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Abstract. In this paper the asymptotic behaviour of the Castelnuovo–Mumford regularity of powers
of a homogeneous idealI is studied. It is shown that there is a linear bound for the regularity of
the powersIn whose slope is the maximum degree of a homogeneous generator ofI , and that the
regularity ofIn is a linear function for largen. Similar results hold for the integral closures of the
powers ofI . On the other hand we give examples of ideals for which the regularity of the saturated
powers is asymptotically not a linear function, not even a linear function with periodic coefficients.
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1. Introduction

LetA = k[X1, . . . , Xr ] be a polynomial ring over an arbitrary fieldk. LetL be any
finitely generated gradedA-module. The Castelnuovo–Mumford regularity reg(L)

of L is defined to be the maximum degreen for which there is an indexj such that
H
j
m(L)n−j 6= 0, whereHj

m(L) denotes thej th local cohomology module ofL with
respect to the maximal graded idealm of A. It is also the maximum degreen for
which there is an indexj such that TorAj (k, L)n+j 6= 0. The Castenuovo–Mumford
regularity is an important invariant which measures the complexity of the given
module. For instance, if

0→ · · · → Fj → · · · → F1→ F0→ L→ 0

is the minimal free resolution ofL overA and ifaj is the maximum degree of the
generators ofFj , then

reg(L) = max{aj − j | j > 0}.
? The first author was partially supported by NSF.

183267.tex; 23/08/1999; 10:03; p.1
PDF Corrected INTERPRINT: J.N.B. (Disk) comp4379 (compkap:mathfam) v.1.15

https://doi.org/10.1023/A:1001559912258 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001559912258


244 S. DALE CUTKOSKY ET AL.

See, e.g., Eisenbud and Goto [EG], Bayer and Mumford [BM] for more informa-
tion on this notion.

Let I be any homogeneous ideal ofA. Recently, Swanson [S] has proved that
there is a numberD such that for alln > 1, reg(I n) 6 nD. This result follows
from a linear bound on the growth of associated primes of ideals which is closely
linked with a version of the uniform Artin–Rees lemma along the line of Huneke’s
uniform bounds in noetherian rings [Hu2]. However, Swanson could not provide a
formula for the numberD in general.

A possible candidate forD is reg(I ). In fact, if dimA/I = 1, Geramita,
Gimigliano and Pittelloud [GGP] and Chandler [C] showed that reg(I n) 6 n reg(I )
for all n > 1. This result can be easily generalized to the case depthA/In >
dimA/I − 1 for all n. The same bound also holds for a Borel-fixed monomial
ideal I by the Eliahou–Kervaire resolution [EK]. See [SS] and [HT] for explicit
linear bounds for reg(I n) whenI is an arbitrary monomial ideal.

The problem of bounding reg(I n) is also of interest in algebraic geometry.
Given a projective varietyX ⊂ Pr , and letIX be the ideal sheaf of the embedding
of X. The Castelnuovo–Mumford regularity ofIX is defined to be the the least
integert such thatHi(Pr ,IX(t− i)) = 0 for all i > 1. LetdX denote the minimum
of the degreesd such thatX is a scheme-theoretic intersection of hypersurfaces of
degree at mostd. For asmooth complexprojective variety, Bertram, Ein and Laz-
arsfeld [BEL] have shown that there is a numbere such thatHi(Ps,InX(a)) = 0,
for all a > ndX+ e, i > 1. The proof used the Kodaira vanishing theorem. See [B]
and [W] for related recent results.

In this paper we will propose a simpler method to estimate reg(I n). The main
result is the following.

THEOREM 1.1. Let I be an arbitrary homogeneous ideal. Letd(I ) denote the
maximum degree of the homogeneous generators ofI . Then

(i) There is a numbere such thatreg(I n) 6 nd(I )+ e for all n > 1.

(ii) reg(I n) is a linear function for alln large enough.

We can estimate the numbere (Theorem 2.4) and, ifI is generated by forms of
the same degree, the placen where reg(I n) starts to be a linear function (Proposi-
tion 3.7).

We will also show thatd(I n) is a linear function forn � 0. Since we always
haved(I ) 6 reg(I ), it follows that

lim
reg(I n)

n
= lim

d(I n)

n
.

It is clear that the common limit is a positive number6 d(I ). Therefore, the
difference between reg(I n) andn reg(I ) can be arbitrarily large ifd(I ) < reg(I ).

Part (i) of the above result implies that for anarbitrary projective varietyX ⊂
Pr , there is a numbere such thatHi(Ps,InX(a)) = 0, for all a > ndX + e, i > 1.
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However, part (ii) does not have a similar geometric version. In fact, it does
not hold if we replaceI n by its saturatioñI n, thoughI n and Ĩ n define the same
projective scheme. We will give examples of homogeneous ideals of ‘fat’ points for
which reg(Ĩ n) is not a linear function for largen (Example 4.2). In particular, using
a counter-example to Zariski’s Riemann–Roch problem in positive characteristic
[CS] we can construct an example such that reg(Ĩ n) is not even a linear polynomial
with periodic coefficients (Example 4.3).

We also give an example of a homogeneous ideal in the coordinate ring of an
abelian surface such that lim reg(Ĩ n)/n is an irrational number (Example 4.4).

Our method is based on a natural bigrading of the Rees algebraR = ⊕n>0I
ntn

given by setting degxtn = (degx, n) for all homogeneous elementx of I n. It is
not hard to see that

Hj
m(I

n)a ' Hj

M(R)(a,n), TorAj (k, I
n)a ' TorSj (S/N,R)(a,n),

for all numbersa, n, whereS = k[X1, . . . , Xr, Y1, . . . , Ys] is the polynomial ring
mapping ontoR with Yi 7→ fit whenI is generated by the homogenous elements
f1, . . . , fs, and whereN = (Y1, . . . , Ys). Therefore, we only need to study the
bigraded structure ofHj

M(R) and TorSj (S/M, S) in order to estimate reg(I n).
The proof of Theorem 1.1(i) and (ii) will be found in Section 2 and Section 3,

respectively. We would like to mention that (i) has been also obtained by Lavila-
Vidal and Zarzuela by a different method (private communication) and that linear
programming is used to prove (ii). The same method can also be applied to give
linear bounds for reg(I n), whereI n denotes the integral closure ofI n, and for
reg(I n1

1 . . . I nmm ), whereI1, . . . , Im are arbitrary homogeneous ideals. Moreover it
can be shown that if the graded algebra

⊕
n>0 Ĩ

ntn is finitely generated, then
there are a finite number of linear functions such that reg(Ĩ n) varies among these
functions forn� 0 (Theorem 4.3).

2. Linear Bound for the Regularity

We begin with some observation on the bigraded structure of local cohomology
modules which we shall need in the proof of Theorem 1.1(i).

Let R = ⊕a,n>0R(a,n) be a noetherian bigraded ring andE = ⊕a,n∈ZE(m,n)
be a bigradedR-module. We may considerR as anN-graded ring withRn =
⊕a>0R(a,n) andE as aZ-graded module withEn = ⊕a>0E(a,n). It is clear thatR0

is also anN-graded ring and thatEn is a gradedR0-module.
Let m be the maximal graded ideal ofR0. Then the local cohomology module

Hi
m(En) is a well-defined gradedR0-module for alli > 0.
LetM denote the ideal generated by the elements ofm, i.e.M = ⊕n>0mRn. We

shall see thatHi
m(En) is aZ-graded component of the local cohomology module

Hi
M(E).

LEMMA 2.1. Hi
m(En)a = Hi

M(E)(a,n) for all numbersa, n.
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Proof. We shall use the characterization of local cohomology modules by
means of the Koszul complexes (see e.g. [BH], [H1]). Letx1, . . . , xr be a family
of generating elements form. Setxt = xt1, . . . , xtr and denote byHi(xt , ·) the ith
cohomology of the Koszul complex functor associated withxt . Then

Hi
m(En) = lim−→ H

i(xt , En), H i
M(E) = lim−→ H

i(xt , E).

Since the elementsx1, . . . , xr have degree zero in theN-graded ringR, we have
Hi(xt , En) = Hi(xt , E)n. From this it follows thatHi

m(En) = lim−→Hi(xt , E)n =
Hi
M(E)n. It is clear that the equationHi

m(En) ' Hi
M(E)n also reflects the bigraded

structure in the sense thatHi
m(En)a = Hi

M(E)(a,n). 2
From now on letR = ⊕n>0I

ntn be the Rees algebra of a homogeneous idealI

in a polynomial ringA = k[X1, . . . , Xr ]. As I is homogeneous, we may viewR
as a bigraded ring withR(a,n) = (I n)atn.

Let m = (X1, . . . , Xr) be the maximal graded ideal ofA. By Lemma 2.1
we haveHi

m(I
n)a = Hi

M(R)(a,n), for all numbersa, n. Therefore, we may get
information on the graded structure ofHi

m(I
n) by the bigraded structure ofHi

M(R).
Assume thatI is generated bys homogeneous polynomials. ThenRmay be rep-

resented as a factor ring of the bigraded polynomial ringS = k[X1, . . . , Xr, Y1, . . . ,

Ys]. LetN denote the ideal ofS generated byX1, . . . , Xr . It is clear that

Hi
M(R)(a,n) ' Hi

N(R)(a.n),

for all numbersa, n. We will use a bigraded minimal free resolution ofR overS to
study the the bigraded structure ofHi

N(R).
First we have the following description ofHi

N(S).

LEMMA 2.2.

Hi
N(S) = 0, i 6= r,

H r
N(S) = k[Xα1

1 . . . Xαr
r Y

β1
1 . . . Y βss |α1, . . . , αr < 0; β1, . . . , βs ∈ N].

Proof. SinceS is a direct product of copies ofA = k[X1, . . . , Xr ], we have
Hi
N(S) = Hi

m(A)⊗A S. It is well-known [H1] that

Hi
n(A) = 0, i 6= r, H r

n(A) = k[Xα1
1 . . . Xαr

r |α1, . . . , αr < 0].
Hence the conclusion is immediate. 2

Let d1, . . . , ds be the degree of the homogeneous generators ofI . Then the
bigrading of the polynomial ringS is given by

bidegXi = (1,0), i = 1, . . . , r,
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bidegYj = (dj ,1), j = 1, . . . , s.

This can be used to obtain information on the bigraded vanishing ofHr
N(S).

COROLLARY 2.3.Hr
N(S)(a,n) = 0 for all a > nd(I )− r + 1.

Proof. Note thatd(I ) = max{d1, . . . , ds}. Since

bidegXα1
1 . . . Xαr

r Y
β1
1 . . . Y

βs
s

= (α1+ · · · + αr + β1d1+ · · · + βsds, β1+ · · · + βs),
using Lemma 2.2 we get

Hr
N(S)(a,n) = k[Xα1

1 . . . Xαr
r Y

β1
1 . . . Y

βs
s |α1, . . . , αr < 0;

α1+ · · · + αr + β1d1+ · · · + βsds = a, β1+ · · · + βs = n].
If a > nd(I )− r + 1, then

α1+ · · · + αr = a − (β1d1+ · · · + βsds)
> a − (β1+ · · · + βs)d(I ) = a − nd(I ) > 1− r.

Hence at least one of the numbersα1, . . . , αr must be nonnegative. From this it
follows thatHN(S)(a,n) = 0. 2

The following result gives Theorem 1.1 (i) by settingE = R. This result will
be used to give a linear bound for reg(I n), too.

THEOREM 2.4. LetE be an arbitrary finitely generated bigraded module over
the Rees algebra ofI . Let

0→ · · · → ⊕tS(−atj ,−btj )→ · · · → ⊕tS(−at1,−bt1)
→⊕tS(−at0,−bt0)→ E→ 0

be a bigraded minimal free resolution ofE overS, whereS is defined as above.
Put cj = maxt{atj − btj d(I )} ande = max{cj − j | j = 0, . . . , r}. For all n > 1
we havereg(En) 6 nd(I )+ e.

Proof. First we will study the graded vanishing ofHi
N(E), i = 1, . . . , r.

Rewrite the above resolution ofE as follows

0→ · · · → Fj → · · · → F1→ F0→ E→ 0.

Let Kj denote the image of the mapFj → Fj−1 for j > 1. Then there are the
exact sequences

0→ Kj → Fj−1→ Kj−1→ 0,
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whereK0 = E. Consider the derived exact sequence of local cohomology modules
of these exact sequences. Fori < r, we use Lemma 2.2 to deduce that

Hi
N(E) ' Hi+1

N (K1) ' · · · ' Hr−1
N (Kr−i−1)

and that there is an injective mapHr−1
N (Kr−i−1) → Hr

N(Kr−i) and a surjective
mapHr

N(Fr−i)→ Hr
N(Kr−i). For i = r we also have a surjective mapHr

N(F0)→
Hr
N(E). Therefore, for alli > 0, Hi

N(E)(m,n) = 0 if HN(F r−i )(m,n) = 0. By
Corollary 3.2,Hr

N(S(−atj ,−btj ))(m,n) = 0, form−atj > (n−btj )d−r+1, where
d = d(I ). Therefore,Hr

N(F
r−i)(m,n) = 0 if m > (n−btr−i)d+atr−i− r+1 for all

t . The latter condition is satisfied ifm > nd+cr−i−r+1. HenceHi
N(E)(m,n) = 0,

for all m > nd + cr−i − r + 1.
By Lemma 2.1 we getHi

m(En)m−i = HN(E)(m−i,n) = 0, for m − i > nd +
cr−i − r + 1, i = 1, . . . , r. Sincend + e > nd + cr−i − r + i, this vanishing holds
if m > nd + e. Note thatH 0

m(En) = 0. Then we obtain reg(En) 6 nd + e. 2
COROLLARY 2.5. LetX ⊂ Pr be an arbitrary projective variety. LetIX be the
ideal sheaf of the embedding anddX the minimum of the degreesd such thatX is
a scheme-theoretic intersection of hypersurfaces of degree at mostd. Then there is
a numbere such thatHi(Pr ,InX(a)) = 0, for all a > ndX + e, i > 1.

Proof. Let I be a homogeneous ideal generated by forms of degree at mostdX
such thatIX is the ideal sheaf associated withI . Thend(I ) = dX. By Theorem 1.1
(i) there is an integere such thatHi

m(I
n)a = 0 for a > ndX + e, i > 0. Therefore

the conclusion. 2
COROLLARY 2.6. Let I be a homogeneous ideal generated bys elements. As-
sume that the Rees algebra ofI is Cohen–Macaulay. Then

reg(I n) 6 nd(I )+ (s − 1)[d(I )− 1)],

for all n > 1.
Proof. The assertion follows immediately from the boundatj 6 sd(I ) − (s −

1) + j , j > 0, for E = R given by O. Lavila–Vidal [L, Proposition 4.1], in case
the Rees algebra ofI is Cohen-Macaulay. 2

There are several important classes of ideals for which one knows that their
Rees algebras are Cohen–Macaulay, see e.g. Eisenbud and Huneke [EH].

EXAMPLE 2.7. LetI be the ideal generated by the maximal minors of a generic
p × q matrix,p 6 q. Then the Rees algebra ofI is a Cohen–Macaulay ring [EH].
Therefore

reg(I n) 6 np +
[(
q

p

)
− 1

]
(p − 1),
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for all n > 1. This is far from being the actual value of reg(I n). Akin, Buchsbaum,
and Weyman [ABW] already gave a linear resolution forI n from which it follows
that reg(I n) = np for all n > 1. We are grateful to A. Conca for this information.

If we setE = ⊕n>0I nt
n, whereI n denotes the integral closure ofI n, thenE is

a finitely generated bigradedR-module withEn ' I n. Hence from Theorem 2.4
we also obtain a linear bound for reg(I n).

PROPOSITION 2.8.Let I be an arbitrary homogeneous ideal. Then there is a
numbere such thatreg(I n) 6 nd(I )+ e for all n > 1.

3. Asymptotic Behaviour of Regularity

Let I be a homogeneous ideal inA = k[X1, . . . , Xr ]. In this section we will show
that reg(I n) is not only bounded by a linear function, but, forn � 0, is a linear
function. The approach will be similar as in the previous section.

For anyA-moduleL we set regi(L) = max{a |Tori(k, L)a 6= 0} − i. Since
reg(L) = max{regi (L)| i > 0}, Theorem 1.1 (ii) follows from the next result.

THEOREM 3.1. Let I be an arbitrary homogeneous ideal. Then for alli > 0, the
functionregi(I

n) is linear forn� 0.

Recall that for any homogeneous idealJ , d(J ) denotes the maximal degree of
the homogeneous generators ofJ . It is well-known thatd(J ) is nothing else than
reg0(J ). The next result encodes the fact that the linear functions associated with
reg0(I

n) and reg(I n) have the same slope.

COROLLARY 3.2.Let I be an arbitrary homogeneous ideal. Then

lim
d(I n)

n
= lim

reg(I n)

n
,

and this common limit is a positive integer6 d(I ).
Proof. Let reg(I n) = an+b and reg0(I

n) = cn+d for n� 0. Since reg0(I
n) 6

reg(I n) for all n, it follows thatc 6 a. On the other hand, by Theorem 1.1 (i) we
have reg(Imn) 6 reg0(I

n)m + e for large n and allm > 0. This implies that
an 6 reg0(I

n) = cn+ d for all largen. Therefore,a 6 c, and soa = c. It is clear
thatc is a positive integer6 d(I ). 2

In order to prove Theorem 3.1 we shall consider the Rees algebraR = ⊕n>0I
ntn

as a factor ring of the bigraded polynomial ringS = k[X1, . . . , Xr , Y1, . . . , Ys]
as in Section 3. Letm = (X1, . . . , Xr) be the maximal graded ideal ofA and
N = mS.

LEMMA 3.3. Let E be a finitely generated bigradedR-module. PutEn =
⊕a∈ZE(a,n). ThenTorAi (k, En)a ' TorSi (S/N,E)(a,n), for all a, n andi > 0.
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Proof. Consider a graded minimal freeS-resolution of theR-moduleE

F: 0→ · · · → Fj → · · · → F1→ F0→ E→ 0.

Taking then-homogeneous component is an exact functor, so that the sequence

Fn: 0→ · · · → (Fj )n→ · · · → (F1)n→ (F0)n→ En→ 0

is exact. Since the modules(Fi)n are freeA-modules,Fn is a freeA-resolution for
En. We have TorSi (S/N,E) = Hi(F/mF) so that TorSi (S/N,E)n ' Hi(Fn/mFn)
which is isomorphic to TorAi (k, En). Hence TorAi (k, En)a ' TorSi (S/N,E)(a,n). 2

Remark. The above free resolutionFn of En is not minimal in general. For
instance, letI = (X2

1, X1X2, X
2
2) ⊂ A = k[X1, X2]. ThenR = S/(f1, f2, f3)

with f1 = X2Y1−X1Y2, f2 = X2Y2−X1Y3 andf3 = Y 2
2 − Y1Y3. One sees easily

that (f1, f2, f3) is a height 2 perfect ideal, and hence the Rees algebraR has the
S-resolution

0→ S(−5,−2)2→ S(−3,−1)2 ⊕ S(−4,−2)→ S → R→ 0.

Thus, if we want to compute a resolution ofI 2, we have to take the second com-
ponent of the above resolution, and get

0→ A(−5)2→ A(−5)6 ⊕ A(−4)→ A(−4)6→ I 2→ 0,

which, of course, is not minimal.

By Lemma 3.3 we have

regi(I
n) = max{a |TorSi (S/N,R)(a,n) 6= 0} − i.

Notice that each Tori (S/N,R) is a finitely generated bigraded module over the bi-
graded polynomial ringS/N = k[Y1, . . . , Ys]with bidegYi = (di,1), i = 1, . . . , s.
Then Theorem 3.1 follows from the following property of such modules.

THEOREM 3.4. Let E be any finitely generated bigraded module over
k[Y1, . . . , Ys]. The functionρE(n) := max{a |E(a,n) 6= 0} is linear forn� 0.

Proof. Put T = k[Y1, . . . , Ys]. It is clear that for a given exact sequence
of bigradedT -modules 0→ E′′ → E → E′ → 0, we haveρE(n) =
max{ρE′′(n), ρE′(n)} for all n ∈ N. Therefore, since there exists a sequence of
bigraded submodules

0= E0 ⊂ E1 ⊂ · · · ⊂ Ei−1 ⊂ Ei = M
of E such thatEj/Ej−1 is cyclic forj = 1, . . . , i, we may assume thatE is cyclic.
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We representE as a quotientT /J . Let< be any term order, and denote by in(J )
the initial ideal ofJ with respect to this term order. It is clear thatT /J has ak-
basis consisting of the residues classes of all the monomials which do not belong to
in(J ), and it is well-known that the residue classes of the same monomials modulo
J form a (bigraded)k-basis ofT /J . ThereforeρE(n) = ρT/in(J )(n) for all n > 0,
and we may assume thatJ itself is a monomial ideal.

Let J be generated by the monomialsY ci11 . . . Y ciss for i = 1, . . . , p. For any
a = (a1, . . . , as) ∈ Ns let ya denote the residue class ofY a1

1 . . . , Y ass in T /J .
Let Bn denote the minimal basis of(T /J )n. ThenρE(n) = max{v(a) | ya ∈ Bn},
with v(a) = ∑

i aidi . Note thatya ∈ Bn if and only if
∑

j aj = n, and for all
i = 1, . . . , p there exists an integer 16 j 6 s with aj < cij .

Let L denote the set of maps{1, . . . , p} → {1, . . . , s}, and consider for each
f ∈ L the subset

Bn,f =
{
ya |

∑
j

aj = n, af (i) < cif (i) for i = 1, . . . , s

}
.

It is clear thatBn = ∪f∈LBn,f . Defineρf (a) = max{v(a)| ya ∈ Bn,f }. Then
ρE(n) = max{ρf (n) | f ∈ L}. Thus it suffices to show that the functionsρf (n) are
linear for allf ∈ F and alln� 0.

Let {j1, . . . , jk} be the image off , and suppose thatj1 < j2 · · · < jk. We set
cjt = min{cij (i)| j (i) = jt} − 1 for t = 1, . . . , k. Then

Bn,f =
{
ya|

∑
j

aj = n andajt 6 cj1, for t = 1, . . . , k

}
,

andρf (n) is given by the maximum of the linear functionalv(a) on the convex
bounded set

Cn =
{

a|
∑
j

aj = n, andajt 6 cj1 for t = 1, . . . ,

}
.

This is a rather trivial example of linear programming. The solution is the follow-
ing.

Suppose that̀ is the smallest integer such thatjt = t for t < ` andj` > `. In
other words, we havea1 < c1, . . . , a`−1 < c`−1 and no bound ona` (except that∑

j aj = n).
If ` = s+1, then

∑
j aj can be at most

∑
j cj , so that forn� 0,Bn,f = 0 and

henceρf (n) = 0.
If ` 6 s, letn > c1+ c2+ . . .+ c`−1. We claim thatv has its maximal value for

a= (c1, . . . , c`−1, n−∑`−1
j=1 cj ,0, . . . ,0). Then

v(a) =
`−1∑
j=1

dj cj + d`
n− `−1∑

j

cj

 ,

183267.tex; 23/08/1999; 10:03; p.9

https://doi.org/10.1023/A:1001559912258 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001559912258


252 S. DALE CUTKOSKY ET AL.

which is a linear function onn, as we wanted to show.
Indeed, ifa = (a1, . . . , as) ∈ Cn, and if for some 16 i < j 6 s we have

ai < ci andaj > 0, thena′ = (a1, . . . , ai + 1, . . . , aj − 1, . . . , as) also belongs
toCn andv(a′) > v(a) sincedi > dj , by assumption. This argument shows that if
we fill up the first ‘boxes’ as much as possible, we must reach the maximal value
of v. The resultinga with maximal value is exactly the one described above.2

Theorem 3.4 also has the following interesting consequence

COROLLARY 3.5. Let I be an arbitrary homogeneous ideal. Thenreg(I n) is a
linear function forn� 0.

Proof. PutE = ⊕n>0I
ntn. ThenE is a finitely generated bigraded module

over the Rees algebra ofI with En ' I n. By Lemma 3.3 we have regi(En) =
ρTorSi (S/N,E)

(n) for all i > 0. Since reg(En) = max{regi(En) | i > 0}, the conclu-
sion follows from Theorem 3.4. 2

RemarkWith the same method as above one can prove the prove the following
modifications of Theorem 3.1: LetI1, . . . , Im be graded ideals in the polynomial
ringA. Then there exist integersa1, . . . , am with aj 6 d(Ij ) for j = 1, . . . , m, and
an integerb such that reg(I n1

1 . . . I nmm ) = a1n1+· · ·+amnm+b, for all n1, . . . , nm �
0. For the proof one considers the multi-Rees ringA[I1t1, . . . , Imtm].

Now we will estimate the place where reg(I n) starts to be a linear function
when I is generated by forms of the same degree. We shall need the following
observation.

LEMMA 3.6. Let 0 → E → F → G → 0 be an exact sequence of graded
A-modules.

(i) If reg(E) > reg(G)+ 1, thenreg(F ) = reg(E).

(ii) If reg(E) < reg(G)+ 1, thenreg(F ) = reg(G).

Proof. Consider the derived long exact sequence

Hi−1
m (G)→ Hi

m(E)→ Hi
m(F )→ Hi

m(G)→ Hi+1
m (E).

Putn = max{reg(E), reg(G)}. It is obvious that reg(F ) 6 n.

If reg(E) > reg(G)+1, thenn = reg(E). We choosei such thatHi
m(E)n−i 6= 0.

Since reg(G) < n−1,Hi−1
m (G)n−i = 0. HenceHi

m(F )n−i 6= 0. From this it follows
that reg(F ) = n.

If reg(E) < reg(G)+1, thenn = reg(G). We choosei such thatHi
m(G)n−i 6= 0.

Since reg(E) 6 n,Hi+1
m (E)n−i = 0. HenceHi

m(F )n−i 6= 0. 2
Our estimation depends on the minimum number of generators ofI and the

Castelnuovo–Mumford regularity reg(R) of the Rees algebraR = ⊕n>0I
ntn as

a N-graded ring with the usual grading degxtn = n, x ∈ I n. The regularity
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reg(R) can be computed in terms of certain minimal set of generators ofI [T].
For instance, ifI is generated by ad-sequence [Hu1], then reg(R) = 0.

Recall that the Castelnuovo–Mumford regularity reg(E) of a graded moduleE
over anyN-graded ringB is defined to be the largest integern for which there
exists an indexi such thatHi

B+(E)a−i 6= 0, whereB+ is the ideal ofB generated
by the homogeneous elements of positive degree.

If we considerR as aN-graded module over theN-graded polynomial ringS
with degXi = 0 and degYj = 1, then reg(R) = max{btj − j | j > 0}, wherebtj
are the second coordinates of the bidegree of the generators of thej th term of a
minimal bigraded free resolution ofR overS.

PROPOSITION 3.7.Let I be a homogeneous ideal generated bys forms of the
same degreed. Put c = reg(R) + s + 1. Then, forn > c, reg(I n) = (n − c)d +
reg(I c).

Proof. We need to modify the statement as follows. LetS = k[X1, . . . , Xn,

Y1, . . . , Ys] be a bigraded polynomial ring with bidegXi = (1,0) and bidegYj =
(d,1), whered > 0 is a fixed integer. For any finitely generated bigradedS-module
E letEn = ⊕a∈ZE(a,n). ThenS is anN-graded ring andE anZ-gradedS-module.
Putc = reg(E)+ s + 1. We claim that forn > c, reg(En) = (n− c)d + reg(Ec).

SinceR may be considered as a finitely generated bigradedS-module withRn '
I n, the conclusion clearly follows from this claim.

If s = 0,Sn = 0 for all n > 0. It follows that reg(E) = max{n| En 6= 0}. Hence
En = 0 for n > reg(E)+ 1. In this case,d = 0.

To prove the claim in the cases > 0 we may assume that the base fieldk
is infinite. Then we can find a linear formY in Y1, . . . , Ys such thatY 6∈ P for
any associated primeP 6⊇ (Y1, . . . , Ys) of E. In other words,Y is a filter-regular
element ofE with respect to the ideal(Y1, . . . , Ys). Note thatY is a bihomogeneous
form with bidegY = (d,1). PutK = E/0E : Y . Consider the exact sequence of
gradedA-modules:

0→ Kn−1(−d) Y−→ En→ [E/YE]n→ 0.

Note that reg(E) > reg(E/YE) [T, Lemma 2.1]. By induction ons we may assume
that forn > c − 1,

reg([E/YE]n) = (n− c + 1)d + reg([E/YE]c−1).

Moreover, ifn > c, n− 1> reg(E)+ 1. Then[0E : Y ]n−1 = 0 by [T, Proposition
2.2]. In this case we haveKn−1 = En−1. We distinguish three cases:

(1) If reg(Kc−2)(−d)) > reg([E/YE]c−1) + 1, using Lemma 3.6 we get
reg(Ec−1) = reg(Kc−2(−d)). From this it follows that

reg(Ec−1(−d)) = reg(Kc−2(−d))+ d > reg([E/YE]c−1)+ d + 1

= reg([E/YE]c)+ 1.
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By Lemma 3.6 we get reg(Ec) = reg(Ec−1(−d)) = d+ reg(Ec−1). Using the same
argument, we will be led to the formula reg(En) = (n − c + 1)d + reg(Ec−1) for
n > c − 1.

(2) If reg(Kc−2(−d)) < reg([E/YE]c−1) + 1, using Lemma 3.6 we get
reg(Ec−1) = reg([E/YE]c−1). Therefore,

reg(Ec−1(−d)) = reg([E/YE]c−1)+ d = reg([E/YE]c).
By Lemma 3.6 we get

reg(Ec) = reg([E/YE]c) = d + reg(Ec−1).

Using Lemma 3.6 again we will be led to the formula reg(En) = (n − c + 1)d +
reg(Ec−1) for n > c − 1.

(3) If reg(Kc−2(−d)) = reg([E/YE]c−1)+1, then reg(Ec−1) 6 reg(Kc−2(−d)).
As we have seen in (1), we may assume that reg(Ec−1) < reg(Kc−2(−d)). It
follows that

reg(Ec−1(−d)) < d + reg([E/YE]c−1)+ 1= reg([E/YE]c)+ 1.

Following (2) we will obtain reg(En) = (n− c)d + reg(Ec) for n > c. 2
COROLLARY 3.8. Let I be an ideal generated by ad-sequence ofs forms of the
same degreed. For n > s + 1, reg(I n) = (n− s − 1)d + reg(I s+1).

4. Regularity of Saturations of Ideals

In this section we will study the regularity of the saturationĨ n of I n.

PROPOSITION 4.1.Let I be an arbitrary homogeneous ideal. There is a number
e such thatreg(Ĩ n) 6 nd(I )+ e, for all n > 1.

Proof. We have

Hi
m(Ĩ

n) '
{

0, i = 0,1,

H i
m(I

n), i > 2.

Hence the conclusion follows from Theorem 2.4. 2
Now we will present examples which show that reg(Ĩ n) is not a linear polyno-

mial for n� 0. The idealI will be the ideal of certain ‘fat’ points.

EXAMPLE 4.2. Letp1, . . . , ps be distinct points on a rational normal curve inPr ,
s > 2. Let℘1, . . . , ℘s denote their defining prime ideals inA = k[X0, . . . , Xr ],
wherek is an arbitrary algebraically closed field, andI = ℘1 ∩ · · · ∩ ℘s. Then
Ĩ n = ℘n1 ∩ · · · ∩ ℘ns .
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By [CTV, Proposition 7] we know that

reg(A/Ĩ n) = max

{
2n− 1,

[
ns + r − 2

r

]}
.

Note that reg(Ĩ n) = reg(A/Ĩ n)+ 1. If s > 2r, then

reg(Ĩ n) =
[
ns + 2r − 2

r

]
.

In this case, ifs is not divided byr, reg(Ĩ n) differs from a linear function by a
periodic function whose values depend on the residue ofs modulor.

A more precise result can be obtained in the following situation

THEOREM 4.3. Let I be a homogeneous ideal. Assume that the graded algebra
⊕n>0Ĩ nt

n is finitely generated. Then there exists a positive integerr and linear
polynomialsfi(n) = ndi + ei for 0 6 i 6 r − 1 such thatreg(Ĩ n) = fσ(n)(n) for
n� 0, whereσ (n) ≡ n modr.

Proof. SinceR̃ = ⊕Ĩ ntn is finitely generated, it may be written as a factor
ring of a bigraded polynomial ringS = k[X1, . . . , Xr, Y1, . . . , Ys] where degXi =
(1,0) for i = 1, . . . , r, and degYj = (dj , tj ) for j = 1, . . . , s. The arguments of
Lemma 3.3 apply as well tõR. So we conclude that

regi(Ĩ n) = max{a |TorSi (S/N, R̃)(a,n) 6= 0} − i.

Thus the conclusion follows if we prove the following analogue of Theorem 3.4:
Suppose thatE is a finitely generated bigraded module overT = k[Y1, . . . , Ys]
where degYj = (dj , tj ) for j = 1, . . . , s. Then there exists an integerk0 and linear
functions`i, i = 0, . . . , k0, such that for alln � 0 one has thatρE(n) = `i(n) if
n ≡ i modk0.

Consider theN-gradingTb = ⊕aT(a,b). Then there exists an integerk0 such that
the k0th Veronese subringT (k0) = ⊕i>0Tik0 of T is standard graded in degree 1
(after normalizing the grading). Note thatE considered as anT (k0)-module decom-
poses asE = ⊕k0−1

i=0 TiE. Therefore we may apply 3.4, and see that the functions
ρTiE(n) of theT (k0)-modulesTiE are linear forn� 0.

Now let n be arbitrary. Thenn = mko + i with 0 6 i 6 k0 − 1, andρTE(n) =
ρT

(k0)

TiE
(m). Hence the conclusion follows. 2

The following example shows that in general reg(Ĩ n) is not a linear polynomial
with periodic coefficients.

EXAMPLE 4.4. For anyp > 0 such thatp is congruent to 2 mod 3, there exists a
field k of characteristicp and an idealI ⊂ k[x, y, z] such that the regularity of the

183267.tex; 23/08/1999; 10:03; p.13

https://doi.org/10.1023/A:1001559912258 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001559912258


256 S. DALE CUTKOSKY ET AL.

saturated powers̃I n is not (eventually) periodic. In fact, reg(Ĩ 5n+1) = 29n+ 7 if n

is not a power ofp and reg(Ĩ 5n+1) = 29n + 8 if n is a power ofp.
In [CS, Sect. 6] the first author and Srinivas construct a counterexample to

Zariski’s Riemann–Roch problem in charp > 0. There one can find a non singular
projective curveC of genus 2 over a fieldk of characteristicp 6= 0 as above with
pointsη, q ∈ C such that

h1(OC(n(η − q)+ q)) =
{

0 if n is not a power ofp,

1 if n is a power ofp.

We will use this curve to construct our example.
SetD = 6q − η. ThenD is a divisor onC such that deg(D) = 5 > 2g + 1,

whereg = 2 is the genus ofC. ThusD is very ample [H2, Coro. IV.3.2] and
h0(OC(D)) = deg(D) + 1 − g = 4 [H2, Example IV.1.3.4 and Thm. IV.1.3].
HenceH 0(C,OC(D)) gives an embedding ofC as a curve of degree 5 inP3. We
can project C onto a degree 5 plane curveγ with only nodes as singularities from a
point inP3 not onC [H2, Thm IV.3.10]. The arithmetic genus ofγ ispa(γ ) = 2+n
wheren is the number of nodes ofγ [H2, Exercise IV.1.8]. Sinced = deg(γ ) = 5,
pa(γ ) = 1

2(d − 1)(d − 2) = 6 [H2, Exercise I.7.2]. Thusγ hasn = 4 nodes.
Let these singular points beq1, . . . , q4. Letπ1: S1→ P2 be the blow up of these

4 points. LetFi be the exceptional curves that map respectively toqi. Let γ1 be the
strict transform ofγ . Thenγ1

∼= C since it is nonsingular. LetH1 = π−1
1 (H ′)

whereH ′ is a hyperplane onP2. Since the singular points are nodes

π−1(γ ) = γ1+ 2F1+ · · · + 2F4, and Fi · γ1 = qi1 + qi2,
for (distinct) pointsqij onγ1, 16 i 6 4, j = 1,2. The divisor

5H1 · γ1− 2q11− · · · − 2q42− η + 5q

has degree 13 since(H1 · γ1) = (H ′ · γ ) = 5. Thus it is very ample [H2, Corollary
IV.3.2], and there are pointsp1, . . . , p13 ∈ γ1 such that

5H1 · γ1− 2q11− · · · − 2q42− η + 5q ∼ p1+ · · · + p13,

where∼ denotes linear equivalence.
Let π2: S2 → S1 be the blowup of the pointsp1, . . . , p13, with respective ex-

ceptional curvesEi mapping topi. Let γ ∼= C be the strict transform ofγ1, F i be
the strict transform ofFi for 16 i 6 4. Letπ : S2→ P2 be the composed map. Let
H = π−1(H ′). Then

5H ∼ π−1(γ ) = γ + E1 + · · · + E13+ 2F 1+ · · · + 2F 4,

γ · γ ∼ (5H − E1− · · · − E13− 2F 1− · · · − 2F 4) · γ ∼ η − 5q.
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By our construction,H · γ ∼ D = 6q − η. Thus

(5γ + 4H) · γ ∼ η − q, (γ +H) · γ ∼ q.

SetA = 5γ + 4H , B = γ + H . Observe that(γ 2) = −4 and(γ · H) = 5.
H 1(S2,OS2(mH)) = 0 for allm > 0 andH 1(γ ,Oγ (mH +nγ )) = 0 if 5m−4n >
3 since((mH+nγ )·γ ) = 5m−4n and a divisor on a curve of genusg is nonspecial
if its degree is> 2g−2 [H2, Example IV.1.3.4]. Consideration of the cohomology
of

0→ OS2(mH + (n− 1)γ )→ OS2(mH + nγ )
→ Oγ (mH + nγ )→ 0 (*)

and induction implyH 1(S2,OS2(mH + nγ )) = 0 if 5m − 4n > 3. The relations
H 2(S2,OS2(mH)) = 0 for allm > 0 andH 2(γ ,Oγ (mH + nγ )) = 0 for allm,n
imply H 2(S2,OS2(mH + nγ )) = 0 for allm,n > 0.

For alln > 0 we have

0→ OS2(nA+H)→ OS2(nA+ B)→ Oγ (nA+ B)→ 0.

By the above,H 1(S2,OS2(nA+H)) = H 2(S2,OS2(nA+H)) = 0 for all n > 0.
From (*) we see that

h1(OS2(nA+ B)) = h1(OC(n(η − q)+ q))

=
{

0 if n is not a power ofp,

1 if n is a power ofp.

By (*), H 1(S2,OS2(4nH + (5n− 1)γ )) = 0 for all n > 0. Then by the Riemann–
Roch Theorem onγ and (*),

h1(OS2(4nH + 5nγ )) = h1(Oγ (4nH + 5nγ )) = 1,

for n > 0 since((4nH+5nγ )·γ ) = 0 and by Riemann–Roch.((4nH+(5n+1)γ )·
γ ) = −4. Thush0(Oγ (4nH+(5n+1)γ )) = 0 andh1(Oγ (4nH+(5n+1)γ )) = 5
by Riemann–Roch. By (*) we haveh1(OS2(4nH + (5n+ 1)γ ) = 4.

The formulas((nA + B + mH) · Ei) > 0 and((nA + B + mH) · F i) > 0
for all m,n > 0 imply thatRiπ∗OS2(nA + B + mH) = 0 for m,n > 0, and
H 1(S2,OS2(nA+ B +mH)) = H 1(S, π∗OS2(nA+ B +mH)). The relation

nA+ B +mH ∼ (29n + 6+m)H−
−(5n+ 1)(E1+ · · · + E13+ 2F 1+ · · · + 2F 4)
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implies

π∗O(nA+ B +mH)
∼= (I5n+1

1 ∩ · · · ∩ I5n+1
13 ∩ J10n+2

1 ∩ · · · ∩ J10n+2
4 )⊗O(29n+ 6+m),

whereIi are the ideal sheaves of the pointspi andJj are the ideal sheaves of the
pointsqj in P2.

Let ℘1, . . . , ℘13 and ℘14, . . . , ℘17 be the homogeneous primes ink[x, y, z]
which sheafify toI1, . . . ,I13 andJ1, . . . ,J4, respectively. Set

I = ℘1 ∩ · · · ∩ ℘13∩ ℘2
14∩ · · · ∩ ℘2

17.

Let m = (x, y, z). Then

H 0
m(Ĩ

n) = H 1
m(Ĩ

n) = 0, H 2
m(Ĩ

n) = ⊕a∈ZH 1(P2,In(a)),

H 3
m(Ĩ

n) = ⊕a∈ZH 2(P2,In(a)),

whereI is the ideal sheaf ofI . Putting everything together, we obtain

dimk H
2
m(Ĩ

5n+1)(s−2) =


0 if s > 29n+ 8,

0 if s = 29n+ 8 andn is not a power ofp.

1 if s = 29n+ 8 andn is a power ofp,

4 if s = 29n+ 7.

H 3
m(Ĩ

5(n+1))(s−3) = 0 if s > 29n + 7.

By Theorem 4.3 we know that⊕n>0Ĩ n is not a finitely generatedk-algebra. We
can verify this directly.

If ⊕n>0Ĩ n were finitely generated, there would be a surjection of a bigraded

polynomial ring onto⊕n>0Ĩ n. Then the subalgebraR = ⊕n>0

(
Ĩ 5n
)

29n
would be

finitely generated. We will show thatR is not finitely generated

R ∼= ⊕n>0H
0(S2,OS2(nA)).

From (*), and our calculationH 1(S2,OS2(mH +nγ )) = 0 if 5m−4n > 3, we see
that we have surjections

H 0(S2,OS2(nA))→ H 0(γ ,Oγ (nA)) ∼= H 0(γ ,Oγ (n(η− q))) = 0,

sinceη − q must have infinite order in the Jacobian ofγ , and

H 0(S2,OS2(nA− γ ))→ H 0(γ ,Oγ (nA− γ )) 6= 0,
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since(γ · (nA − γ )) = −(γ · γ ) = 4 > 2g and by [H2, Cor. IV.3.2]. Thus the
fixed locus (counting multiplicity) of the complete linear system| nA | is γ for
all n > 0. Since this multiplicity is nonzero and bounded for alln > 0, R is not
finitely generated (c.f. [[Z], Part I, Sect. 2]).

The following example shows interesting asymptotic behaviour for an ideal
in the coordinate ring of an abelian surface. In this example, lim reg(Ĩ n)/n is an
irrational number. The construction is based on an example in [Cu].

EXAMPLE 4.4. Letk be a an algebraically closed field of arbitrary characteristic.
Let C be an elliptic curve overk and letS = C × C. Let1 ⊂ S be the diagonal,
P ∈ S a closed point andA = π−1

1 (p), B = π−1
2 (P ), whereπi: S → C, i = 1,2

are the projections. Let NS(S) be the Neron–Severi group ofS andNE(S) be the
closure in the metric topology on NS(S)⊗Z R of the cone generated by the curves
onS. Let V ⊂ NS(S)⊗Z R be the real vector space with basis{A,B,1}. Observe
that(12) = (A2) = (B2) = 0, (A · B) = (A ·1) = (B ·1) = 1. Let

U = {(x, y, z) | (xA+ yB + z1)2 > 0}
= {(x, y, z) | (xy + xz + yz) > 0}.

U consists of two disjoint, connected cones. LetG be the connected component
containingL = A + B + 1. By the index Theorem(E · L) > 0 for any rational
E ∈ G. Hence the effective classes inV are contained in the closureG of G. If
E is a rational class inG, thenE is ample by the Riemann–Roch Theorem, and
the fact that any effective divisor on an abelian surface with a positive intersection
number is ample. HenceG = V∩NE(S). LetH = 3A+6B+91,D = A+B+1

(sH −D)2 = 198s2 − 72s + 6= 0

has the roots

s1 = 1
33(6−

√
3), s2 = 1

33(6+
√

3).

If s > s2 thensH −D is in the ample cone. Ifs1 < s < s2 thensH −D is not in
the effective cone, andD − sH is not in the effective cone.

By Mumford’s Vanishing Theorem (Sect. 16 of [Mu]), ifm andr are nonnega-
tive integers

H 1(S,OS(mH − rD)) = 0 if m > rs2

and

H 2(S,OS(mH − rD)) = 0 if m > rs2.

Suppose thatm, r are nonnegative integers such thats1r < m < s2r. Then

H 0(S,OS(mH − rD)) = 0
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and

H 2(S,OS(mH − rD)) = H 0(S,OS(rD −mH)) = 0.

By the Riemann–Roch Theorem of Section 16 [Mu]

χ(mH − rD) = (mH − rD)2
2

.

Thus if s1r < m < s2r we have

h1(mH − rD) = −(mH − rD)
2

2
> 0.

H is very ample onS by the Lefschetz Theorem (Section 17 of [Mu]). SetR =
⊕n>0H

0(S,OS(nH)), with graded maximal idealm. Let I1 be the homogeneous
ideal ofA, I2 be the homogeneous ideal ofB, I3 the homogeneous ideal of1. Let
I = I1∩I2∩I3. LetI be the sheafification ofI . SinceH 2

m(Ĩ
r)n−2

∼= H 1(S,OS(n−
2)H − rD)) andH 3

m(Ĩ
r)n−3

∼= H 2(S,OS(n − 3)H − rD)), we have that the

‘regularity’ of Ĩ r is [s2r] + 2=
[
(r/33)(6+√3)

]
+ 2.

The ring⊕n>0Ĩ n of Example 4.4 is not finitely generated. This follows since

(
Ĩ r
)
m
= H 0(S,OS(mH − rD)) =

{
0 if m < s2r,

6= 0 if m > s2r.
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