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This paper assesses the impact of disjunctive facts on the quantum
logic read off procedure. The purpose of the procedure is to transfer a
significant quantum structure to a set of propositions; its first step
is an attempt to discover that structure. Here I propose that
disjunctive facts as traditionally conceived have blocked the procedure
at its first step and have therefore subverted the best-known attempts
to read off quantum logic. Recently however Allen Stairs has proposed a
view of disjunctive facts which re-establishes the possibility of
reading off quantum logic. Both the traditional conception and Stairs'
revision of disjunctive facts are interesting in their own right,
independent of quantum propositional logic.

1. 'Quantum Logic'

Too many things are called 'quantum logic'. The term is disentangled
and notation i| fixed in this preliminary step which relies on basic
lattice theory.

A lattice is a partially ordered set with a greatest lower bound and
a least upper bound defined on any two of its members. A partially
ordered set is a pair <S, < >; S is a set with members A, B, lC,...and
< is the partial order relation on S. A least upper bound (lub) of A

and B, C = (A V B)

(lub i) is an upper bound of A, A < C,
(lub ii) is an upper bound of B, B < C,
(lub iii) satisfies a leastness condition: C < D for D, any other

upper bound of A and B.

The dual A is the greatest lower bound (gib) and is defined accord-
ingly. Our interest is restricted to lattices which are orthocomple-
mented. An ortholattice

L = <S, <, A, V,->
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is a set with a relation and three operations. An ortholattice is
Boolean (non-Boolean) if it satisfies (fails) the distributive law.

Lattice notation is reserved for the case where L is an uninterpveted
mathematical object. Alternate notation is used for interpretations or
instantiations of L. Three non-Boolean instantiations are commonly
called 'quantum logic1.

Two geometric instantiations of L are state spaces. The set of
subsets of an n-dimensional Cartesian space has a Boolean structure

CSS = <SC, <, n, u, ' >.

Sc has members (represented by) X, Y, Z , . . . ; the relation is set-
theoretic inclusion; the operators are set-theoretic intersection and
union and relative complement. The (closed linear) subspaces of a
Hilbert space are a non-Boolean instantiation of L

QSS = <Sff, <, n, S,1 >.

Sff has members M, N, 0 , . . . ; the relation is subspace inclusion; the
operators are subspace intersection, span and orthogonal complement.
QSS, quantum state space, is sometimes referred to as 'Hi lbert space
logic1, sometimes as 'quantum log ic ' .

Two more instantiations are algebraic: Sets of classical properties

CAL = <SP, <, A, V, - >
p

where S has elements X, Y, Z,... ; and the interpretations of the
relation and operators are the same as those of CSS. And, some claim,
sets of quantum properties

QAL = <SP, <, !~l, U, 1 >.

SF has elements M, N, 0,... . Interpretations are the subject of this
paper. Accommodating the practice of referring to QAL as 'quantum
logic', and preserving the distinction with quantum propositional logic,
we adopt quantum algebraic logic.

Two final instantiations are logical:

CPL = <SS, <, •, v, ~>

with propositions x, y, z,... , classical semantic entailment and truth-
functional operators. And possibly quantum propositions! logic

QPL = <Se, <, •*, v*. ~*>

with propositions m, n, o quantum semantic entailment,
conjunction, disjunction and negation.

2. The Read Off Dilemma

The three quantum logics — QSS, QAL and QPL — traditionally have
been related by the read off procedure. Step one (R01) is an attempt
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to discover the structure of QAL or QSS. Step two (R02) would transfer
the structure to QPL. And step three (R03) aims to establish that QPL
is full-blown propositional logic. Four variants of the procedure are
discussed: one from QSS, three from versions of QAL.

The QSS read off procedure is uncontroversial at R01 which
establishes the structure of QSS; the result was stated when QSS was
defined. But at R02 a dilemma arises. One option transfers the QSS
structure to a set of statements where one-dimensional members of B
(e.g.,'I') are said to be members of subspaces:

'm' is true i f f * l ies in M.
'm v* n1 is true i f f * l ies in M 6 N.

This option is precise but s te r i l e . The second option is empirical,
but contentious : the QSS structure is transferred to "basic physical
propositions" (e.g., Putnam 1969).

A related dilemma asks i f QSS is a Hilbert space or a quantum state
space. On the f i r s t option, disjunctive facts gain ontological status
only by mathematical realism; M 8 N represents a fact , a real
independently existing mathematical object. The second option allows a
more robust realism and a more prestigious ontological status for facts.

The second horn of the two dilemmas is the basis for the objections
of the remainder of the paper. I f the read off procedure is not to rest
on a s ter i le mathematical realism, i t must have an empirical basis.
Attempts to provide that basis have run afowl of the following Theorem.

The Mapping Theorem is a la t t i ce reformulation of Theorem 1 of Kochen
and Specker (1967). I f QSS is the la t t i ce of subspaces of a Hilbert
space of dimension > 3 and L(2) is the two-element Boolean la t t i ce
defined on the set S(2),

Mapping Theorem: There is no la t t i ce homomorphism from QSS onto L(2).

In general, a homomorphism is a structure preserving transformation;
a la t t i ce homomorphism preserves <, A, and V. Here only * is preserved;
we w i l l focus on the Theorem's denial of a V-homomorphism or a
transformation from S of QSS to S(2) of L(2) such that for every M, N
in S

h(M fi N) = h(M) V h(N).

By the Theorem these are inconsistent: (i) a set has a QSS structure
and (ii) each member is assigned one of two values and the structure is
preserved. A violation attempts to either: i) assign one of two values
to each member of a QSS set while preserving its structure or ii) impose
a QSS structure on a set each member of which has two values. The most
frequent use of the Theorem has been to restrict admissable valuations
for QPL. Here I am concerned with its impact on QAL. Specifically, the
QAL read off procedure in each of its best-known versions has committed
if not one then the other of these two violations. Or so I am next
going to propose.
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3. The QAL Read Off Procedure

| The QAL read off procedure originated with von Neumann (1935, sec.
i I I I . 5 ) : a system has a set of properties, i t is a property of a system

"that a certain quantity takes value * . " (p. 249). And the set of
properties has a "sort of logical [QAL] calculus." (p. 253). The

| property that magnitude A takes value a( i) admits three signif icant
j interpretations: that A now measured has a( i ) (measured-valued
| property), that upon measurement A w i l l be found to have a( i )
| (measurable-value property), and that in the absence of measurement A
| has a( i ) (possessed-value property). The three interpretations generate
i three corresponding versions of the QAL read off procedure to which we
! now turn.
i
| 4. The QAL of Tests

i Macroscopic disjunctive facts, necessary for R01 of the QAL of tests
| (or of measured-value properties), present an insurmountable obstacle to
| reading off quantum logic from the QAL of tests.

A measured-value property can be associated with the experiment which
reveals i t . And in pr inciple, any experiment can be reduced to tests or

I yes/no experiments (Jauch 1968). So the measured-value read off
! procedure can be regarded as a test procedure.
i
j From the beginning it was realized that there was a problem with
j conjunctive facts; there is, in general, no test for property 0:7(0) =
j T(M) n T(ff) (the gib of ST the set of tests) which gives yes when T(#)
! and J(N) each do. The lattice-tail wagged the empirical-dog: the
| missing test was either postulated or invented as an idealization.

! For disjunctive facts no such ad hoc rescue is possible. The CAL of
j tests includes a (set of) test(s) T(Z) which gives yes if and only if

either T(X) does or T(r) does. The if clause gives (lub i) and (Tub ii);
the only if clause assures leastness (lub iii). For QAL an important
(class of) test(s) 7(0) gives yes if 7(M) does, if 7(N) does and in
other cases also (cf. Finkelstein (1972) or Bub (1979)). To assure (lub
iii) for these tests it must be established empirically that no T1 (0)
exists which fails to give yes when T(0) does. Things get worse.

Distinguish two tests. One would give yes for property M, for N and
for other properties as well; this test T(*f U S) would measure the
property related to M and if as H fl B is related to M and N. Another,
T(O) = J(M) LJT(tf), would give yes when T(W) does, when 7(N) does and
when tests which are in its 'span' (tests related to T(M) and T(ff) as M
9 N is related to M and N) do. The property M U N (necessary for the
claim that the set of properties has a QSS structure) is, in the best
case, an intuitive challenge. The test j(M) UT(f) (required if ST has
a QSS structure) is an absurdity.

The absurdity rests on a Mapping Theorem violation. Both Jauch
(1968) and Putnam (1969) following Finkelstein attempted to impose a QSS
structure on the set of tests. And both made a technical mistake at the
same point although from opposite directions. Jauch defined the lub
nonclassically but imposed it on tests while Putnam mistakenly claimed
the lub could be classical and still have a QSS structure. In either
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case there would be a V-homomorphism v io la t ion. I f U defined on ST has
the properties of % and also is classical, there would be a
transformation from ST to (yes, no)

h(T(M) LlT(ffj) = h(T(«)) V h(T(ff)).

The search for macroscopic disjunctive facts, R01 of the test-QAL read
off procedure, and QPL reid off the QAL of tests a l l receive their coup
de grace with this result.

5. The QAL of Measurable Properties

The measurable-value read off program (at least at R01) can be traced
to von Neumann (1935) and Mackey (1963). They assigned 1/0 or yes/no
at measurement for measurable-value properties and proposed a OSS
structure for the set — in apparent violat ion of the Mapping Theorem.
A defense might allow that prior to measurement quantum theory only
assigns probable yes/no values {then properties have a QSS structure),
while at measurement properties have actual values {then properties have
a L(2) structure). The Mapping Theorem can be avoided in this way, but
only by paying the price of generating an inconsistent t r i ad : ( i ) the
set of measurable-value properties has a QSS structure, ( i i ) test
results have a L(2) structure and, ( i i i ) tests do not disturb or change
the value of the measurable-value property. A similar t r iad looms large
for the QAL possessed-value (hereafter QAL-P) program. The following
analysis of that program may also be regarded as an assessment of the
prospect of a QAL measurable-value read off program.

The minimal claim of the QAL-P program is that there exists sets of
measurement^ ndependent, possessed-value properties with a QSS
structure. Within Putnam's "Is Logic Empirical?" is a t r iad composed
of the minimal claim, No Disturbance (ND) - a perfect measurement
neither disturbs nor creates but merely reveals the possessed value
i . e . , the measured value is the same as the possessed value at the time
of measurement, and ( tac i t ly ) Maaroeaopia Preoiee Value (MPV) - every
macroscopic observable has a precise or def ini te value.

Putnam's t r iad was soon challenged as an inconsistent violat ion of
the Mapping Theorem. Although Friedman and Glymour (1972) focused on
QPL semantics, they posed the "tentative" algebraic challenge that the
tr iad could not be sustained. Gardner (1972) stressed that, given MPV,
minimal QAL-P and ND, but not minimal QAL-P alone, violate the Mapping
Theorem. These challenges can be sharpened as the denial of a QAL-p
onto CAL-P V-homomorphism: both

h(M LI m) = h(M) V h{N)

and

h(M U N) = X V Y

f a i l {M and N are the possessed-value properties which a perfect
measurement reveals as X and Y, the measured values). So i f there is
some disjunctive fact, a possessed-value property, represented by M U N,
i t is empirically inaccessible, at least .yi the straightforward sense
that i t could be revealed at measurement. (Schrodinger's cat would
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have celebrated i t s f i f t h birthday last year. )

6. The QAL of Precise Possessed-Value Properties

The t r iad of the previous section appeared more plausible (but was no
less inconsistent) because an additional claim was included:
Miavoeoopia Precise Value (PV) - every observable has a precise, well-
defined or def ini te value in every state. I f the measurement claims ND
and MPV are abandoned and PV is added to minimal QAL-P we get the
concept of precise-valued quantum disjunctive facts, even i f never
measured. These too give no hope to those who would read off quantum
logic.

Ten years after "Is Logic Empirical?" Friedman and Putnam (1978),
then Bub (1982) defended the paiv. ( i ) minimal QAL-P and ( i i ) (a
version,, of) PV while taking cognizance of the Mapping Theorem. Here I
recast their defense and show the pair is inconsistent.

The QAL-P claim gains credence by a QSS—QAL-P association:
possessed-value properties are represented by subspaces. Bub claims
that a particular physical example is associated with the subspace
(projection operator)

(1) M(l) vel M(2) vel M(3)

which is the QSS unit element. I t would represent the possessed-value
property

(2) M{1) vel M(2) vel W(3)

(the physical example and (1) provide that i = l , 2, 3 are a l l one
quantity's possible values).

PV is expressed as "physical quantities have well-defined values, but
[only] in a somewhat Pickwickian sense" (Bub, p. 404). The value of (2)
is well-defined if ' ve l ' "denotes exclusive disjunction" (p. 404). Then
for some i , M(i) is the property of the system. That's how exclusive
disjunction works. So PV is defended. However (1), and therefore (2),
have no V-homomorphism onto L(2). And no assignment of 1 or 0 to each
M(i) (or M(i)) gives exactly one 1. That's not how exclusive
disjunction works. So PV is Pickwickian.

Both (1) and (2) with ' ve l ' as exclusive disjunction are doubly
mischievous category mistakes. The M(i) represent subspaaee, so (1)
misrepresents the QSS

( I 1 ) M(l) « M(2) « M(3),

and still assuming the QSS—QAL-P association (2) misrepresents the QAL-
P

(21) M(l) u Af(2) U W(3).

And if m(i) is the QPL proposition read off w(i), both (I1) and (21)
must be distinguished from the QPL expression
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(3C) m(l) v* m(2) v* m(3).

The mischief of exclusive disjunction both imported a logical connective
into a geometric and then algebraic structure and used a classical
connection in a nonclassical context.

If so, there is a V-homomorphism from neither (1) nor (2) to L(2),
and while QAL-P alone is not challenged, QAL-P and PV are inconsistent.
The lesson is not (as before) that ND is indefensible, that the measure-
ment problem reappears, and that there is no immediate empirical access
to quantum disjunctive facts (all of which is true), but that (2')
represents what Stairs aptly flaunts as an irreducible disjunctive fact,
the sort of thing which was once called "an entirely new idea ... to
which one must get accustomed ... without having any detailed classical
picture". (Dirac 1947, p. 12).

With this result the traditional read off procedure which sets out to
discover a significant quantum structure stands before a door over which
is inscribed laeciate ogni spevansa, voi ch'entrate.

7. The QAL of Irreducible Disjunctive Facts

Stairs has recently mounted a sustained defense of irreducible
disjunctive facts (cf. especially Stairs (1982, 1983, 1985)). u After
comparing what I have written with his position on two points, I will
relate his position to the read off procedure.

I have been far less congenial than Stairs concerning the
compatibility of QAL-P (or "realist quantum logic") and PV. He
acknowledges "a particular tension" and defends an interpretation which
denies PV- Yet, by accepting an exclusive or interpretation, he allows
that (2) "seems to" support PV. Consequently, he regards his position
as the better of two options, while I see it as the only tenable
position.

Throughout I have strived steadfastly to demarcate disjunctive facts
and propositions or QAL (and QSS) and QPL. And I have maintained that
QSS or QAL are necessary for QPL, if read off. But QSS and QAL are
prior to and conceptually independent of QPL as Bub and Demopoulos
(1974, p. 98) long ago stressed: "we maintain a sharp distinction
between [QSS] and [QPL] ... . The choice of [QSS] is directly related
to quantum theory. [QPL] raises a completely different set of
problems." Two corollaries follow. Both concern the impact of
disjunctive facts on the read off program; one concerns R01, the other
R03.

Stairs is quite up-front that his QAL-P proposal is now merely a very
robust ontological posit. He stakes his claim on a research program
which may eventually provide empirical warrant. This R01 program is
conceptually prior to QPL: QAL problems cannot be addressed by
"tinkering with" QPL. Stairs' QAL program is not concerned...with
bivalence failures, metalanguage adjustments or theories of truth.

If the QAL R01 program succeeds, a second distinct program must then
address "a completely 'different set of problems" at R03 if quantum
propositional logic is to be read off quantum theory.
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We can share Stairs' enthusiasm for the R01 program and acknowledge
the necessity of embarking on an R03 program and still realize that
whatever will eventually come to be there is now no reason to think
quantum logic can be read off quantum theory.

The read off program is dead. Long live the read off program.
Maybe.

Notes

M t is a pleasure to acknowledge commentary on a previous draft by
Paul Beem, Arthur Fine, Bas van Fraassen and Linda Wessels. This paper
is a narrowly-focused continuation of an earlier dialogue: McGrath
(1978) and Bugajski (1980).

2I regard the lattice formulation analysis of this paper to be
applicable to partial Boolean algebra representations (cf note 7 ) .
Views of others are recast in lattice terminology, if necessary, to
provide a uniform exposition.

^The read off procedure used by followers of van Fraassen1 s semantic
analysis moves in the opposite direction. It starts with elementary
sentences of a language, then seeks out a satisfaction set (which may be
structured like QSS or QAL) which captures important features of the
language (thereby revealing the language to be QPL). So there are"no
facts involved and the analysis of this paper does not apply to such a
procedure.

The three steps are elaborated in McGrath (1978).

It was one purpose of 'acrobat logic' (McGrath 1978) to show that the
read off procedure can be 'abused' in this trivial way and consequently
does not, by R01 and R02 alone, generate a propositional logic.

6Bell and Hallett (1982, p. 369) pose a similar dilemma.

7The Theorem reformulates the algebraic result that B(ff) = <SH, 6,
ft, 9, j., 1> the partial Boolean algebra of closed linear subspaces of a
Hilbert space of dimension > 3 has no algebraic homomorphism onto Z(2)
the two-element Boolean algebra. Since Z(2) = L(2) and an algebraic and
lattice homomorphism preserve the same operators (ft and S ) , we need .only
show that B(ff) = QSS, i.e. that B(ff) has < and that QSS has. 6. ...S" is
partially ordered by subspace inclusion so B(#) is a transitive partial
Boolean algebra in the sense of Kochen and Specker. QSS trivally has 6
: when 6 s SH x Sff : (M,N) e 6, there are elements 0, P, Q, of S" which
are mutually orthogonal with M = 0 0 P and N = P fi Q (Kochen and Specker
1967, p. 65).

The partial order relation on the set of classical tests is defined
so that T(X) < T(*) if whenever T (X) gives yes so does ( )

^Gardner (1972) issued Putnam a QAL Mapping Theorem citation. Dummett
(1976) and Hellman (1980) later pinpointed the technical mistake.
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•"•For a recent elaboration of the von Neumann program see Demopoulos
(1976, sec. 5) .

My interpretation of Mackey relies on his Axiom VII and commentary
on pp. 72-73. A commentator on an earl ier draft suggested that a more
sympathetic reading would allow this defense.

1 ?
Stairs (1983) recently isolated this ontological claim as the core

of the real ist quantum logic program. I t is f a i r to read 'QAL-P' as
' rea l is t quantum log ic ' .

Nor w i l l i t help to propose an ensemble of measurable-value
properties (which I understand to be the strategy of Bugajski (1980))
for reasons elaborated by Schrodinger (1935, sec. 4) and reiterated in
McGrath (1980, sec. 3 and sec. 6 ) .

14Schr5dinger argued (1935, sec. 5) that i f one accepted the t r iad :
( i ) a "blurred model" of atomic real i ty which ( i i ) "becomes transformed
into" ( i i i ) "macroscopically tangible and vis ib le things, for which the
term 'b lurr ing ' seems simply wrong", then "One can even set up quite
ridiculous cases . . . ." In McGrath (1980) the t r iad was isolated as
Rule VAL, Rule 0 INT and Rule MR; the contradiction of sec. 5 represents
"ridiculous".

The argument is recast in la t t i ce form and simplif ied from "all
physical quantities" to one ( i . e . I disregard the intersection over the
indices). I follow Bub's presentation; Friedman and Putnam give a
technically equivalent argument. Bub's comments should be compared to
Bub (1979).

16The physical example is detailed by Friedman and Putnam (1978, p. 312)
and Bub (1982, p. 404) and is explicated by Stairs (1983, p. 584).

I t is instructive to compare Stairs' conception to Fine's position
(cf., e.g., (1976)) that quantum theory underdetermines the values of or
simply has nothing to say about the values of [ i rreducible disjunctive
facts ] .

•'•"One conjunct of the conjunction P (Stairs 1983, p. 585) corresponds
to (2).

* This is not a t r i v i a l point. For example, Friedman and Putnam
(1978, p. 312) pass too easily from the algebraic claim of PV to the
observation that (2) " is true when interpreted quantum log ica l ly , but:
inconsistent when interpreted classical ly." Stairs (1983), from my
point of view, becomes needlessly embroiled in QPL "responses" to his
QAL thesis. And, elaborating note 13, there is no possible rescue from
a problematic QAL ensemble of measurable-value properties by introducing
a mapping from the ensemble to ' "probabi l is t ic" truth values" of a
multi-valued QPL.
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