(Φ) is given by

Φ 7→ (Φ′ 7→ 〈Φ′ ,Φ〉σ′ρ∗) ∀Φ′ ∈ V∞ρ∗ ⊗ L(σ)∞. (11)

The last term on the right-hand side of (10) is

Homg,K(Vρ∗ ⊗ L(σ),C) = Hom
g,K̃

(L(σ),HomC(Vρ∗ ,C))

= Hom
g,K̃

(L(σ), Vρ)

(L(σ) is K̃-finite, so its image is in HomC(Vρ∗ ,C)
K̃-finite

= Vρ)

= Hom
K̃

(Vσ, Vρ) (by (8))

= HomK(Vρ∗ ⊗ Vσ,C) = HomC((Vρ∗ ⊗ Vσ)K ,C).

The isomorphism between the first term and the last term in the above equalities is given by
restriction. Combining these with (10) gives an inclusion map

H(σ′) ↪→ HomC((Vρ∗ ⊗ Vσ)K ,C) (12)

given by (11) but for Φ′ ∈ (Vρ∗ ⊗ Vσ)K . By (9)

dimH(σ′) 6 dim Hom
K̃

(Vσ, Vρ) = dim Hom
K̃′(σ

′,Θ(ρ))

and it is finite.

Lemma 2.2. Let d ∈ (Vρ∗ ⊗Vσ)K be a nonzero vector. Then the pairing between Vρ∗ ⊗L(σ) and
d in (11) is non-vanishing.

The above lemma implies that (12) is an isomorphism so that Θ(ρ) and H have the same
K̃-multiplicities. This will prove Theorem A.

In order to prove Lemma 2.2, we first exhibit a globalization of the Harish-Chandra module
L(σ). Our references are [KV78] and [JV79]. We refer to M in (6). Let

Hol(M̃, M̃ (1,1), Vσ) =

f : M̃ → Vσ

∣∣∣∣∣∣
f is analytic

f(g̃k̃) = σ(k̃−1)f(g̃) ∀g̃ ∈ M̃, k̃ ∈ M̃ (1,1)

r(X)f = 0 ∀X ∈ m(0,2)

 .

Here, r(X) denotes the right derivation action. Let {vi} be an orthonormal basis of Vσ ⊂ L(σ).
Then

ξ : v 7→
(
g̃ 7→

∑
i

〈g̃−1 · v , vi〉L(σ)vi

)
defines an injective (m, M̃ (1,1))-module homomorphism ξ : L(σ)→ Hol(M̃, M̃ (1,1);Vσ).

For any g ∈M , there are unique elements z(g) ∈ m(0,2), k(g) ∈M (1,1)
C and z′(g) ∈ m(2,0) such

that g = exp(z(g))k(g) exp(z′(g)). The map g 7→ k(g) lifts to a map k̃ : M̃ → M̃
(1,1)
C (see [KV78,

p. 8]). Let Ω denote the image of the map z and let ζ : M̃ →M
z
→ Ω denote the composite map.

Then
Ω = {z(g) ∈ m(0,2) : g ∈M} 'M/M (1,1) ' M̃/M̃ (1,1) (13)
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is a bounded symmetric domain in m(0,2) and

M ⊂ exp(Ω) ·M (1,1)
C · exp(m(2,0)).

Let Hol(Ω, Vσ) denote the space of holomorphic functions on Ω with values in Vσ. We define

P : Hol(M̃, M̃ (1,1), Vσ) → Hol(Ω, Vσ) in the following way. For f ∈ Hol(M̃, M̃ (1,1), Vσ), we set

Pf ∈ Hol(Ω, Vσ) by Pf(g̃M̃ (1,1)) = σ(k̃(g̃))f(g̃). Then P is a bijection using (13).
Let ξ = P ◦ ξ : L(σ)→ Hol(Ω, Vσ). Let C[m(0,2)] denote the space of polynomials on m(0,2).

Then ξ(L(σ)) is the linear span of

{p× ξ(v) | p ∈ C[m(0,2)], v ∈ Vσ}

because L(σ) is a full generalized Verma module.
We write Vσ =

⊕
l∈LDl and Vρ∗ =

⊕
j∈J Dj as direct sums of irreducible K̃-modules. Then

(Vρ∗ ⊗ Vσ)K =
⊕
j∈J

⊕
l∈L

(Dj ⊗Dl)
K =

⊕
l∈L

⊕
Dj'D∗l

(Dj ⊗Dl)
K .

Let {dlλ : λ = 1, . . . ,dimDl} be an orthonormal basis of Dl and let {d∗jλ} be a basis of Dj ' D∗l
which is dual to {dlλ}. Then a vector d ∈ (Vρ∗ ⊗ Vσ)K in Lemma 2.2 is of the form

d =
∑

j∈J,l∈L
cjl

(∑
λ

d∗jλ ⊗ dlλ
)

where cjl ∈ C. Here cjl = 0 unless Dj ' D∗l . We suppose cj0l0 6= 0 for some j0 ∈ J and l0 ∈ L.
Let

C(G̃, K̃;Vσ) = {f ∈ C(G̃, Vσ) | f(g̃k̃) = σ(k̃−1)f(g̃) ∀k ∈ K̃}

be the space of continuous sections. We define a G-module homomorphism ξd : V∞ρ∗ →

C(G̃, K̃;Vσ) by

ξd : v 7→
(
g̃ 7→

∑
j∈J,l∈L

cjl
∑
λ

〈ρ∗(g̃−1)v , d∗jλ〉ρ∗dlλ
)

(∀g̃ ∈ G̃).

Let Ω0 ' G̃/K̃ denote the image ζ(G̃) in Ω. We have P0 : C(G̃, K̃;Vσ)→ C(Ω0;Vσ) defined by
the same formula as P. We denote ξd = P0 ◦ξd. Let dx be the G-invariant measure on Ω0 ' G/K
compatible with the Haar measure on G i.e. dg = dx dk. We recall that cj0l0 6= 0. Let dl0λ0 be
a unit vector in the orthonormal basis of Dl0 . Let w in L(σ) be such that ξ(w) = p × ξ(dl0λ0).
Let v = d∗j0λ0 be the corresponding unit vector in the orthonormal basis of Dj0 ⊆ Vρ∗ . Then
v ⊗ w ∈ Vρ∗ ⊗ L(σ) and we have

〈v ⊗ w ,d〉σρ∗ =
∑

j∈J,l∈L
cjl

∫
G

∑
λ

〈ρ∗(g̃−1)v , d∗jλ〉ρ∗〈g̃−1 · w , dlλ〉L(σ) dg

=

∫
G
〈ξ(w)(g̃) , ξd(v)(g̃)〉Vσ dg

=

∫
G
〈σ(k̃(g))ξ(w)(g̃) , σ(k̃(g))ξd(v)(g̃)〉Vσ dg
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=

∫
G/K
〈ξ(w)(gK) , ξd(v)(gK)〉Vσ dgK

=

∫
Ω0

p(x)〈ξ(dl0λ0)(x) , ξd(d∗j0λ0)(x)〉Vσ dx

=

∫
Ω0

p(x)f(x) dx (14)

where f(x) = 〈ξ(dl0λ0)(x) , ξd(d∗j0λ0)(x)〉Vσ . The function f(x) is a nonzero continuous function

because f(0) =
∑

j∈J,l∈L cjl
∑

λ〈d∗j0λ0 , d
∗
jλ〉ρ∗〈dl0λ0 , dlλ〉L(σ) = cj0l0 6= 0. We extend f(x) to the

boundary of Ω0 by 0.

By Li [Li89], the integration (14) is absolutely convergent for every p ∈ C[m(0,2)]. This is

where we exclude case (†) in § 1.1.

It remains to show that (14) is nonzero for some p(x) ∈ C[m(0,2)]. By [How83], the restriction

of C[m(0,2)] to the compact subset Ω0 forms a dense subset in C(Ω0) under sup-norm by the

Stone–Weierstrass theorem. Note that any open subset of Ω0 has nonzero measure. Hence∫
Ω0
p(x)f(x) dx is nonzero for some p(x) by an approximation of identity argument. This

completes the proof of Lemma 2.2 and Theorem A.

3. Natural filtrations and corresponding (S(p),K)-modules

3.1 Let (G,G′) be an irreducible type I dual pair as in Table 1. We do not assume that it is

in the stable range except in Lemma 3.2. Let ρ be an irreducible genuine (g, K̃)-module. Let ρ∗

denote its dual (contragredient) (g, K̃)-module and let ρ′ = Θ(ρ) denote its full theta lift. For

any module %, we denote its underlying space by V%.

3.2 The Fock model Y is realized as complex polynomials on W , so Y =
⋃
b Yb is filtered by

degrees. See Appendix A.1. Let (τ, Vτ ) be a lowest degree K̃-type of (ρ, Vρ) with degree j0. Let

Vτ ⊗Vτ ′ be the image of joint harmonics in Vρ⊗Vρ′ . By [How89], Vρ′ = U(g′)Vτ ′ . Thus we define

a good filtration on Vρ′ =
⋃
j V
′
j by setting V ′j = Uj(g′)Vτ ′ .

We view Vρ∗ = HomC(Vρ,C)
K̃-finite

. Let Vτ∗ ⊂ Vρ∗ be an irreducible K̃-submodule with type

τ∗ which pairs perfectly with Vτ . By [He00, Theorem 13(5)], the lowest degree K̃-type has

multiplicity one in ρ. Hence Vτ and Vτ∗ are well defined.

Likewise we define filtrations on Vρ and Vρ∗ by {Vj := Uj(g)Vτ}j∈N and {V ∗j := Uj(g)Vτ∗}j∈N
respectively. We will clarify the relationships between them in Appendix B.2.

Let E = Vρ∗ ⊗ Y . We set Eg,K = E/Span{Xv, kv − v | v ∈ E, X ∈ g, k ∈ K} and Ep =

E/Span{X ′v | v ∈ E, X ′ ∈ p}. By [LMT12, Proposition 2.3],

Θ(ρ) ' Eg,K = (Ep)
K .

Let η : E� (Ep)
K ' Vρ′ be the natural quotient map. We define a filtration on E by

Ej =
∑

2a+b=j

V ∗a ⊗ Yb.

Lemma 3.1 [LMT12, § 2]. We have η(Ej0+2j) = η(E2j0+2j+1) = V ′j .
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Let prp and prK be the projection to p-coinvariants and K-invariants respectively. The

previous lemma says that Ej is compatible with the filtration {V ′j }j∈N on Vρ′ . Taking the graded

module, η induces a map

GrVρ∗ ⊗Gr Y
ε⊗1 // // GrVρ∗ ⊗S(p) Gr Y // // Gr (prp(E))

Gr prK // // GrVρ′ . (15)

Here ε : GrVρ∗ → GrVρ∗ is the (S(p), K̃)-module isomorphism such that ε(x) = (−1)ax for all

x ∈ Gr aVρ∗ .

3.3 We recall that U is a maximal compact subgroup of Sp(WR). Let sp(1,1) be the complexified

Lie algebra of U. Let sp(WR) ⊗ C = sp(2,0) ⊕ sp(1,1) ⊕ sp(0,2) denote the complexified Cartan

decomposition (see §A.2). Let s = sp(2,0)⊕sp(0,2). We recall that ς is the minimal one-dimensional

Ũ-type of the Fock model Y . We extend ς to an (S(s), Ũ)-module where s acts trivially. We will

continue to denote this one-dimensional module by ς. In this way, Gr Y =
⊕

(Ya+1/Ya) '
ς ⊗ C[W ]. Here U acts on C[W ] by (k · f)(w) = f(k−1w) for k ∈ U, f ∈ C[W ] and w ∈ W
(cf. §A.1). The algebra S(sp(0,2)) acts trivially on C[W ] while S(sp(2,0)) acts by multiplication

by degree two homogeneous polynomials. Since (G,G′) is a reductive dual pair in Sp(WR), we

denote the restriction of ς as an (S(p), K̃)-module by ς|
K̃

. Similarly we get a one-dimensional

(S(p′), K̃ ′)-module ς|
K̃′ .

Let A = ς|
K̃
⊗ GrVρ∗ and B = ς|−1

K̃′
⊗ GrVρ′ . Since ρ is a genuine Harish-Chandra module

of G̃, A is an (S(p),KC)-module. Similarly B is an (S(p′),K ′C)-module.

We note that KC acts on A ⊗ C[W ] reductively and preserves the degrees. Then (15) gives

the following (S(p′),K ′C)-module morphisms

A⊗S(p) C[W ] // // (A⊗S(p) C[W ])KC
η0 // // ς|−1

K̃′
⊗ (Gr (prp(E)))KC ' B. (16)

The merit of introducing ς is that the K̃ · K̃ ′ action on Gr Y descends to a geometric KC ·K ′C
action on C[W ].

Since C[W ] is an (S(s),UC)-module, it is also an (S(p),KC)× (S(p′),K ′C)-module.

Lemma 3.2. Suppose (G,G′) is in the stable range where G is the smaller member. Then η0 in

(16) is an isomorphism, i.e.

B ' (A⊗S(p) C[W ])KC

as (S(p′),K ′C)-modules. Here (S(p′),K ′C) acts trivially on A.

Proof. We recall that H̃ denotes the space of harmonics in (7). Let H = ς−1H̃. Under the stable

range assumption C[W ] = S(p) ⊗ H as an (S(p),KC) × K ′C-module. Since A = ς|
K̃
⊗ Vρ∗ , as

K ′C-modules,

(A⊗S(p) C[W ])KC = (A⊗S(p) (S(p)⊗H))KC = (A|KC ⊗H)KC ' B|K′C

by Proposition 2.1. The map η0 is a surjection and B is an admissible K ′C-module. The lemma

follows from the equality of K ′-types. 2
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3.4

Proof of Theorem B. Since the filtration on ρ∗ (respectively ρ′) is good, the graded module A
(respectively B) is a finitely generated S(p)-module (respectively S(p′)-module). Let A be the
associated coherent sheaf of A on p∗. Using the moment maps

p∗ W
φoo φ′ // p′∗

we see that the associated quasi-coherent sheaf of A⊗S(p) C[W ] on p′∗ is φ′∗φ
∗A . Let B be the

associated quasi-coherent sheaf of B on p′∗.
By definition, AV(ρ∗) = Supp(A ) and AV(Θ(ρ)) = Supp(B). By (16), B is a subquotient

of the quasi-coherent sheaf φ′∗φ
∗A so

Supp(B) ⊆ Supp(φ′∗φ
∗A ) ⊆ φ′(Supp(φ∗A )) ⊆ φ′(φ−1(Supp(A ))) = θ(Supp(A )).

This proves the theorem. 2

The above proof also applies to type II reductive dual pairs.

4. Associated cycles

4.1 Throughout this section, we suppose (G,G′) is in the stable range where G is the smaller
member. Let ρ be an irreducible genuine (g, K̃)-module. The objective of this section is to prove
Theorems C and D.

Proposition 4.1. Suppose (G,G′) is in the stable range where G is the smaller member. LetO ∈
NKC(p∗) and O′ = θ(O). We fix a w ∈ W such that x = φ(w) ∈ O and x′ = φ′(w) ∈ O′. Let
Kx = StabKC(x) and K ′x′ = StabK′C(x′).

(i) For every k′ ∈ K ′x′ , there exists a unique k ∈ Kx such that (k′)−1 ·w = k ·w. We denote
k by α(k′).

(ii) The function α : K ′x′ � Kx defined by k′ 7→ α(k′) in (i) is a surjective group
homomorphism. In particular,

StabKC×K′C(w) = Kx ×α K ′x′ := {(α(k′), k′) | k′ ∈ K ′x′}. (17)

We will prove this proposition in §A.4 after we study some properties of the moment maps.
The group homomorphism α depends on the choice of w. Indeed if we replace w by (k0, k

′
0) · w,

then the corresponding group homomorphism becomes α̃ : K ′k′0·x′
→ Kk0·x which is given by

k′ 7→ k0α(k′0
−1k′k′0)k−1

0 .
Pre-composition with α defines a map α∗ from the set of Kx-modules (respectively virtual

characters of Kx) to the set of K ′x′-modules (respectively virtual characters of K ′x′).

4.2 The next result is a key lemma which could be viewed as an enhancement of [NZ04, § 1.3].
One may skip its proof in the first reading.

Lemma 4.2. Let A be a (C[O],KC)-module. Define an (S(p′),K ′C)-module by

B = (C[W ]⊗S(p) A)KC .

Then B is a (C[O′],K ′C)-module.

191

https://doi.org/10.1112/S0010437X14007520 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X14007520


H. Y. Loke and J. Ma

Let A and B be the quasi-coherent sheaves on O and O′ associated to A and B respectively.1

Then we have the following isomorphism of K ′x′-modules:

i∗x′B ' α∗(i∗xA ).

In particular, dim i∗x′B = dim i∗xA if A is finitely generated.

Proof. See [Ma12]. Let Z = φ−1(O) be the set theoretical inverse image of O. We consider the
following diagram.

{x}� _

ix

��

{w}'oo
� _

iw
��

'

""
Zx′� _
iZx′
��

// {x′}� _
ix′
��

O� _
iO
��

Z
φ|Zoooo φ′|Z //� _

iZ
��

O′� _
iO′
��

p∗ W
φ

oo
φ′
// p′∗

By Lemma A.6, the scheme theoretical inverse image W ×p∗ O is reduced, i.e.

C[Z] = C[W ]⊗S(p) C[O].

Then

B = (C[W ]⊗S(p) A)KC = (C[W ]⊗S(p) C[O]⊗C[O] A)KC = (C[Z]⊗C[O] A)KC

as an (S(p′),K ′C)-module. By Lemma A.7, C[O′] = C[Z]KC so B is a C[O′]-module.
We recall that x′ is a point in O′. Let Zx′ = Z×O′ {x

′} be the scheme theoretical fiber. Since
φ′|Z : Z → O′ is dominant and we are in characteristic zero, Zx′ is reduced. Let m(x′) be the
maximal ideal in S(p′) corresponding to the point x′.

Since taking KC-invariant is an exact functor and φ′∗(S(p′)) is KC-invariant, we have

i∗x′B = (S(p′)/m(x′))⊗S(p′) (C[Z]⊗C[O] A)KC

= (C[Z]⊗C[O] A)KC/(m(x′)C[Z]⊗C[O] A)KC

=
(

(C[Z]⊗C[O] A)/(m(x′)C[Z]⊗C[O] A)
)KC

= ((C[Z]/m(x′)C[Z])⊗C[O] A)KC

= (C[Zx′ ]⊗C[O] A)KC . (18)

Let Z := i∗Zx′
(φ|Z)∗A . Then Z (Zx′) = C[Zx′ ]⊗C[O]A. By Lemma A.2(ii), Zx′ is a KC×Kx′-

orbit generated by w. Let Sw = StabKC×K′x′
(w). By (17), Sw = Kx ×α K ′x′ = {(α(k′), k′) ∈

Kx ×K ′x′}. Then [CPS83, Theorem 2.7],

Z (Zx′) = Ind
KC×K′x′
Kx×αK′x′

χ

1 We will abuse notation and continue to denote their extensions by zero to p∗ and p′∗ by A and B respectively.

192

https://doi.org/10.1112/S0010437X14007520 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X14007520


Invariants and K-spectrums of local theta lifts

where χ is the fiber of Z at w. By the above commutative diagram, we have Sw-module
isomorphisms

χ = i∗wZ = i∗wi
∗
Zx′

(φ|Z)∗A ' i∗xA

where (α(k′), k′) ∈ Sw = Kx ×α K ′x′ acts on i∗xA via the natural action of α(k′) on i∗xA .2

Putting the above into (18) gives

i∗x′B = (Z (Zx′))
KC = (Ind

KC×K′x′
Kx×αK′x′

χ)KC ' χ ◦ α (19)

as K ′x′-modules. Indeed if f ∈ (Ind
KC×K′x′
Kx×αK′x′

χ)KC , then f : KC × K ′x′ → Vχ satisfies f(k, k′) =

χ(α(k′))f(α(k′)−1k, 1) = χ(α(k′))f(1, 1). Hence f is uniquely determined by f(1, 1) ∈ Vχ. This
proves the isomorphism on the right in (19). It also completes the proof of the lemma. 2

4.3 Let ρ′ = Θ(ρ), A = ς|
K̃
⊗GrVρ∗ and B = ς|−1

K̃′
⊗Gr Θ(Vρ) as before. For a subset Z of p∗,

we let I(Z) denote the ideal of S(p) vanishing on Z.

Proposition 4.3. There is a finite filtration 0 = A0 ⊂ · · · ⊂ Al ⊂ Al+1 ⊂ · · · ⊂ An = A of
(S(p),KC)-modules with the following property. For each l, there is a KC-orbit Ol such that the
annihilator ideal of Al/Al−1 in S(p) is the ideal I(Ol).

In particular Al/Al−1 is a C[Ol]-module and
⋃n
l=1Ol = AV(ρ∗).

Remark. We warn that the orbit Ol may not be connected since KC may not be connected.
Furthermore Ol may not be an open orbit in AV(ρ∗).

Proof. The proof essentially follows that of [Vog91, Lemma 2.11].
Let K0 be the connected component of KC. The set of associated primes of A is finite. The

connected group K0 acts trivially on this finite set of associated primes.
Let a ∈A such that its annihilator ideal D = Ann S(p)(a) is a minimal associated prime of A.

Let A1 = S(p)KCa be the (S(p),KC)-submodule in A generated by a. Let V(D) be the subset
of p∗ cut out by D . Since V(D) is irreducible and K0-invariant, it is the closure of the single
K0-orbit O0. Let O1 = KCO0.

We claim that Ann S(p)(A1) = I(O1). Indeed,

Ann S(p)(A1) =
⋂
k∈KC

Ann S(p)(k · a) =
⋂
k∈KC

k ·D =
⋂

[k]∈KC/K0

[k] ·D

= I

( ⋃
[k]∈KC/K0

[k] ·V(D)

)
= I(O1).

The second last equality above holds because
⋂

[k]∈KC/K0
[k] · D is a finite intersection of prime

ideals. The last equality holds by the definition of O1. This proves our claim.

2 Let m(w) be the maximal ideal of C[Z] corresponding to w and let m(x) be the maximal ideal of C[O]

corresponding to x. Then the map φ : w 7→ x gives a C[O]-algebra isomorphism L : C[O]/m(x)
'−−−→ C[Z]/m(w)

= C . The group Sw acts on the right-hand side while the group Kx acts on the left-hand side. These two actions
are compatible in the sense that for (α(k′), k′) ∈ Sw ⊂ Kx ×K′x′ , we have L ◦ α(k′) = (α(k′), k′) ◦ L.

Similarly K′C acts on C[Z] ⊗C[O] A via translation on C[Z] while KC acts via the tensor product of its action

on A and the translation action on C[Z]. Then χ = (C[Z]/m(w)) ⊗C[O] A ' (C[O]/m(x)) ⊗C[O] A = i∗xA . Let

(α(k′), k′) ∈ Sw. Then it acts on the right-hand side via its natural action of α(k′) on i∗xA .
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Now, we could construct Al and Ol inductively by applying the above construction to the
(S(p),KC)-module A/Al−1. This procedure will eventually stop because A is a finitely generated
module over the Noetherian ring S(p). 2

Let Al be as in Proposition 4.3 and let Al = Al/Al−1. It is a finitely generated C[Ol]-module
and we let A l be its associated coherent sheaf on Ol.

By Lemma 3.2, B = (C[W ] ⊗S(p) A)KC . Let Bl = (C[W ] ⊗S(p) Al)
KC . Since φ is flat by

Theorem A.4 and taking KC-invariants is exact, we may identify Bl with a submodule of B.
Hence Bl is an (S(p′),K ′C)-equivariant filtration of B. We set Bl = Bl/Bl−1. Then

Bl = Bl/Bl−1 = (C[W ]⊗S(p) (Al/Al−1))KC = (C[W ]⊗S(p) Al)KC .

4.4 We define a partial ordering on the KC-orbits by containments in the Zariski closures. Let
{Ol1 , . . . ,Olr} be the set of (distinct) maximal nilpotent KC-orbits appearing in Proposition 4.3.
For each Olj in this set, we fix a closed point xj ∈ Olj and define the Kxj -module

χ(xj ,Gr A ) =
⊕
Olj=Ol

i∗xjA
l. (20)

Letmj = dimC χ(xj ,Gr A ). The integermj is independent of the choice of xj ∈ Olj . Moreover

mj 6= 0. Indeed all Kxj -modules on the right-hand side of (20) are nonzero because Supp(A l) =

V(Ann S(p)A
l) = Ol = Olj .

Recall that A = ς|
K̃
⊗GrVρ∗ . Let

χxj = ς|−1

K̃
⊗ χ(xj ,Gr A ).

Then {(Olj , xj , χxj )} is the set of orbit data attached to the filtrations given by Proposition 4.3.
Now the associated cycle of ρ∗ is

AC(ρ∗) = AC(A) =

r∑
j=1

mj [Olj ].

and the associated variety is AV(ρ∗) =
⋃r
j=1Olj .

4.5

Proof of Theorems C and D. First we observe the following lemma.

Lemma 4.4. Let {Olj : j = 1, . . . , r} be the set of all distinct (open) maximal KC-orbits in
AV(ρ∗). Then {θ(Olj ) : j = 1, . . . , r} forms the set of all distinct (open) maximal K ′C-orbits
in θ(AV(ρ∗)).

Proof. By Theorem A.1(i) the map θ : NKC(p∗) → NK′C
(p′∗) is injective so all the θ(Olj ) are

distinct. We also have θ(AV(ρ∗)) = φ′(φ−1(
⋃r
j=1Olj )) =

⋃r
j=1 θ(Olj ) =

⋃r
j=1 θ(Olj ). It suffices

to show that dim θ(Olj ) = dim θ(AV(ρ∗)).
By [Vog91, Theorem 8.4], every KC-orbit Olj generates the same GC-orbit OC in g∗. Indeed

OC is the variety cut out by Gr (Ann U(g)(ρ
∗)).

Nilpotent KC-orbits for classical groups are parametrized by signed Young diagrams. In
particular the underlying Young diagrams of different Olj are the same and they have the
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same dimension, equal to 1
2 dimCOC. By [Oht91], the signed Young diagram of the orbit θ(Ol)

is obtained by adding a column to the signed Young diagram of Olj . Hence every K ′C-orbit

θ(Olj ) generates the same G′C-orbit O′C in g′∗ and its dimension is 1
2 dimCO′C. This proves that

dim θ(Olj ) = dim θ(AV(ρ∗)) and completes the proof of the lemma. In fact O′C = θC(OC) where
θC was defined after (2) (see [DKP02], [DKP05] or [KP82]). 2

Let O′l = θ(Ol). By Theorem B, AV(ρ′) ⊆
⋃r
j=1 θ(Olj ) =

⋃r
j=1O′lj .

Let Bl and Bl be the associated coherent sheaves of Bl and Bl respectively. Now we apply
Lemma 4.2 to Bl and we have

χ(x′j ,Gr B) :=
⊕
O′l=O

′
lj

i∗x′j
Bl '

⊕
Ol=Olj

α∗j (i
∗
xjA

l)

where x′j and αj are x′ and α respectively in Lemma 4.2.

Since A = ς|
K̃
⊗GrVρ∗ and B = ς|−1

K̃′
⊗Gr Θ(Vρ), the isotropy representation of Θ(ρ) at x′j

with respect to the filtration Bl is

χx′j = ς|
K̃′ ⊗ χ(x′j ,Gr B) = ς|

K̃′ ⊗ χ(xj ,Gr A ) ◦ αj = ς|
K̃′ ⊗ (ς|

K̃
⊗ χxj ) ◦ αj .

In particular, χx′j 6= 0 since χxj 6= 0. Therefore {(O′lj , x
′
j , χx′j ) : j = 1, . . . , r} forms the set of

orbit data attached to the filtration Bl. This proves Theorem C.
Now

AC(Θ(ρ)) =

r∑
j=1

(dimχx′j )[O
′
lj

] =

r∑
j=1

mj [θ(Olj )] = θ(AC(ρ∗)).

This proves Theorem D. 2

The proof also shows that the theta lift of a Harish-Chandra module in stable range is nonzero
since χx′j 6= 0.

4.6

Proof of Corollary E. We recall ρ′ = Θ(ρ). From the proof of Lemma 4.4,

G′CAV(ρ′) = O′C = θC(OC) = θC(GCAV(ρ∗)) = θC(VC(ρ∗)) = θC(VC(ρ)).

The last equality follows from Proposition B.1. Although ρ′ may not be irreducible, we claim
that VC(ρ′) = G′CAV(ρ′) and this would prove the corollary. First VC is an additive map, i.e.
VC(B) = VC(A)∪VC(C) for every exact sequence 0→ A→ B→ C → 0. This is well known to
the experts (for example see [Ber72, Lemma 1.5]), which follows by taking the graded version of

Ann U(g′)(A)Ann U(g′)(C) ⊆ Ann U(g′)(B) ⊆ Ann U(g′)(A) ∩Ann U(g′)(C).

Next let ρ′1, . . . , ρ
′
s be all the irreducible subquotients of the (g′, K̃ ′)-module ρ′ of finite length.

Using [Vog91, Theorem 8.4] again,

VC(Ann ρ′) =
s⋃

k=1

VC(Ann ρ′k) =
s⋃

k=1

G′CAV(ρ′k) = G′C

s⋃
k=1

AV(ρ′k) = G′CAV(ρ′).

This proves our claim and Corollary E. 2
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5. The K-spectrum equation

In this section, we suppose (G,G′) is in the stable range with G the smaller member

excluding (††). We will also retain the notation used in the previous section. The objective

of this section is to prove Proposition 5.1, which implies Theorem F.

5.1 Let x ∈ O and let χx be a finite-dimensional rational representation of Kx as in § 1.6. We

recall [CPS83, Theorem 2.7], which says that there is an equivalence of categories between the

category of rational representations of Kx and the category of certain KC-equivariant sheaves

on O ' K/Kx. Let L be the KC-equivariant sheaf on O corresponding to χx. We assume that

L is generated by its global sections (cf. (3)). Let iO : O→ p∗ denote the inclusion map and let

A = (iO)∗L . We also set

A := A (p∗) = L (O) = IndKC
Kx
χx (21)

as an (S(p),KC)-module. Clearly A is a (C[O],KC)-module.

Let O′ = θ(O). We fix a w ∈ W such that x = φ(w) ∈ O and x′ = φ′(w) ∈ O′ in (1). Let

α : K ′x′ → Kx be the map defined in Proposition 4.1 in Appendix A. Let χx′ = χx ◦ α be the

representation of K ′x′ . Let L ′ be the K ′C-equivariant sheaf on O′ corresponding to χ′x′ . We define

the (S(p′),K ′C)-module

B = (C[W ]⊗S(p) A)KC .

By Lemma 4.2, B is a (C[O′],K ′C)-module.

Proposition 5.1. Suppose (G,G′) is in the stable range with G the smaller member

excluding (††). Let iO′ : O′ → O′ denote the inclusion map. Then the sheaf (iO′)∗L
′ is the

coherent sheaf associated to the (C[O′],K ′C)-module B.

Proof. Let Y := W ×p O. By Lemma A.6, Y is a reduced scheme. We consider the following

diagram where Z◦ = (φ′)−1(O′) ∩ Y .

Z◦� _

��

φ′ // O′� _
iO′
��

O� _
iO
��

Y
φ|Yoo � _

iY
��

φ′|Y // O′� _

��
p∗ W

φoo φ′ // p′∗

Since φ is flat, [Har83, ch. 3, Proposition 9.3] gives

φ∗(iO)∗L = (iY )∗(φ|Y )∗L

as sheaves on W . Let Q = (φ|Y )∗L and let B be the quasi-coherent sheaf on O′ associated

to B. Note that ((φ′|Y )∗Q(O′))KC = (φ′∗iY ∗Q(p′∗))KC = B = B(O′). By the exactness of taking

KC-invariants and the fact that C[O′] is KC-invariant, we have B = ((φ′|Y )∗Q)KC , i.e. B(U) =

(Q((φ′|Y )−1(U)))KC for every open set U ⊂ O′. 2

Lemma 5.2. We have Q(Y ) = Q(Z◦).
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Proof. The proof is similar to [CPS83, Theorem 4.4].
Since L is locally free on O, Q is locally free on Y . Hence

depthQy = depthOY,y

for any y ∈ Y . Let ∂Z◦ = Y −Z◦. Let H i
∂Z◦(Q) (respectively H i

∂Z◦(Q)) be the cohomology group
(respectively cohomology sheaf) of Y with coefficient in Q and support in ∂Z◦. By Lemma A.8 in
Appendix A, codim(Y, ∂Z◦) > 2. By Lemma A.6(ii), Y is a normal scheme so it satisfies Serre’s
(S2) condition. Therefore

depthyQy = depthOY,y > min{dim OY,y, 2} = 2

for all y ∈ ∂Z◦. By a vanishing theorem of Grothendieck (see [Har67, Theorem 3.8]),

H i
∂Z◦(Q) = 0 for i = 0, 1.

By [Har67, Proposition 1.11], a spectral sequence argument implies H0(Y,Q) ' H0(Z◦,Q) as
required. 2

We continue with the proof of Proposition 5.1. By the above lemma

B = B(O′) = (Q(Y ))KC = (Q(Z◦))KC = B(O′).

By (19) we have

B(O′) = Ind
K′C
K′
x′

(χx ◦ α) = (iO′)∗L
′(O′).

Hence B(O′) = (iO′)∗L
′(O′). Since both B and (iO′)∗L

′ are quasi-coherent sheaves over the
affine scheme O′, B = (iO′)∗L

′ and this completes the proof of Proposition 5.1. 2

5.2

Proof of Theorem F. By (21), A|K = ς|
K̃
⊗ Vρ∗ |K̃ as K-modules. Therefore

ς|−1

K̃′
⊗ ρ′|

K̃′ = ς|−1

K̃′
⊗Gr (ρ′)|

K̃′ = (ς|
K̃
⊗ Vρ∗ |K̃ ⊗H)K (by Proposition 2.1)

= (A|K ⊗H)K = B|K′ (by Proposition 2.1 again)

= (iO′)∗L
′(O′) (by Proposition 5.1)

= L ′(O′) = Ind
K′C
K′
x′

((ς|
K̃
⊗ χx) ◦ α).

Twisting the above equation by ς|
K̃′ proves Theorem F. 2

6. Admissible data

In this section we will show that the theta lift of an admissible data is still an admissible data.
We continue to assume that (G,G′) is an irreducible type I dual pair in the stable range where
G is the smaller member.

Let O be a nilpotent KC-orbit in p∗ as in (1). Let O′ = θ(O). Let w ∈ W such that
x = φ(w) ∈ O and x′ = φ′(w) ∈ O′. Let α : K ′x′ → Kx be the map defined by Proposition 4.1.
Proposition G follows from the next proposition.
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Proposition 6.1. Suppose (G,G′) is in the stable range where G is the smaller member. Let χx
be an admissible representation of K̃x as defined in § 1.7. We set

χx′ := ς|
K̃′
x′
⊗ (ς|

K̃x
⊗ χx) ◦ α.

Then χx′ is an admissible representation of K̃ ′x′ .

Proof. We have to verify that

χx′(exp(X ′)) = det(Ad∗(exp(X ′/2))|(k′/k′
x′ )
∗) ∀X ′ ∈ k′x′ .

Since χx is admissible, it reduces to the following lemma after taking squares of above equation.

Lemma 6.2. As k′x′-modules,∧top (k′/k′x′) ' (
∧top (k/kx) ◦ α)⊗ ς|−2

K′ ⊗ (ς|−2
K ◦ α).

Proof. Let E = KCK
′
Cw, F = φ−1(x), and F ′ = φ−1(x′). Let Sw := StabKC×K′C(w) = {(α(k′), k′) |

k′ ∈ K ′x′} ' K ′x′ . Let TwF
′ denote the tangent space of F ′ at w etc. We have the following two

exact sequences of Sw-modules:

0 // TwF
′ // TwE // Tx′O′ // 0

and
0 // TwF // TwE // TxO // 0 .

Here Sw acts on TxO (respectively Tx′O′) via the projection Sw→Kx (respectively Sw
∼−→K ′x′).

Since Sw ' K ′x′ , the above are also exact sequences of K ′x′-modules.
By Proposition 4.1(i) TwF

′ ' k. The k′x′-action on
∧top k is trivial since k is reductive.

Therefore ∧top Tx′O′ '
∧top TwE '

∧top TxO ⊗
∧top TwF (22)

as k′x′-modules. Since we are in the stable range, φ : W → p∗ is a submersion at every point
w ∈W . We have following exact sequence of K ′x′-modules:

0 // TwF // TwW // Txp
∗ // 0.

Since Txp
∗ ' p∗ and k′x′ acts trivially on

∧top p∗, we have∧top TwW '
∧top TwF. (23)

Combining (22), (23), TwW 'W , TxO ' k/kx and Tx′O′ ' k′/k′x′ , we have∧top (k′/k′x′) = (
∧top k/kx ◦ α)⊗

∧topW. (24)

We view u ∈ UC as a linear transformation on W . By our choice of oscillator representation,

ς−2(u) = det(u|W ).

Hence the action of k′ ∈ K ′x′ on
∧topW is

det((k′, α(k′))|W ) = ς|−2
K′ (k

′)⊗ (ς|−2
K ◦ α(k′)).

Putting this into (24) proves the lemma and Proposition 6.1. 2
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Appendix A. The Geometry of theta lifts of nilpotent orbits

A.1 The Fock model
We retain the notation in § 1.1 where (WR, 〈, 〉) is a symplectic space and we have fixed a maximal
compact subgroup U ⊂ Sp(WR). It is well known that there are two oscillator representations.
We will specify our choice of oscillator representation in this paper by describing its Fock model.

First we fix a square root of −1, say i. The centralizer of U in Sp(WR) is isomorphic to U(1).
For an element J in the centralizer such that J2 = −1, we define a complex structure on WR
such that i · v := Jv for all v ∈ WR. We denote the corresponding complex vector space by W .
Then 〈v1 , v2〉H := 〈Jv1 , v2〉 + i〈v1 , v2〉 defines a Hermitian form on W . There are two choices
of J and we choose the one such that 〈 , 〉H is positive definite. Now U is the unitary group
U(W, 〈 , 〉H). Its complexification is UC = GL(W ) and the covering group of UC is ŨC = {(g, z)
∈ GL(W ) × C× | det(g) = z2}. We identify Ũ with the inverse image of U in ŨC. We fix the
oscillator representation ω such that its Fock module or (g, Ũ)-module Y is isomorphic to C[W ]
such that (ω(g̃)f)(v) = z−1f(g−1v) for all g̃ = (g, z) ∈ ŨC and f ∈ C[W ]. In particular the
minimal Ũ-type is one-dimensional consisting of constant functions on W and Ũ acts on it via
the character ς(g̃) = z−1 where g̃ = (g, z) ∈ Ũ.

A.2 The moment maps
Let (G,G′) denote a type I irreducible reductive dual pair in Sp(WR) as in Table 1. Let sp =
Lie(Sp(WR))C and sp(1,1) = Lie(U)C. Under the adjoint action of U, sp = sp(2,0) ⊕ sp(1,1) ⊕
sp(0,2). Here sp(2,0) is an abelian Lie subalgebra acting on C[W ] via multiplication by degree
two polynomials. In particular, we have S(sp(2,0))→ C[W ] by p 7→ p · 1. Let g = k ⊕ p be the
complexified Cartan decomposition of G. The composition p ↪→ sp� sp(2,0) induces an algebra
homomorphism S(p) → S(sp(2,0)). Composing the two maps gives φ∗ : S(p) → C[W ] which
defines φ : W → p∗ = Spec (S(p)). Similarly we define φ′ : W → p′∗ = Spec (S(p′)). Hence we
have

p∗ W
φoo φ′ // p′∗.

The maps φ and φ′ are called the moment maps.
We describe the moment maps explicitly in Table 2. Here J2p is the skew symmetric 2p by

2p matrix
(

0 1
−1 0

)
.

The following fact is true for every reductive dual pair, not necessarily in the stable range.
The moment map factors through the affine quotient:

W // //

φ′

&&
W/KC

� �
iW/KC // p′∗. (25)

By the First Fundamental Theorem of classical invariant theory, C[W ]KC is a quotient of S(p′),
i.e. iW/KC is a closed embedding. For every KC-invariant closed subset E ⊆ W , its image in
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Table 2. Moment maps for non-compact dual pairs.

G G′
W p∗ p′∗

w ∈W φ(w) φ′(w)

Sp(2n,R) O(p, q)
Mp,n ×Mq,n Symn × Symn Mp,q

(A,B) (ATA,BTB) ABT

U(n1, n2) U(p, q)
Mp,n1 ×Mp,n2 ×Mq,n1 ×Mq,n2 Mn1,n2 ×Mn2,n1 Mp,q ×Mq,p

(A,B,C,D) (ATB,DTC) (ACT , DBT )

O∗(2n) Sp(p, q)
M2p,n ×M2q,n Altn ×Altn M2p,2q

(A,B) (ATJ2pA,B
TJ2qB) ABT

Sp(2n,C) O(p,C)
Mp,2n Sym2n Altp

A ATA AJ2nA
T

W/KC is closed by [PV94, Corollary 4.6]. This implies that φ′(E) is closed in p′∗. Hence for every
KC-invariant closed subset S ⊆ p∗, θ(S) := φ′(φ−1(S)) is a K ′C-invariant closed subset of p′∗.

A.3 We recall the nilpotent cone N(p∗) = {x ∈ p∗ | 0 ∈ KC · x}. Let NKC(p∗) be the set of
nilpotent KC-orbits in p∗. We define N(p′∗) and NK′C

(p′∗) in the same way.
We summarize some results in [Oht91], [DKP05] and [NOZ06].

Theorem A.1. Let (G,G′) be a reductive dual pair in stable range where G is the smaller
member as in Table 1.

(i) For any nilpotent KC-orbit O in p∗, there is a nilpotent K ′C-orbit O′ in p′∗ such that

φ′(φ−1(O)) = O′.

This defines an injective map θ : NKC(p∗)→ NK′C
(p′∗) given by O 7→ O′. This map is called the

theta lifting of nilpotent orbits.

(ii) Theta lifting of nilpotent orbits preserves closure relation, i.e. if O0 ⊂ O then
θ(O0) ⊂ θ(O). 2

We refer to Table 2, where W is written as a product of matrix spaces. Let W ◦ be the open
dense subset of elements in W whose every component has full rank. Before we discuss the finer
structures of orbits, we state the following lemma.

Lemma A.2. Let (G,G′) be a reductive dual pair in the stable range as in Table 1.

(i) We have φ′−1(φ′(W ◦)) = W ◦.

(ii) For any x′ ∈ φ′(W ◦), φ′−1(x′) = φ′−1(x′)∩W ◦ is a single KC-orbit where KC acts freely.

(iii) For any x ∈ φ(W ◦), φ−1(x) ∩W ◦ is a single K ′C-orbit.

(iv) We have one-to-one correspondences of the following sets of orbits

{KC-orbits in φ(W ◦)} ↔ {KC ×K ′C-orbits in W ◦} ↔ {K ′C-orbits in φ′(W ◦)}
φ(C) ←[ C 7→ φ′(C)

O 7→ φ−1(O) ∩W ◦
φ′−1(O′) = φ′−1(O′) ∩W ◦ ←[ O′.
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Proof. The proof for each dual pair is similar so we will give the proof for the first pair in Table 1
and leave the other cases to the reader.

Consider (G,G′) = (Sp(2n,R),O(p, q)), W = Mp,n ×Mq,n, p′∗ = Mp,q and p, q > 2n. For
(A,B) ∈ Mp,n ×Mq,n = W , φ′(A,B) = ABT has rank n if and only if A and B have rank n.
This proves (i) and the equality in (ii).

Let x′ ∈ φ′(W ◦). Let (A,B), (A′, B′) ∈ φ′−1(x′) ∩W ◦. We have

ABT = φ′(A,B) = x′ = φ′(A′, B′) = A′(B′)T . (26)

Here x′, A, B, A′, B′ are all rank n matrices. Since the column space of A (respectively A′) is
same as the column space of x′, we may assume that A = A′ by the action of KC = GL(n,C).
If we interpret A : Cn → Cp as an injective linear map, it is clear that (26) implies BT = B′T .
This proves that (A,B) and (A′, B′) are in the same KC-orbit. Hence φ′−1(x′) ∩W ◦ = φ′−1(x′)
is a single KC-orbit.

Next suppose k ∈KC stabilizes (A,B). Hence k ·A = Ak−1 = A. Since A is an injective map,
k is the identity element. This shows that the KC-action is faithful. This proves (ii).

Let x ∈ φ(W ◦). Let (A,B), (A′, B′) ∈ φ−1(x) ∩W ◦. We have

(ATA,BTB) = φ(A,B) = x = φ(A′, B′) = (A′TA′, B′TB′).

Since KerA = KerA′ = 0 and ATA = A′TA′, there is an o ∈ O(p,C) such that A = oA′ by Witt’s
theorem (for example, see [How95, Theorem 3.7.1]). The same argument applies to B and B′.
Hence φ−1(x) ∩W ◦ is a single orbit of K ′C = O(p,C)×O(q,C). This proves (iii).

Part (iv) follows from (i), (ii) and (iii). 2

Theorem A.3. Let (G,G′) be a reductive dual pair in the stable range where G is the smaller
member as in Table 1. Let O ∈ NKC(p∗). Set O′ = φ′(φ−1(O) ∩W ◦). Then:

(i) φ′−1(O′) = φ′−1(O′) ∩W ◦ = φ−1(O) ∩W ◦ = φ′−1(O′) ∩ φ−1(O) is a KC ×K ′C-orbit;

(ii) O′ is a K ′C-orbit;

(iii) φ(φ′−1(O′)) = O;

(iv) O′ = θ(O).

Using [DKP05, Table 4], one may calculate the above orbits in φ−1(O) and φ′(φ−1(O))
explicitly and verify the theorem directly. However we will sketch a simpler proof below.

Sketch of the proof of Theorem A.3. Parts (i) to (iii) are direct consequences of Lemma A.2.
By [NOZ06, Theorem 2.5], φ−1(O) has a unique open dense KC×K ′C-orbit D. Since φ−1(O)∩

W ◦ is open and nonempty in φ−1(O), it is equal to D and φ−1(O) = D. Hence O′ ⊇ φ′(D) =
φ′(φ−1(O)) ⊇ O′ so O′ = θ(O). This proves (iv). 2

A.4

Proof of Proposition 4.1. Suppose x = φ(w) and x′ = φ′(w) as in Proposition 4.1. Then w ∈W ◦
by Theorem A.3(i). Fix a k′ ∈K ′x′ . Then (k′)−1 ·w ∈ φ′−1(x′). By Lemma A.2(ii) there is a unique
k ∈ KC such that k ·w = (k′)−1 ·w. Since x = φ((k′)−1 ·w) = φ(k ·w) = k ·φ(w) = k · x, we have
k ∈ Kx. We define α(k′) = k. It is straightforward to check that α is a group homomorphism
and (17) holds.

Now we prove that α is surjective. Fix a k ∈Kx. Since k ·w ∈ φ−1(x)∩W ◦, there is an element
k′ ∈K ′C, such that k′ ·w = k ·w by Lemma A.2(iii). It is clear that k′ ∈K ′x′ so k ·w = α(k′)−1 ·w.
Since the KC-action on φ′−1(x′) is free, we have α(k′)−1 = k. This proves that α is surjective. 2
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A.5 We discuss the scheme theoretical properties of the moment maps.
Let R = W − W ◦ be the set of matrices without full rank. Let N = φ−1(0) ∩ W ◦ and

∂N := N − N . By Theorem A.3, N is a single K ′C-orbit, N = φ−1(0) and ∂N = R ∩ N . We
state some well-known geometric properties of the null fiber N .

Theorem A.4 [DT91, Kos63, NOZ06]. Let (G,G′) be a real reductive dual pair in the stable
range as in Table 1.

(i) We have C[W ] = H⊗S(p) where H is the space of K ′C-harmonic. In particular, the map
φ : W → p∗ is a faithfully flat morphism. All the fibers of φ have the same dimension (see for
example, the discussion in [PV94, p. 239]).

(ii) The scheme theoretical fiber W ×p∗ {0} is reduced, i.e. N = W ×p∗ {0}.
(iii) If the dual pair is not (††) in § 1.6, then N is normal and ∂N has codimension at least

2 in N . 2

We state [GD66, Proposition 11.3.13(ii)], which we will need later in the proof of Lemma A.6.

Proposition A.5. Suppose f : X1 → X2 is a finitely presented flat morphism of schemes. Let
x1 ∈ X and x2 = f(x1) ∈ X2. Then x1 is reduced (respectively normal) in X1 if

(i) x2 is reduced (respectively normal) in X2 and

(ii) x1 is reduced (respectively normal) in X1 ×X2 {x2}. 2

Let O be a nilpotent KC-orbit in p∗. Let Z := W ×p∗ O (respectively Y := W ×p∗ O) be the
scheme theoretic inverse image of O (respectively O).

Lemma A.6. (i) The schemes Z and Y are reduced.

(ii) Suppose the dual pair is not (††). Then Y is normal. If O is normal, then Z is normal.

By the above lemma, we can also view Z = φ−1(O) and Y = φ−1(O) as the set theoretical
inverse images.

Proof. Our base field is C so geometrically reduced (respectively geometrically normal) is
equivalent to reduced (respectively normal).

(i) Let Er (respectively En) be the set of elements in W which is geometrically reduced
(respectively geometrically normal) in the fiber of φ(w), i.e.

Er := {w ∈W | w is geometrically reduced in W ×p∗ φ(w)}.

Since φ : W → p∗ is faithfully flat, Er (respectively En) is open in W by [GD66,
Theorem 12.1.1(vii) (respectively Theorem 12.1.6(iv))]. By Theorem A.4(ii) and (iii), N ⊆ Er
(respectively N ⊆ En).

We claim that Z ⊆ Er (respectively Z ⊆ En). We only prove Z ⊆ Er. The proof of Z ⊆ En
is the same. Since Er is open and Z is closed, it suffices to prove that Er contains every closed
point z ∈ Z. Indeed let z ∈ Z be a closed point. Since φ : W → p∗ is an affine quotient map,
it maps a KC-invariant closed subset in W to a closed subset in p∗ (see [PV94, Corollary 4.6]).
Therefore

φ(KCK
′
C · z) = φ(KCK

′
C · z) = KCφ(z) = O 3 0.

Hence ∅ 6= KCK
′
C · z∩N ⊂KCK

′
C · z∩Er. The subset Er is open so (KCK

′
C ·z)∩Er 6= ∅. Finally

Er contains z because it is KC ×K ′C-invariant. This proves our claim.
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We note that φ|Z : W ×p∗ O → O and φ|Y : W ×p∗ O → O are faithfully flat. Since O
is reduced and Y ⊆ Z ⊆ Er, applying Proposition A.5 to X1 = Z (respectively X1 = Y ) and

X2 = O proves that Z (respectively Y ) is reduced. This gives (i).

Since O is smooth, it is normal. By assumption O is normal. The proof of (ii) follows a

similar argument to that of (i). This completes the proof of Lemma A.6. 2

We state a consequence of Lemma A.6.

Lemma A.7. We have O′ = Z/KC, or equivalently, C[O′] = (C[W ]⊗S(p) C[O])KC .

Proof. By Lemma A.6(i), C[Z] = (C[W ] ⊗S(p) C[O]) is reduced. By (25) and [Wey97], φ′ is an

affine quotient map onto its image so C[Z]KC = C[O′]. Also see [Oht91, Proposition 3(2)]. This

proves the lemma. 2

By [NOZ06, Theorem 2.5], Y = φ−1(O) contains an open dense KC × K ′C-orbit Z◦. Let

∂Z◦ = Y − Z◦. By Theorem A.3(i), ∂Z◦ = R ∩ Y where R = W −W ◦ is the set of elements

without full rank.

Lemma A.8. Suppose the dual pair (G,G′) is in the stable range where G is the smaller member

and we exclude the dual pairs (††). Then codim(Y, ∂Z◦) > 2.

Proof. If ∂Z◦ = ∅, then there is nothing to prove. Now suppose ∂Z◦ 6= ∅. Let C = KC ×
K ′C and let C0 = K0 × K ′0 be its connected component. Since C may not be connected, Z◦,

Y and Z may not be irreducible. We decompose Z◦ =
⊔
j∈J Z

◦
j into C0-orbits. Each Z◦j is

irreducible. Since C/C0 permutes {Z◦j | j ∈ J}, dimZ◦ = dimZ◦j for all j ∈ J . Let Zj = Z◦j in W

and let Yj = Zj ∩ Y . Then Zj and Yj are irreducible and C0-invariant. In fact Z =
⋃
j∈J Zj and

Y =
⋃
j∈J Yj are the decompositions of Z and Y respectively into irreducible components.

Let N = φ−1(0) be the closed null cone and let ∂N = N − N . In the stable range, it is

known that ∂N = R ∩ N . Furthermore, if the dual pair is not (††), then codim(N , ∂N ) =

dimN − dim ∂N > 2.

Consider φ|Z : Z → O. By Theorem A.4 (i), we have

dimY = dimZ = dimO + dimN .

We claim that dim ∂Z◦ 6 dimY − 2, which will prove the lemma. It suffices to show that for

any closed point z ∈ ∂Z◦, dimz ∂Z
◦ 6 dimY − 2. Here dimv V denotes the Krull dimension of

the local ring OV,v at a point v in a variety V .

We consider the morphism φ|R∩Z : R ∩ Z → O. By the semi-continuity of fiber dimension,

the set E = {w ∈ R∩Z | dimw φ|−1
R∩Z(w) 6 dim ∂N} is open. For z ∈ ∂Z◦, let S = KCK

′
Cz be the

orbit of z. Since S is K ′C-invariant and closed, the discussion after (25) shows that φ(S) is closed.

In fact φ(S) = O, because φ(S) is closed and contains φ(∂Z◦) = O. This implies 0 ∈ φ(S) and

∅ 6= S ∩N ⊆ R ∩N ⊆ ∂N ⊆ E. Therefore z ∈ E, i.e. dimz φ|−1
R∩Z(φ(z)) 6 dim ∂N . Hence

dimz ∂Z
◦ 6dimz R ∩ Z 6 dimφ(z)O + dimz φ|−1

R∩Z(φ(z))

6dimO + dim ∂N 6 dimO + dimN − 2 = dimY − 2.

This proves the claim and the lemma. 2
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Appendix B. Invariants of contragredient representations

In this section, we state some known facts about the invariants of contragredient representations.
Since the proofs are not easily available elsewhere, we supply them as well.

Let G be a real reductive group with complexified Lie algebra g and let K be a maximal
compact subgroup of G. Let (%, V ) be a (g,K)-module of finite length. Let (%∗, V ∗) be its
contragredient representation where V ∗ = Hom(V,C)K-finite.

We recall the variety VC(V ) associated to the annihilator ideal AnnV = Ann U(g)V . It is a
subvariety in the nilpotent cone of g∗ cut out by the graded ideal Gr (AnnV ).

Proposition B.1. We have VC(V ∗) = VC(V ).

Proof. Let ι be the anti-involution on U(g) such that ι(X) = −X and ι(XY ) = Y X for all
X,Y ∈ g. Passing to the graded module C[g∗] = S(g) = GrU(g), Gr ι is given by pre-composing
the map on g∗ defined by g∗ 3 λ 7→ −λ. Then ι(AnnV ) = AnnV ∗ and VC(V ∗) = −VC(V ).
On the other hand, VC(V ) is a union of nilpotent GC-orbits so VC(V ) = −VC(V ). This proves
the proposition. 2

B.1 Let G and K be as in Table 1. Let G̃ and K̃ be their respective inverse images in
S̃p(WR). We relate the associated cycles of an irreducible Harish-Chandra module of G̃ and
its contragredient module. By [MVW87, Proposition 4.I.8], [Sun12, Theorem 2.4] and [LST13],
there is an automorphism C ∈ Aut(G̃) such that for all semisimple g ∈ G̃, C(g) is conjugate to
g−1 in G̃. By replacing C with Ad(g̃) ◦ C for some g̃ ∈ G̃ if necessary, we may further assume
that C stabilizes K̃ and a Cartan subgroup of K̃. Hence AdC(k) = k and AdC(p) = p. We call C
a dualizing automorphism. If G̃ is the trivial double cover of a connected real algebraic group,
then we may choose C to be the Chevalley involution [Ada12].

Let (%, V ) be an irreducible (g, K̃)-module. We define a representation (%C , V C) where
V C = V , %C(k) = %(C(k)) for all k ∈ K̃ and %C(X) = %(AdC(X)) for all X ∈ U(g). Then
(%C , V C) is isomorphic to the contragredient representation (%∗, V ∗) (cf. [Ada12, Corollary 1.2]
and [Sun12, Theorem 3.1]).

If O is a nilpotent K̃C-orbit in p∗ generated by x, then Ad∗C(O) is a nilpotent K̃C-orbit in
p∗ generated by y := Ad∗C(x). We recall that K̃x is the stabilizer of x in K̃C. Then K̃y = C(K̃x).

If χx is a K̃x-module (respectively K̃x-character), then χx ◦ C is a K̃y-module (respectively

K̃y-character).

Proposition B.2. We have:

(i) AV(%∗) = Ad∗C(AV(%));

(ii) AC(%∗) = Ad∗C(AC(%));

(iii) suppose x ∈ p∗ generates an open orbit in AV(%), and let χx be the isotropy character of
% at x; then χx ◦ C is the isotropy character of %∗ at Ad∗C(x).

Proof. Let {Vj}j∈N be an good filtration of (%, V ). Then {Vj}j∈N is also a good filtration of

(%C , V C) since C(K̃) = K̃ and AdC(g) = g. Therefore the (S(p), K̃C) action on GrV C is given
by pre-composing C, i.e. GrV C = GrV ◦ C. This proves the lemma. 2

B.2 Let (ρ, V ) be an irreducible (g, K̃)-module which is a quotient of Y . Let {Vj = Uj(g)V ′τ}j∈N
be the filtration generated by lowest degree K̃-type Vτ . For a regular semisimple element k
in a Cartan subgroup of K̃, one can show that C(k) is K̃-conjugate to k−1. This implies that
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τ◦C|
K̃
' τ∗. We fix a (g, K̃)-module isomorphism between V C and V ∗. Since Vτ has multiplicity 1

in V , Vτ∗ has multiplicity 1 in V ∗ too. We set V C
j := Vj and V ∗j := Uj(g)Vτ∗ . Therefore the

filtration {V C
j }j∈N defined on V C is the same as the filtration {V ∗j }j∈N defined on V ∗.
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