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Instability evolutions of shock-accelerated thin cylindrical SF6 layers surrounded by
air with initial perturbations imposed only at the outer interface (i.e. the ‘Outer’
case) or at the inner interface (i.e. the ‘Inner’ case) are numerically and theoretically
investigated. It is found that the instability evolution of a thin cylindrical heavy fluid
layer not only involves the effects of Richtmyer–Meshkov instability, Rayleigh–Taylor
stability/instability and compressibility coupled with the Bell–Plesset effect, which
determine the instability evolution of the single cylindrical interface, but also strongly
depends on the waves reverberated inside the layer, thin-shell correction and interface
coupling effect. Specifically, the rarefaction wave inside the thin fluid layer accelerates
the outer interface inward and induces the decompression effect for both the Outer
and Inner cases, and the compression wave inside the fluid layer accelerates the
inner interface inward and causes the decompression effect for the Outer case and
compression effect for the Inner case. It is noted that the compressible Bell model
excluding the compression/decompression effect of waves, thin-shell correction and
interface coupling effect deviates significantly from the perturbation growth. To this
end, an improved compressible Bell model is proposed, including three new terms
to quantify the compression/decompression effect of waves, thin-shell correction and
interface coupling effect, respectively. This improved model is verified by numerical
results and successfully characterizes various effects that contribute to the perturbation
growth of a shock-accelerated thin heavy fluid layer.
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1. Introduction

The instability that occurs at the interface between two fluids with different densities due
to the persistent acceleration of the light fluid to the heavy fluid is referred to as the
Rayleigh–Taylor (RT) instability (Rayleigh 1883; Taylor 1950). The Richtmyer–Meshkov
(RM) instability develops when a shock wave refracts through an interface between two
fluids with different densities (Richtmyer 1960; Meshkov 1969). These two instabilities
have been widely encountered as playing key roles in various topics, including geological
flows (Houseman & Molnar 1997), astrophysical flows (Bell et al. 2004; Hester 2008),
magnetic fields (Isobe et al. 2005), chemical reactions (Chertkov, Lebedev & Vladimirova
2009), nuclear fusion (Lindl et al. 2014), material strength (Buttler et al. 2012) and
explosive detonation (Balakrishnan & Menon 2010). More important applications of RT
and RM instabilities can be found in the recent reviews of Zhou et al. (2019, 2021).
Especially, the evolutions of these two types of interfacial instability are critical for
understanding dynamical features of inertial confinement fusion (ICF) (Betti & Hurricane
2016) and supernova explosions (Kane, Drake & Remington 1999). Specifically, the RM
instability occurs at the interface of the ablator layer or the fuel layer in an ICF capsule
when the shocks generated by intense lasers or X-rays interact with these layers. During
the implosion in ICF, RM instability determines the seed of RT instability inducing the
mixing that reduces and even eliminates the thermonuclear yield (Kishony & Shvarts
2001). Furthermore, these instabilities also occur in supernovae when the shocks generated
by star collapse interact with the multi-layer heavy elements throughout interstellar space
(Arnett et al. 1989). Then the resultant mixing induced by the RM and RT instabilities
shapes the filament structures as in the remnant of the Crab Nebula of 1054 (Hester 2008).
Therefore, it is of great significance for scientific research and engineering applications to
explore the instability evolution of a shock-accelerated finite-thickness fluid layer.

Compared with previous research about the instability of a single interface (Zhou
2017a,b), the instability evolution of a fluid layer is more complex due to the presence of
two interfaces. The RT instability of a finite-thickness fluid layer was first considered by
Taylor (1950), who discovered that the interface coupling effect appears to be significant
when the fluid-layer thickness is sufficiently small. Ott (1972) deduced an analytic solution
describing the nonlinear evolution of RT instability in a thin fluid layer and explained the
formation of bubbles and spikes. Mikaelian (1982, 1985) proposed linear solutions for
the perturbation growths induced by RT and RM instabilities on an arbitrary number of
stratified fluids. Jacobs et al. (1993, 1995) adopted the gas curtain technique to a shocked
thin SF6 layer and observed three specific flow patterns, namely upstream mushrooms,
downstream mushrooms and sinuous shape, depending on the initial perturbations on two
interfaces. Recently, Liang et al. (2020) employed the soap-film technique to examine the
instability evolution of an SF6 layer surrounded by air and confirmed that the flow patterns
are determined by the amplitudes and phases of two corrugated interfaces. Later, Liang &
Luo (2021) pointed out that finite-thickness fluid-layer evolution not only involves both the
RM and RT instabilities, but also strongly depends on the waves reverberated inside the
layer. They first reported that the rarefaction waves inside the fluid layer induce additional
RT instability and decompression effect on the first interface, and the compression waves
inside the fluid layer cause additional RT stabilization and compression effect on the
other interface. Here, the compression/decompression effect is defined as the sudden
decrease/increase of perturbation amplitude of the interface impacted by one known wave
(Richtmyer 1960; Liang & Luo 2021).

The research work mentioned above focused mainly on planar geometry, but convergent
geometries are encountered more commonly in reality, for example ICF (Betti &
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Hurricane 2016) and supernovae (Kane et al. 1999), and thus are of more practical interest.
Cylindrical geometry which involves principal effects of convergent geometries has been
widely used as a natural choice to study the convergent effects on interfacial instability
evolution (Mikaelian 1990; Hsing & Hoffman 1997; Guo et al. 2017; Ding et al. 2019;
Mikaelian 2005; Sun et al. 2020; Zhang et al. 2020). According to a previous study
(Weir, Chandler & Goodwin 1998), the Bell–Plesset (BP) effect (Bell 1951; Plesset 1954)
occurring in cylindrical geometry expands or compresses perturbation scales and alters the
perturbation growth characteristics induced by RM and RT instabilities. Epstein (2004)
extended the groundbreaking model (Bell 1951) describing the instability growth on a
thick cylindrical shell in vacuum to the single cylindrical interface between two uniformly
compressing fluids which are compressing at the same rate (i.e. the Atwood number does
not change). This compressible Bell model (Epstein 2004) has been verified to well capture
not only the RM instability, RT instability and the BP effect but also the compressibility
effect referring to the effect of fluid compression caused by the basic flow to the centre of
cylindrical geometry (Luo et al. 2019; Wu, Liu & Xiao 2021). Recently, the instability
evolutions of shock-accelerated cylindrical heavy gas layers with initial perturbations
imposed at the outer interface and at the inner interface were examined by Ding et al.
(2019) and Sun et al. (2020), respectively. They increased the layer thickness from 15.0
to 35.0 mm and found that the interface coupling effect was weakening. In addition, the
rarefaction wave was observed to occur inside the cylindrical fluid layer and induced the
RT instability on the perturbed interfaces in experimental work (Ding et al. 2019). Zhang
et al. (2020) gave, for the first time, the mathematical forms of the interface coupling
effect referring to the influence of the perturbation growth at one interface on that at
another interface and thin-shell correction for a thin cylindrical incompressible fluid shell
in vacuum. They pointed that when αn < 6, where α is the ratio of the radii of the
outer interface to inner interface and n is the wavenumber of the perturbed interface,
the interface coupling effect and thin-shell correction are significant and thus cannot be
neglected.

It can be inferred from the works mentioned above that the instability evolution of
a shock-accelerated thin fluid layer in cylindrical geometry is complex, including not
only the RM instability, RT instability, compressibility and BP effect, but also the waves
reverberated inside the layer, thin-shell correction and interface coupling effect. However,
the instability evolution of a shock-accelerated thin cylindrical fluid layer inserted into
another fluid is still worthy of further investigation. On the one hand, due to the
measurement difficulties caused by the close distance between the two interfaces in a thin
fluid layer, α only reaches 1.375 and thus the thin-shell correction and interface coupling
effect are negligibly weak in experiments with n = 6 (Ding et al. 2019; Sun et al. 2020).
On the other hand, the existing model of Zhang et al. (2020) aims at a thin fluid shell
in vacuum, so that the effects of the waves reverberated inside the thin layer induced
by the incident shock on the instability evolution cannot be described theoretically. In
practice, the fuel layer in ICF is thin and α is usually as low as 1.111 (Amendt et al. 2002;
Betti & Hurricane 2016), which enforces the necessity of numerically and theoretically
investigating the instability evolution of a thin fluid layer in cylindrical geometry.

In the present study, the instability evolution of a shock-accelerated thin heavy fluid
layer in cylindrical geometry has been studied numerically and theoretically to reveal the
underlying physical mechanism of the thin fluid layer. An improved compressible Bell
model to characterize various effects that contribute to the perturbation growth of the thin
heavy fluid layer is proposed and verified by direct numerical simulation (DNS) of the
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Figure 1. Schematic illustration of a convergent shock impacting a cylindrical SF6 layer surrounded by air.
Here r1 and r2 are the radial locations of outer and inner unperturbed interfaces of the SF6 layer, respectively,
and rs represents the radius of the convergent incident shock.

Species ρ∗
i (kg m−3) p∗

i (kPa) T∗
i (K) γi Pri Sci M∗

i (g mol−1) μ∗
0,i (kg m−1 s−1)

SF6 5.98 101.325 298 1.09 0.80 0.691 146.06 1.2388 × 10−5

Air 1.18 101.325 298 1.40 0.72 0.757 28.96 1.7161 × 10−5

CO2 1.80 101.325 298 1.31 0.77 0.766 44.01 1.3711 × 10−5

H2 0.08 101.325 298 1.41 0.69 0.686 2.02 0.8377 × 10−5

Table 1. Initial parameters of the unshocked species. Here the subscript i = S, A, C and H representing the
species SF6, air, CO2 and H2, respectively.

Navier–Stokes equations. The remainder of this paper is organized as follows. The DNS
strategy used to simulate the instability evolution is described in § 2. The general features
of the instability evolution and the improved model describing the perturbation growth
along with the relevant results are discussed in § 3. Finally the conclusions are addressed
in § 4.

2. Numerical simulations

2.1. Governing equations
Direct numerical simulation has been performed on the hydrodynamic instability in
cylindrical geometry to study the instability evolution of the shock-accelerated thin heavy
fluid layer. Considering the convergent shock to accelerate an SF6 (sulphur hexafluoride)
layer surrounded by air (see figure 1), the pressure p∗

A and density ρ∗
A of unshocked air are

chosen as the characteristic scales and are listed in table 1. Here, the characteristic velocity
and temperature are described, respectively, as u∗

A = √
p∗

A/ρ∗
A and T∗

A = p∗
AM∗

A/(R∗ρ∗
A)

with the universal gas constant R∗ and molar mass of air M∗
A. Hereafter, the superscript ‘∗’

denotes dimensional physical quantities and the subscript ‘A’ corresponds to the quantities
of unshocked air. The radius of the unperturbed outer interface of the SF6 layer r∗

o is
used as the characteristic length. Thus, the non-dimensionalized governing equations in
cylindrical coordinates (r, θ) are

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.1)
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∂(ρu)

∂t
+ ∇ · (ρuu) = −∇p + 1

Re
∇ · τ , (2.2)

∂(ρE)

∂t
+ ∇ · [(ρE + p)u] = 1

Re
∇ · (τ · u) − 1

RePr
∇ · qc − 1

ReSc
∇ · qd, (2.3)

∂(ρYA)

∂t
+ ∇ · (ρYAu) = − 1

ReSc
∇ · J A, (2.4)

where ρ is the fluid density; u = (ur, uθ ) denotes the velocity vector; p is the pressure;
E = CvT + u · u/2 denotes the specific total energy with Cv being the specific heat at
constant volume and T the temperature; YA = ρA/ρ is the species mass fraction of air
and YS = 1 − YA is the species mass fraction of SF6; and the symbol ∇ denotes the
vector-differentiation operator. The stress tensor is obtained as τ = 2μS − 2μ/3(∇ · u)δ,
where μ is the dynamic viscosity, S = (∇u + (∇u)T)/2 is the strain-rate tensor and δ
represents the unit tensor. The heat fluxes due to heat conduction (qc) and interspecies
enthalpy diffusion (qd) are given by qc = −γA/[MA(γA − 1)]κ∇T and qd = ∑

hiJ i (i =
A, S), respectively, where γA is the ratio of specific heats of air, MA is the molar mass
of air, κ is the heat conduction coefficient, hi is the enthalpy, J i = −ρD∇Yi is the
diffusive mass flux obtained by the Fick law and D is the diffusion coefficient. The above
governing equations are closed with the non-dimensionalized ideal gas equation of state,
i.e. p = ρT/M, where M is the molar mass.

Following recent work (Ge et al. 2020), the density and pressure of the mixture are
obtained by the summation of each species, while the temperature is equal for each
species of the mixture. Therefore, the molecular mass of the mixture is given by M =
(
∑

Yi/Mi)
−1, where Mi is the molecular mass of the ith species. The quantities describing

the physical properties of the mixture, such as the dynamic viscosity μ, the diffusion
coefficient D, the heat conduction coefficient κ , the specific heat at constant pressure Cp
and the specific heat at constant volume Cv , are calculated by the linear combinations of
each species weighted with their mass fractions (Ge et al. 2020). The dynamic viscosity
of the ith species μi is computed by the Sutherland law as

μi = μ∗
0,i

μ∗
A

(
TT∗

A
T∗

0

)3/2 T∗
0 + T∗

s

TT∗
A + T∗

s
, (2.5)

where T∗
s = 124 K and μ∗

0,i is the dynamic viscosity at the reference temperature T∗
0 =

273.15 K. The heat conduction coefficient κi and diffusion coefficient Di of the ith species
can be obtained by the constant Prandtl number, Pri = C∗

p,iμ
∗
i /κ

∗
i , and the constant

Schmidt number, Sci = μ∗
i /(ρ

∗
i D∗

i ), respectively. The specific heat at constant pressure
can be calculated by C∗

p,i = γiR∗/[(γi − 1)M∗
i ]. In that, the parameters of SF6 and air to

obtain the quantities describing the mixture properties are listed in table 1.
The non-dimensional parameters in (2.1)–(2.4) are the Reynolds, Prandtl and Schmidt

numbers defined, respectively, as

Re = ρ∗
Au∗

Ar∗
o

μ∗
A

, Pr =
C∗

p,Aμ∗
A

κ∗
A

, Sc = μ∗
A

ρ∗
AD∗

A
. (2.6a–c)

In the present study, the physical quantities of unshocked air are chosen as the
characteristic scales. Thus the Prandtl and Schmidt numbers in governing equations are
0.72 and 0.757, respectively. The Reynolds number Re here is set as 105 for which the
corresponding Reynolds number based on the perturbation wavelength and the post-shock
Richtmyer velocity is 2300 � 256. Therefore, according to Walchli & Thornber (2017),
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the instability evolution satisfies the inviscid solution. This indicates that the viscosity,
heat conduction and species diffusion have insignificant effects on the perturbation growth
of the cases in our study.

2.2. Numerical algorithms and validation
A numerical algorithm of high-order finite difference schemes is used to solve the
governing equations (2.1)–(2.4) in cylindrical coordinates (Zhao et al. 2021; Fu et al.
2022). Specifically, the seventh-order weighted essentially non-oscillatory scheme is
implemented to discretize the convective terms. The eighth-order central difference
scheme is performed to discretize the viscous terms. The time derivative is approximated
by the classical third-order Runge–Kutta method.

To validate the present algorithm, an initially unperturbed air–SF6 interface accelerated
by a convergent shock wave in cylindrical geometry is simulated. This simulation is a
limit example of a cylindrical shock wave accelerating a heavy fluid layer, namely the
case that the radius of the inner interface of the SF6 layer r2 in figure 1 is zero. This
validation example also includes the evolution of the cylindrical interface, the motion of
the converging shock wave and the interaction between the shock wave and interface,
which are similar to the fluid layer problem considered here, and has accurate experimental
(Lei et al. 2017) and numerical (Wu et al. 2021) data for verification. Consistent with
experiment (Lei et al. 2017), ambient air mixed with SF6 (mass fraction of air is 97.5 %)
and the inside SF6 mixed with air (mass fraction of SF6 is 94.5 %) are set, and the obtained
trajectories of the interface and shock wave are compared in figure 2. The temporal
trajectories of the present simulation are in good agreement with the data of Lei et al.
(2017) and Wu et al. (2021), ensuring that the present DNS is reliable for resolving the
complicated interaction between the interface and shock wave.

2.3. Problem set-up
To study the instability evolution of the shock-accelerated thin heavy fluid layer, the model
problem that a convergent shock wave impacts a cylindrical SF6 layer surrounded by
air is set as shown in figure 1. The ratio of the radial positions of the outer to inner
interfaces of the SF6 layer, i.e. α = r1/r2, is defined to characterize the layer thickness.
For convenience, the quantities at the outer and inner interfaces are denoted by subscripts
1 and 2, respectively. In the present study, the initial ratio α0 has been set as 1.111 and the
SF6 layer is thin enough to have an obvious interface coupling effect (Zhang et al. 2020).
By introducing the error function to smooth the interfaces, the mass fraction field of air is
initialized as

YA(r, θ; t = 0) = 1
2

[
2 + erf

(
r − ζ1(θ)

δ

)
− erf

(
r − ζ2(θ)

δ

)]
, (2.7)

where the initial premixed thickness of the interface δ is set as 0.005, which is low enough
to ignore the effect of initial interface diffusion (Walchli & Thornber 2017), and ζi(θ) (i =
1, 2) is the shape function of the interface. For an unperturbed interface, ζi(θ) = ri. For a
single-mode cosine perturbation, ζi(θ) = ri + ai cos(nθ), where ai is the initial amplitude
and n is the number of perturbation waves. The incident shock with shock Mach number
Ma = 1.25 is initially at rs = 1.25. We assume a uniform pressure p = 1 and temperature
T = 1 in unshocked regions. Note that the main flow after the converging shock is not
uniform (Chisnell 1998). Nevertheless, the instability evolution induced by the collision
of the converging shock generated by uniform initialization with the perturbed interface is
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Figure 2. Validation based on simulation of an initially unperturbed air–SF6 interface impinged by a
convergent shock wave. Here comparisons are performed for the positions of the interface and shock wave
versus time t. The open and filled symbols represent the experimental (Lei et al. 2017) and numerical (Wu
et al. 2021) data, respectively. The lines denote the present results.

in good agreement with the experimental result and thus the initial non-uniform effect on
the instability growth is insignificant (Wu et al. 2021; Li et al. 2022). Therefore, according
to previous treatments (Li et al. 2021; Wu et al. 2021; Li et al. 2022; Yan et al. 2022), the
initial state in post-shock regions is supposed to be uniform and calculated as

ρs = (γA + 1)Ma2

2 + (γA − 1)Ma2 , ps = 2γAMa2 − γA + 1
γA + 1

, ur,s = −2γ
1/2
A (Ma2 − 1)

(γA + 1)Ma
,

(2.8a–c)
using the Rankine–Hugoniot conditions.

As depicted in figure 1, the shock-accelerated thin SF6 layer is simulated within a
two-dimensional circular domain D = {(r, θ)|rin � r � rout, 0 � θ < 2π}. To avoid a
pole singularity at the centre of cylindrical coordinates, a micro-hole with a radius rin =
0.01 is dug out according to Zhao et al. (2020) and Wu et al. (2021). This commonly used
strategy has been verified to have little influence on the interfacial instability evolution.
In addition, in order to eliminate effects of reflected waves from the exterior boundary,
a sufficiently long sponge layer with a radial width of approximately 19rout is added at
r > rout = 1.5. The wall boundary and non-reflecting boundary conditions are applied to
the interior and exterior sides, respectively, following previous settings (Wu et al. 2021).

3. Results and discussion

3.1. Initially unperturbed interfaces for thin SF6 layer
To provide a base flow, a thin cylindrical SF6 layer (α0 = 1.111) with initially unperturbed
interfaces impacted by a concentric shock is first examined. The wave propagation and
interface motions are visualized in figure 3. Note that the temporal origin is defined as
the moment when the incident shock meets the outer interface. At the early moment
(t = −0.042), both the cylindrical incident shock (IS0) and interfaces of the SF6 layer
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Figure 3. (a–h) Wave propagation visualized by |∇ρ| contours for the case that the convergent incident shock
IS0 impacts the unperturbed thin SF6 layer with α0 = 1.111.

are clearly identified in figure 3(a). As the IS0 moves inward and collides with the outer
interface II1 (air–SF6), the IS0 bifurcates into an outward-moving reflected shock (RS1)
and an inward-moving transmitted shock (TS1) as shown in figure 3(b). After that, the
TS1 collides with the inner interface II2 (SF6–air) and generates a second inward-moving
transmitted shock (TS2) and an outward-moving rarefaction wave (RW). Ascribed to the
non-uniform flow field in the convergent geometry (Lombardini, Pullin & Meiron 2014),
the RW formed here remains sharp like a shock wave, which is consistent with the
experimental results of Ding et al. (2019) and Sun et al. (2020). After impinging on the II1,
the RW reflects to form an inward-moving compression wave (CW) to collide with the II2
as shown in figure 3(d). However, the formation of the CW and its collision with the II2 are
not presented in the experimental results with a larger radius ratio of α0 = 1.833 obtained
by Ding et al. (2019) and Sun et al. (2020). This observation is attributed to the fact that the
SF6 layer is not thin enough in the experiment so that the reflected shock wave generated
in the geometric centre impacts the SF6 layer soon after the RW impinges the II1. Due to
the impact of the IS0 on the SF6 layer, the II1 and II2 move towards the geometric centre as
shown in figure 3(c–f ). As the TS2 reaches the geometric centre, a reflected shock (RS2) is
generated immediately and moves outward away from the centre (see figure 3f ). Later, the
RS2 impacts the II2, which is called reshock, a well-known flow phenomenon happening
in the convergent RM instability (Lombardini et al. 2014; Wu et al. 2021). Consequently,
the RS2 bifurcates into an outward-moving transmitted shock (TS3) and an inward-moving
reflected shock (RS3). Soon, the TS3 colliding with the II1 generates an outward-moving
transmitted shock (TS4) and reflects an inward-moving rarefaction wave (IRW) as shown
in figure 3(h). It is clearly seen in figure 3(g,h) that both the II1 and II2 move outward after
reshock.

The quantitative descriptions for the positions of waves and interfaces and for the radial
velocities (ur) of interfaces are displayed in figure 4. These descriptions are useful for the
prediction of RT-unstable or RT-stable scenarios at the perturbed interfaces, depending
on the interface type and acceleration direction of the interface (Lombardini et al. 2014).
Specifically, for the II1 where the light fluid is placed outside, the interface is RT-unstable
if it accelerates inward or decelerates outward (i.e. r̈1 < 0); for the II2 where the light
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Figure 4. Temporal variations of (a) the radial positions of interfaces and waves and of (b) the radial velocities
of interfaces for the case that the convergent incident shock IS0 impacts an unperturbed SF6 layer with α0 =
1.111. Notation: II1, outer interface; II2, inner interface; RSi, ith reflected shock; TSi, ith transmitted shock; RW,
rarefaction wave; CW, compression wave; SRW, second rarefaction wave; IRW, inward-moving rarefaction
wave.

fluid is inside, RT-unstable regions correspond to the interface decelerating inward or
accelerating outward (i.e. r̈2 > 0). As presented in figure 4(a), the II1 and II2 move inward
from the static state immediately after being impacted by the IS0 and TS1, respectively.
The collisions of the TS3 with II1 and the IRW with II2 cause the interfaces to move
outward. The radial velocities of the outward-moving interfaces are obviously slower than
those of the inward-moving interfaces, which is the same as the experimental results
(Ding et al. 2019; Sun et al. 2020). Furthermore, the temporal variations of the interfacial
radial velocities are examined in figure 4(b). Three and two steps of ur appear before
reshock as induced by the collisions of waves with the II1 and II2, respectively, and the
differences of these steps of ur are listed in table 2. It is worth noting that the RW and
CW obviously accelerate the II1 and II2 inward, and at this stage the perturbed II1 and
II2 are RT-unstable and RT-stable, respectively. As displayed in figure 4(b), the II1 has a
third small velocity step at t ≈ 0.5 when the second rarefaction wave (SRW) generated
by the collision of the CW on II2 impinges on II1. However, the SRW is too weak to
be identified via numerical schlieren images. The above phenomenon indicates that the
waves generated by the incident shock wave sweeping through the thin SF6 layer are
critical in determining the interfacial radial velocities of the fluid layer. After t ≈ 0.7,
the II1 and II2 decelerating inward are RT-stable and RT-unstable, respectively. When
the RS2 and TS3 impact the II2 and II1, respectively, the radial velocities of the inner
and outer interfaces have sudden positive increases and their increase extents are listed
in table 2. To clearly show the strength of the shocks impacting the interfaces, the shock
Mach numbers of the incident shock colliding with the II1 and II2, and the shock Mach
numbers of the reshock impacting the II1 and II2 are listed in table 2. At t ≈ 1.2, as
the IRW generated by the TS3 impacting II1 impinges the II2, the radial velocity of the
II2 has another step and then both the II1 and II2 slowly move outward. The present
results show the main features of the base flow of the convergent shock accelerating a
thin heavy fluid layer, and will facilitate the analysis of the development of a perturbed
layer.
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Interface 
V1 
V2 
V3 
Vr Mai Mar

II1(air–SF6) −0.330 −0.156 −0.014 0.347 1.286 1.383
II2(SF6–air) −0.457 −0.054 — 0.235 1.419 1.236

Table 2. Detailed parameters corresponding to the base flow. Here 
Vi is the difference of the ith step of ur
before reshock and 
Vr denotes the difference of ur induced by reshock; Mai refers to the shock Mach number
of incident shock colliding with the II1 and II2; and Mar refers to the shock Mach number of reshock colliding
with the II1 and II2.

3.2. Instability evolution of the perturbed thin SF6 layer
Next, two typical cases of the perturbed thin SF6 layer with α0 = 1.111, namely the
‘Outer’ case consisting of a cosinoidal outer interface and a circular inner interface and
the ‘Inner’ case where the unperturbed outer interface and cosinoidal inner interface
are composed, are examined to investigate the instability evolution of the thin heavy
fluid layer. The perturbation wavenumber of these two cases is set as n = 6, which is
consistent with the previous experimental setting (Ding et al. 2019; Sun et al. 2020). The
initial amplitude of the perturbed outer interface for the Outer case is a1 = 0.02λ1, where
λ1 = 2πr1/n is the perturbation wavelength of the II1. Considering that the collision of a
shock wave from heavy to light fluids on the perturbed interface causes reverse growth of
the perturbation, the initial amplitude of the perturbed inner interface for the Inner case is
set as a2 = −0.02λ2, with λ2 = 2πr2/n denoting the perturbation wavelength of the II2, to
ensure that the perturbation growth is in phase with that in the Outer case. The simulations
are carried out on three grids of size 6002 (coarse), 9002 (intermediate) and 12002 (fine),
which are uniform in both radial and circumferential directions, and evolutions for the
perturbation amplitudes are displayed in figure 5. The perturbation amplitude ηi is defined
as ηi = (rθ=0 − rθ=π/n)/2 (i = 1, 2), with rθ=0 and rθ=π/n representing the radii of the
locations where YA = 0.5 along θ = 0 and θ = π/n lines, respectively. In this way, the
phase reversal in the perturbation growth can be observed (see figure 5b). The converged
results depicted in figure 5 confirm that the present simulations are reliable for capturing
the essential flow dynamics in instability evolution of the shock-accelerated perturbed
thin SF6 layer. In the following, to obtain the fine flow field for the purpose of clear
visualization of morphologies of the interfaces and waves, all the discussion of results
and analysis concern the simulations of the fine grid resolution (12002).

The underlying physical mechanisms of the perturbation growth presented in figure 5(a)
can be interpreted by the numerical schlieren images for the Outer case shown in figure 6.
Initially, the IS0 together with the II1 and II2 can be clearly identified (see figure 6a).
As the IS0 moves inward, it first collides with the cosinoidally perturbed II1, resulting
in a perturbed TS1 moving inward and a perturbed RS1 moving outward, and both the
TS1 and RS1 have the same phase as the II1. It is worth noting that there is a sudden
decrease in η1 at t = 0, attributed to the fact that the inward-moving IS0 first encounters
the crest of the II1 which consequently obtains an inward radial velocity, while the rest
of the II1 remains still. This radial velocity difference produces a sudden decrease of η1,
which is called the compression effect of the IS0 (Richtmyer 1960). After t = 0 when the
IS0 collides with the II1, the perturbation on the II1 grows as driven by the RM instability
as shown in figure 5(a). Later, the TS1 impacts the II2 and bifurcates into a perturbed RW
in inverse phase with respect to the II1 and a perturbed TS2 in the same phase as the II1 (see
figure 6c). Due to the TS1 impacting II2, a small perturbation is introduced to the II2 and
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Figure 5. Temporal evolutions of the amplitudes for the perturbed SF6 layers in (a) the Outer case and in
(b) the Inner case with three grid resolutions: 6002 (red solid lines), 9002 (green dashed lines) and 12002 (blue
dot-dashed lines). The lines with triangles represent the amplitude of the outer interface and lines with circles
denote the amplitude of the inner interface. The coloured long-dashed and double-dot-dashed lines are the
results calculated by the compressible Bell model (Wu et al. 2021).

then grows slowly in the same phase as the II1 (Zou et al. 2019). Specifically, the trough
of the inward-moving perturbed TS1 first encounters the II2 whose corresponding part
consequently obtains an inward radial velocity, while the rest of the II2 remains still. This
radial velocity difference produces a sudden increase of η2 from t ≈ 0.13 to t ≈ 0.17 and
thus the TS1 causes a decompression effect on II2. After being impinged by the RW, the
perturbation on the II1 has a short-term rapid increase from t ≈ 0.22 to t ≈ 0.30 under the
decompression effect of the RW. The reasons for the decompression effect of the RW on II1
are as follows. The RW first encounters the trough of the II1 whose inward radial velocity is
accelerated to a greater value due to the fact that the pressure behind the RW front is lower
than that before the RW front (Liang et al. 2020). However, the crest of the II1 still keeps its
original radial velocity. This radial velocity difference produces the sudden increase of η1
from t ≈ 0.22 to t ≈ 0.30. Then as shown in figure 6(d) the perturbed CW reflected by the
collision of the RW on II1 impacts the II2, which makes the perturbation on the II2 increase
rapidly. After t ≈ 0.4 when the CW passes through the II2, both the II1 and II2 move
inward and the perturbations increase continuously as driven by the RM instability and
the convergence effect (BP effect). It is of interest that the shape of the TS2 at t = 0.636
becomes almost hexagonal with a phase opposite to that at t = 0.317. This observation
is consistent with the behaviours predicted by Schwendeman & Whitham (1987) using
an approximate theory of shock dynamics. As the TS2 reaches the geometric centre, the
outward-moving perturbed RS2 is generated, and the RS2 is in phase with respect to the II2
at t = 0.931. After the RS2 impacts the II2, the perturbation on the II2 decreases slightly
under the compression effect of the RS2, and then increases continuously due to the RM
instability as shown in figure 5(a). Soon, the perturbed TS3 generated by the RS2 impacting
on II2 collides with the II1, and as shown in figure 5(a) the perturbation on the II1 grows
in the opposite direction after t ≈ 1.1 due to the RM instability with the shock travelling
from heavy to light fluids. Especially, the spike structure formed on the II1 grows in a
direction opposite to that formed on the II2 at t = 1.498 as presented in figure 6(i).

For the Outer case, a very interesting and noteworthy phenomenon in the instability
evolution of the thin SF6 layer is that the inner interface grows in the same phase as the
outer interface before the SF6 layer is re-accelerated by reshock. This behaviour is different
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Figure 6. (a–i) Wave propagation visualized by the |∇ρ| contours for the Outer case.

from the inverse phase growth of the inner interface compared with the outer interface in
the instability evolution of the thick SF6 layer (Ding et al. 2019). In order to explain this
difference between the cases of the thin and thick fluid layers, it is necessary to clarify the
evolution mechanism of the interface after the convergent perturbed shock impacts
the circular interface. According to a previous study (Zou et al. 2019), the problem of
the perturbed shock impacting on the unperturbed interface in convergent geometry is a
non-standard RM instability where the baroclinic mechanism is somewhat insignificant.
In fact, the pressure perturbation and cylindrical BP effect contribute most significantly to
the deformed shock-induced RM instability (Zou et al. 2019). To this end, the growth rate
of the perturbation amplitude of the II2 after t = tTS1 when the perturbed TS1 impacts the
II2 can be expressed as (Zou et al. 2019)

η̇2 = ε
|
V1|

Vs,t=tTS1

η̇s,t=tTS1
+ |
V1|

r2
η2,t=tTS1

. (3.1)

The first term on the right-hand side of the above equation represents the contribution of
the pressure perturbation which can be further divided into impulsive perturbation and

969 A6-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

55
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.555


Instability evolution of shock-accelerated thin fluid layer

0
–0.01

0.01

η·s ª 0

η·s ª –0.019

ηs

0.02

0.03

α0 = ∞
α0 = 2

α0 = 1.111

0

0.4 0.8

t
1.2

Figure 7. The amplitudes of the TS1 versus time for the Outer case with α0 = 1.111, α0 = 2 and α0 = ∞ (only
the outer interface). The amplitude ηs is defined as ηs = (rθ=0 − rθ=π/6)/2, with rθ=0 and rθ=π/6 representing
the radial points where the TS1 intersects with lines θ = 0 and θ = π/6, respectively. The tangent lines are
given at the moment when the TS1 impacts the II2.

continuous perturbation (Zou et al. 2019). Here, ε is a dimensionless parameter and 1 −
ε stands for the ratio of the continuous perturbation to the impulsive perturbation, 
V1
is the radial velocity difference of the II2 induced by the circular TS1 and is listed in
table 2, Vs,t=tTS1

represents the radial velocity of the circular TS1 at t = tTS1 and η̇s,t=tTS1
denotes the perturbation growth rate of the perturbed TS1 at t = tTS1 . The contribution
of the cylindrical BP effect is represented by the second term on the right-hand side of
(3.1) in which η2,t=tTS1

is the amplitude of the perturbation on the II2 introduced by the
TS1 at t = tTS1 and r2 denotes the radial location of the II2. The temporal variation of
the amplitude of the TS1 is plotted in figure 7 to obtain η̇s,t=tTS1

in (3.1). It is clearly
seen that for the Outer case of the thin SF6 layer (i.e. α0 = 1.111), η̇s,t=tTS1

≈ 0, which
means that the only contribution of η̇2 is from the cylindrical BP effect and is positive.
Thus, after being impacted by the TS1, the II2 of the thin SF6 layer keeps the same phase
growth as the II1, and then the perturbed CW accelerating the inward movement of the
II2 makes the perturbation on the II2 grow rapidly. With the thickening of the initial SF6
layer, η̇s,t=tTS1

decreases gradually and is negative. For example, when α0 = 2, η̇s,t=tTS1
≈

−0.019. In addition, based on the facts that η2,t=tTS1
of the thick SF6 layer decreases due

to the decrease of the perturbation amplitude of the inward-moving TS1 and that the value
of ε in (3.1) is approximately 1 (Zou et al. 2019), η̇2 of the thick SF6 layer (i.e. α0 = 2)
is dominated by the pressure perturbation and is negative. Therefore, η2 of the thick SF6
layer in the same phase at t = tTS1 with η1 is reversed rapidly at a negative growth rate, and
the II2 and II1 are in inverse phase. This result is also obtained in previous experimental
work (Ding et al. 2019).

The acceleration of the shock on the thin SF6 layer also causes the instability evolution
of the interfaces for the Inner case as shown in figure 5(b), which can be further examined
by the numerical schlieren images in figure 8. Attributed to the II1 without perturbation,
the IS0, RS1 and TS1 still keep a circular shape with no perturbation introduced before
the collision of the TS1 with the cosinoidal II2. As time proceeds, the TS1 collides with
the II2, generating a perturbed TS2 in a phase opposite to that of the initial II2 and a
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Figure 8. (a–i) Wave propagation visualized by the |∇ρ| contours for the Inner case.

perturbed RW in the same phase as the initial II2. The above phenomena were also found in
a previous experiment (Sun et al. 2020) and the reason for the anti-phase TS2 is interpreted
as follows. The inward-moving TS1 first encounters the crest of the cosinoidal II2 and then
a part of the TS1 transmits into the air attaining a higher travelling speed. While the rest
of the TS1 continues to propagate in SF6 at a lower speed. This radial velocity difference
produces an anti-phase perturbation on the TS2. In addition, due to the impingement of
the TS1 on II2, the initial negative η2 has an instantaneous increase at t ≈ 0.15 under the
compression effect of the TS1, and then grows slowly as driven by the RM instability
and BP effect. After the perturbed RW impinging on the II1, a perturbation amplitude in
inverse phase with respect to the RW is introduced on the II1, and then grows due to the
cylindrical BP effect caused by the inward movement of the II1. However, the impingement
of the RW does not obviously cause the instability evolution on the II1 of the thick SF6
layer with α0 = 1.833 (Sun et al. 2020), due to the reduction of the perturbation on the
RW after a long-distance outward movement in the thick fluid layer. Later, the perturbed
CW reflecting from the II1 and moving inward impacts the II2, speeding up the growth
of η2 so that η2 increases quickly over zero. After t ≈ 0.4, the II1 and II2 grow in the
same phase until the RS2 reflected from the geometric centre reshocks the SF6 layer.
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The instability evolution after reshock in the Inner case is the same as that in the Outer
case, namely the perturbation of the II2 increases continuously and the perturbation of the
II1 decreases.

For the Outer and Inner cases, the instabilities on both the II1 and II2 have a significant
increase before reshock. In groundbreaking work, Bell (1951) employed a potential flow
model to describe the instability growth on a thick cylindrical shell in vacuum, where
the shell can be either incompressible or uniformly compressing. Later, Epstein (2004)
extended the Bell model to the fluid–fluid case assuming two uniformly compressing fluids
which are compressing at the same rate (i.e. the Atwood number does not change). Here,
we examine whether this compressible Bell model capturing well the perturbation growth
of the thick cylindrical layer (Ding et al. 2019) can describe the instability evolution of
the thin SF6 layer considered here. Under a small-perturbation assumption, the simplified
compressible Bell model takes the form (Bell 1951; Epstein 2004)

η̇i = η̇i,RM + η̇i,RT + η̇i,Com, (3.2)

where the single dot denotes the first derivative with respect to time t, η̇i,RM represents
the perturbation growth rate due to the RM instability with the BP effect, η̇i,RT is the
growth rate contributed by the RT stability/instability with the BP effect and η̇i,Com
denotes the growth rate caused by the compressibility effect that refers to the effect of
fluid compression caused by the basic flow to the centre (Epstein 2004; Luo et al. 2019).
Note that the BP effect is coupled into each of the above terms and difficult to isolate from
others (Wu et al. 2021). The above three contributions to the perturbation growth rate are
expressed as (Epstein 2004; Wu et al. 2021)

η̇i,RM =
r2

i,t=t+j
η̇i,t=t+j

r2
i (t)

, (3.3a)

η̇i,RT = −nAT,i + 1
r2

i (t)

∫ t

t0
ri(τ )r̈i(τ )ηi(τ ) dτ, (3.3b)

η̇i,Com = ci

r2
i (t)

[∫ t

t0
ri(τ )ṙi(τ )ηi(τ ) dτ +

∫ t

t0
r2

i (τ )η̇i(τ ) dτ

]
. (3.3c)

Here, i = 1 and 2 corresponding to the II1 and II2, respectively, ri,t=t+j
and η̇i,t=t+j

represent

the position and growth rate of the ith interface at the end moment t+j of the jth wave
passing through the interface, respectively, and AT,i = (ρi,in − ρi,out)/(ρi,in + ρi,out) is the
post-shock Atwood number at the ith interface with ρi,in and ρi,out representing the inner
and outer fluid densities, respectively. The parameter ci = −ρ̇i,in/ρi,in = −ρ̇i,out/ρi,out in
(3.3c) characterizes the expansion rate of the species at the ith interface, which can be
approximated as a constant value, ci ≈ [(ri,min/ri,0)

2 − 1]/tres (Luo et al. 2019; Wu et al.
2021). Here, ri,min denotes the smallest radius of the ith interface during its motion, ri,0
is the initial position of the ith interface and tres represents the time when the reshock
happens. Note that the significant deviations between the compressible Bell model and the
DNS results before reshock are presented in figure 5, and the reasons of these deviations
are as follows. On the one hand, the compression/decompression effect of the impingement
of the waves on the interface cannot be described by the compressible Bell model. For
example, in the Outer case, this model fails to capture the rapid increase of η1 when t ≈
0.22 ∼ 0.30 under the decompression effect of the RW. On the other hand, attributed to
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the fact that αn < 6 (α = r1/r2) in the present study, the interface coupling effect and
thin-shell correction are critical to the perturbation growth and must be considered (Zhang
et al. 2020). Therefore, the neglect of the interface coupling effect and thin-shell correction
also makes the compressible Bell model deviate from the DNS results.

3.3. Model for the instability evolution of the thin SF6 layer
According to the detailed analysis in the previous subsection, improvement in the
compressible Bell model is required to capture the instability evolution of the thin heavy
fluid layer, by including new terms to describe the contributions of interface coupling
effect, thin-shell correction and compression/decompression effect of waves. Based on the
potential flow theory, Zhang et al. (2020) gave for the first time the mathematical forms of
the interface coupling effect and thin-shell correction for a thin cylindrical incompressible
fluid shell in vacuum, which are included in the equations for η1 and η2 as (Zhang et al.
2020)

d(r2
1η̇1)

dt
+ (n + 1)r̈1r1η1 + 2n

α2n − 1
r̈1r1η1

= 2nαn+1

α2n − 1
r̈1r1η2 + 2nαn−1(α2 − 1)

α2n − 1
ṙ1r1η̇2, (3.4)

d(r2
2η̇2)

dt
− (n − 1)r̈2r2η2 − 2n

α2n − 1
r̈2r2η2

= − 2nαn−1

α2n − 1
r̈2r2η1 + 2nαn−1(α2 − 1)

α2n − 1
ṙ2r2η̇1, (3.5)

respectively, where α = r1/r2 and the dot and double dots denote the first and second
derivatives with respect to time t, respectively. The first two terms on the left-hand side
of (3.4) and (3.5) represent the incompressible Bell model (Bell 1951), and the temporal
integrals of these two terms are exactly the same as (3.2) in which |AT,i| = 1 and the terms
of compressibility effect are not included. The third terms on the left-hand side of (3.4) and
(3.5) represent the thin-shell corrections (Zhang et al. 2020). When the thickness of the
layer decreases leading to α → 1, the thin-shell correction becomes important. The terms
of the interface coupling effect on the right-hand side of (3.4) and (3.5) are roughly of the
order of α−n for large α, namely these coupling terms can be ignored for the thick fluid
layer. They can be further divided into amplitude coupling terms and velocity coupling
terms corresponding to, respectively, the first and second terms on the right-hand side of
(3.4) and (3.5) (Zhang et al. 2020).

In fact, the above model given by Zhang et al. (2020) can be regarded as an extension
of the original Bell model (Bell 1951), that is, the coupling terms and thin-shell correction
have been added to predict the perturbation growth of the thin fluid layer in vacuum.
For the current heavy fluid layer, the density of SF6 is much higher than that of air
and the absolute values of Atwood number are as large as 0.67 close to 1. Based on
the small-perturbation assumption under which the perturbation obeys linear growth, the
temporal integral forms of the thin-shell correction and the coupling terms in (3.4) and
(3.5) are superimposed on (3.2), i.e.

η̇i = η̇i,RM + η̇i,RT + η̇i,Com + η̇i,Thin + η̇i,Cou, (3.6)
to improve the compressible Bell model so that it can describe the instability evolution
of the thin SF6 layer. Here, η̇i,Thin and η̇i,Cou represent the contributions of the thin-shell
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correction and the interface coupling effect to the growth rate of the perturbation on the
ith interface, respectively. Term η̇i,Thin takes the form

η̇i,Thin = (−1)i

r2
i (t)

∫ t

t0

2n
α2n(τ ) − 1

r̈i(τ )ri(τ )ηi(τ ) dτ, (3.7)

and the forms of η̇1,Cou and η̇2,Cou are expressed as

η̇1,Cou = 1
r2

1(t)

{∫ t

t0

2nαn+1(τ )

α2n(τ ) − 1
r̈1(τ )r1(τ )η2(τ ) dτ

+
∫ t

t0

2nαn−1(τ )[α2(τ ) − 1]
α2n(τ ) − 1

ṙ1(τ )r1(τ )η̇2(τ ) dτ

}
(3.8)

and

η̇2,Cou = 1
r2

2(t)

{
−

∫ t

t0

2nαn−1(τ )

α2n(τ ) − 1
r̈2(τ )r2(τ )η1(τ ) dτ

+
∫ t

t0

2nαn−1(τ )[α2(τ ) − 1]
α2n(τ ) − 1

ṙ2(τ )r2(τ )η̇1(τ ) dτ

}
, (3.9)

respectively. On the one hand, when AT,1 = 1 and AT,2 = −1, (3.6) without the
compressibility effect term recovers the model of Zhang et al. (2020). On the other hand,
with the fluid layer thickening, i.e. α → ∞, (3.6) can be reduced to the compressible
Bell model, i.e. (3.2). The above analysis points to that (3.6) can be viewed in physics
as a rational combination of the compressible Bell model describing the single interface
of arbitrary AT with the model of Zhang et al. (2020) predicting the evolution of
the cylindrical fluid layer in vacuum. Therefore, (3.6) needs to satisfy all the three
assumptions involved in these two models, i.e. the small-amplitude assumption, potential
flow assumption (Epstein 2004; Zhang et al. 2020) and uniformly compressing assumption
(Epstein 2004).

As shown in figures 6 and 8, the interfaces of the shock-accelerated thin fluid layer
are successively impacted by several waves, and the overall variations of the perturbation
amplitudes on the interfaces caused by the compression/decompression effects of the
successive waves can be obtained by accumulating every rapid decrease/increase of the
amplitude induced by each wave. For the compression effect of one known wave, for
example, a shock wave compressing a perturbed interface (Richtmyer 1960), the decrease
of the amplitude is usually estimated by

η+−η−= − |
VW |TW

2
, (3.10)

where η+ and η− are the amplitudes after and before this wave impacting, respectively,

VW represents the radial velocity step of the circular interface caused by this wave
and TW = 2η−/VW denotes the time for this wave to travel from the interfacial crest to
trough with a constant speed VW (Wu et al. 2021). Consequently, it leads to a perturbation
compression rate η+/η− = 1 − |
VW |/VW (Richtmyer 1960; Meshkov 1969; Wu et al.
2021). The accuracy of (3.10) can be verified by the compression rates of the II1 impacted
by the IS0 in the Outer case and the II2 collided by the TS1 in the Inner case. When the IS0
impacts the II1 as shown in figure 5(a), 
VW of the II1 is 
V1 listed in table 2 and VW of
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the IS0 is 1.480 which is the absolute value of the slope of the IS0 position curve in figure 4.
Thus, the calculated compression rate of the II1 is 0.777. In addition, because η1 decreases
rapidly from 0.0209 to 0.0161 at t ≈ 0 when the IS0 impacts the II1, the compression rate
can also be measured directly as 0.0161/0.0209 ≈ 0.770. Similarly, the compression rate
of the II2 collided by the TS1 in the Inner case is calculated as 0.319 and directly measured
as 0.310. The above compression rates measured directly are very close to those calculated
using (3.10), which proves that (3.10) can reliably model the amplitude decrease caused
by the compression effect of one known wave. In fact, (3.10) has also been verified and
adopted by recent experimental (Ding et al. 2017) and numerical (Wu et al. 2021) studies.
Furthermore, (3.10) can also estimate the amplitude increase under the decompression
effect of a wave by replacing the minus sign on the right-hand side of (3.10) with a plus
sign (Liang & Luo 2021). Note that the amplitude of the interface varies linearly with
time under the compression/decompression effect of a wave, so (3.10) can describe the
time-varying compression/decompression effect by replacing the time variable t with TW
(Liang & Luo 2021). To this end, the time-varying compression/decompression effect
(Richtmyer 1960; Liang & Luo 2021) including each wave impacting the ith interface
ηi,CD(t) can be modelled as

ηi,CD(t) = ηi,t0 +
∫ t

t0


V(τ )

2
dτ, (3.11)

where ηi,t0 is the initial amplitude of the ith interface at t = t0. The function 
V(τ )

defined in (3.11) represents the radial velocity step of the circular interface at the moment
τ , namely if t−j < τ < t+j , 
V(τ ) = ±|
Vj|, otherwise 
V(τ ) = 0. Here, 
Vj is the
jth radial velocity step listed in table 2, t−j and t+j are the beginning and end moments
of the jth wave passing through the interface and the operators ‘+’ and ‘−’ before
the term |
Vj| represent decompression and compression effects. Parameters t−j and t+j
can be obtained directly from the numerical results. For example, when the perturbed
RW impinges the II1 in the Outer case, η1 increases rapidly in the time range from
t ≈ 0.22 to 0.30 under the decompression effect of the RW as shown in figure 5(a).
Thus, for the RW passing through the II1, t−j ≈ 0.22 and t+j ≈ 0.30. The reverberated
waves resulting in the compression/decompression effects modelled by (3.11) are caused
by the IS0 impacting the fluid layer. However, (3.6) based on the potential flow assumption
appears independent of whether there is an IS0 and does not involve the process of
wave–interface collision. Therefore, (3.6) excludes the compression/decompression effects
of the reverberated waves colliding with the interfaces. By adding (3.11) to the temporal
integral of (3.6), the compressible Bell model is further improved and the perturbation
amplitude ηi of the ith interface of the SF6 layer can be completed as the following model:

ηi = ηi,RM + ηi,RT + ηi,Com + ηi,Thin + ηi,Cou + ηi,CD. (3.12)

To verify the reliability of the improved compressible Bell model, for the Outer case, the
temporal variations of the perturbation amplitudes calculated by the model (3.12) before
reshock are presented and compared with the DNS results in figure 9. One should keep
in mind that the improved model (3.12) is also based on the small-amplitude assumption
adopted by the Bell model and, therefore, is unable to predict large-amplitude growth of
perturbation after reshock, i.e. t � 1.0. Parameters ri,t=t+j

and η̇i,t=t+j
required to calculate

the ηi,RM term of the model (3.12) according to (3.3a) are obtained by DNS results and
listed in table 3. Specifically, the contributions of the impingements of the IS0, RW and
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Figure 9. The perturbation amplitudes of the outer (a) and inner (b) interfaces along with their decomposed
contribution terms versus time for the Outer case before reshock. The simulation data marked by symbols are
added for comparison.

Interface t−j t+j ri,t=t+j
η̇i,t=t+j

II1 −0.014 0.014 0.995 0.010
II1 0.223 0.291 0.897 0.025
II1 — 0.429 0.830 0.058
II2 0.126 0.168 0.889 0.018
II2 0.291 0.417 0.772 0.052

Table 3. The parameters required for calculating the terms like η̇i,RM and ηi,CD are obtained by DNS results
in the Outer case. Here, t−j and t+j are the beginning and end moments of the jth wave passing through the
interface and ri,t=t+j

and η̇i,t=t+j
represent the position and growth rate of the IIi at t = t+j , respectively.

SRW on the II1 to the perturbation growth rate are considered, and the contributions of
the TS1 and CW to the perturbation growth rate of the II2 are taken into account. For
the II1, AT,1 required for calculating the term η1,RT and c1 required to calculate the term
η1,Com are obtained from the base flow as 0.708 and −0.657, respectively. Whereas for
the II2, AT,2 = −0.698 and c2 = −0.776. The improved compressible Bell model (3.12)
agrees well with the DNS result of the II1 before reshock. For the II2, the improved
model captures well the behaviours of the perturbation growth until t ≈ 0.7 when the II2
decelerates inward and then slightly underestimates the DNS results. This underestimation
is caused by the thin-shell correction and interface coupling effect which are obtained by
the model of Zhang et al. (2020) aimed at a thin fluid layer in vacuum. However, compared
with the compressible Bell model (3.2), the improved model shows a better prediction of
the instability evolution before t ≈ 0.7.

It is clearly seen in figure 9 that the growths of perturbations on both the II1 and II2
are dominated by the RM instability. Term η1,RT increases before t ≈ 0.7 due to the
fact that the II1 is RT-unstable under the inward acceleration of the RW. Attributed to
the deceleration of the II1 and II2 after t ≈ 0.7, the II1 becomes RT-stable and η1,RT
decreases, while the II2 is RT-unstable and η2,RT increases. This significant difference
of η1,RT and η2,RT is attributed to the interface type (Lombardini et al. 2014), i.e.
the light–heavy (II1) and heavy–light (II2) interfaces. Both η1,Com and η2,Com decrease
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Figure 10. The perturbation amplitudes of the outer (a) and inner (b) interfaces along with their decomposed
contribution terms versus time for the Inner case before reshock. The simulation data marked by symbols are
added for comparison.

with time and thus the compressibility effect suppresses the perturbation growth on the
interfaces, which is the same behaviour as the experimental result of a shock-accelerated
interface in cylindrical geometry (Luo et al. 2019). It is particularly important that the
thin-shell correction ηi,Thin and interface coupling effect ηi,Cou contribute significantly
to the instability evolution of the current thin SF6 layer. The temporal trend of ηi,Thin
behaves similar to that of ηi,RT , resulting from that r̈iriηi is included in both mathematical
forms. However, the contribution of η1,Thin in the Outer case is stronger than that of η1,RT
to the perturbation growth at the II1 where the initial perturbation is introduced. The
interface coupling effect η1,Cou suppresses the perturbation growth of the II1 until t ≈ 0.95
close to the reshock and then slightly promotes the instability evolution. Nevertheless, the
interface coupling effect always suppresses the growth of perturbation on the II2 before
reshock. Note that ηi,Cou depends on not only the motion of the interface itself (like other
terms) but also the perturbation at another interface. Therefore, one could expect that the
difference of η1,Cou and η2,Cou comes from the complex coupling between II1 and II2. In
addition, ηi,CD well captures the rapid decrease/increase of perturbation amplitude under
the compression/decompression effect of the waves impacting the interfaces. Specifically,
the compression effect of the IS0 causes a sudden decrease of the perturbation on the
II1 at t ≈ 0 and the decompression effect of the RW at t ≈ 0.25 leads to an increase
of the perturbation on the II1. For the II2, the decompression effects of the TS1 and
CW result in increases of perturbation at t ≈ 0.15 and t ≈ 0.35, respectively. Note that
the decompression effect of the SRW on the II1 is negligibly weak. Obviously, the great
difference of η1,CD and η2,CD results from that the types of waves colliding with the II1
and II2 are different and the collision times are also different.

Furthermore, as shown in figure 10, the improved compressible Bell model is also
employed to evaluate the contribution of each effect to the perturbation growth before
reshock in the Inner case. Parameters ri,t=t+j

and η̇i,t=t+j
required to calculate the ηi,RM term

for the Inner case are listed in table 4. Sharing the same base flow, the Inner case has the
same AT,i and ci as the Outer case. As presented in figure 10, the improved compressible
Bell model (3.12) also shows a good agreement for the II1 and for the II2 before t ≈ 0.7.
The RM instability also dominates the perturbation growth in the Inner case. Because
the basic flow is the same for the Outer and Inner cases, both ηi,RT accounting for the
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Interface t−j t+j ri,t=t+j
η̇i,t=t+j

II1 0 0 1 0
II1 0.210 0.305 0.890 0.020
II1 — 0.431 0.829 0.050
II2 0.113 0.169 0.889 0.018
II2 0.318 0.419 0.771 0.055

Table 4. The parameters required for calculating the terms like η̇i,RM and ηi,CD are obtained by DNS results
in the Inner case. Here, t−j and t+j are the beginning and end moments of the jth wave passing through the
interface and ri,t=t+j

and η̇i,t=t+j
represent the position and growth rate of the IIi at t = t+j , respectively.

RT stability/instability and ηi,Com characterizing the compressibility effect have the same
trends of temporal variation in the two cases. In the Inner case, the temporal variation
of ηi,Thin which characterizes the thin-shell correction with similar mathematical form to
ηi,RT is similar to that in the Outer case. Different from the Outer case, the contribution
of η2,Thin in the Inner case is stronger than that of η2,RT to the perturbation growth at the
II2 where the initial perturbation is introduced. In the Inner case, the interface coupling
effect also suppresses the instability evolution of the II1 before t ≈ 0.95 near reshock and
always suppresses the growth of perturbation on the II2 before reshock, but its contribution
is smaller than that in the Outer case. The compression/decompression effect of the waves
impinging the interfaces in the Inner case can be observed by ηi,CD. For the II1, the
decompression effect of the RW causes a increase of perturbation at t ≈ 0.25. For the II2,
the compression effects of the IS0 and CW lead to decreases of perturbation at t ≈ 0.15
and t ≈ 0.35, respectively.

To further validate the present improved model (3.12), the Outer and Inner cases of
a shock-accelerated thin CO2 (carbon dioxide) layer surrounded by H2 (hydrogen) with
initial |AT,i| = 0.912 and n = 12 are simulated. The parameters for CO2 and H2 are listed
in table 1. The initial ratio of the radial positions of the outer to inner interfaces α0 is set
as 1.053. It is clearly shown in figure 11 that the present model can also well describe
the instability evolution on the CO2 layer in the Outer and Inner cases. The prediction of
the CO2 layer with initial |AT,i| = 0.912 by the model is better than that of the SF6 layer
with initial |AT,i| = 0.669, indicating that the present model is more suitable for a heavy
fluid layer with large AT . This is rational as the thin-shell correction and interface coupling
effect of the fluid layer in vacuum reduce the accuracy of the model when applied to a fluid
layer with low AT .

4. Concluding remarks

Instability evolution of a shock-accelerated thin SF6 layer surrounded by air in cylindrical
geometry is numerically and theoretically investigated. Two typical cases, namely the
Outer and Inner cases with initial perturbations imposed only at the outer and inner
interfaces, respectively, are examined in the present study. It is found that both the
outer and inner interfaces are unstable for these two cases after the convergent incident
shock wave passes through the fluid layer, and the perturbations on the inner and outer
interfaces keep growing in the same phase before reshock. The instability evolution of
the thin cylindrical heavy fluid layer not only involves the effects of RM instability, RT
stability/instability and compressibility coupled with the BP effect, which determine the
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Figure 11. The perturbation amplitudes of the outer (η1) and inner (η2) interfaces on the CO2 layer along with
their decomposed contribution terms versus time for the (a,b) Outer case and (c,d) Inner case before reshock.
The simulation data marked by symbols are added for comparison.

instability evolution of the single cylindrical interface, but also strongly depends on the
waves reverberated inside the layer, thin-shell correction and interface coupling effect.
Specifically, the RW inside the thin fluid layer accelerates the outer interface inward
and induces the decompression effect for both the Outer and Inner cases, and the CW
inside the fluid layer accelerates the inner interface inward and causes a decompression
effect for the Outer case and a compression effect for the Inner case. It is noted
that the compressible Bell model excluding the compression/decompression effect of
waves, thin-shell correction and interface coupling effect deviates significantly from the
perturbation growth. Furthermore, for the Outer case, different from the inverse growth of
the inner interface compared with the outer interface, which is contributed by the pressure
perturbation caused by the perturbed transmitted shock wave in the thick fluid layer, the
inner interface of the thin fluid layer grows in the same phase as the outer interface under
the domination of the cylindrical BP effect.

To reliably describe the instability evolution of the shock-accelerated thin heavy fluid
layer in cylindrical geometry, an improved compressible Bell model is proposed, including
three new terms to quantify the compression/decompression effect of waves, thin-shell
correction and interface coupling effect. Verified by the DNS results, this improved
model captures well the behaviours of instability evolutions of outer interface before
reshock and of inner interface before t ≈ 0.7 when the interface decelerates inward.
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Via this improved model, various effects that contribute to the perturbation growth of
the shock-accelerated thin heavy fluid layer can be characterized successfully. It is shown
that the compression/decompression effect of waves inside the fluid layer causes a sudden
decrease/increase of the perturbation on the interface. The temporal trend of the thin-shell
correction behaves similar to that due to the RT stability/instability effect. The interface
coupling effect is found significant in the thin fluid layer, suppressing the instability
evolution of the outer interface before t ≈ 0.95 near reshock and always suppressing the
growth of perturbation on the inner interface before reshock. According to the linear
superposition principle, the present improved compressible Bell model has its validity
straightforwardly in the case with the initial perturbations present at both outer and inner
interfaces of a heavy fluid layer. Specifically, such a case can be treated as a linear
superposition of the Outer and Inner cases, for which the instability evolutions can be
predicted separately by the present model.

Although the present improved model is suitable for a thin heavy fluid layer with large
Atwood number due to the employment of the thin-shell correction and interface coupling
effect of the thin fluid layer in vacuum, it is extremely important that this improved
model theoretically reveals various effects that contribute to the instability evolution
of the thin fluid layer, namely the effects of RM instability, RT stability/instability,
compressibility, BP effect, thin-shell correction, interface coupling and the waves’
compression/decompression. In future work, by generalizing the thin-shell correction and
interface coupling effect one can modify the current improved model to describe the
instability evolutions of thin fluid layers with arbitrary Atwood number.
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