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It turns out that there is one more case, not covered in [2, Theorem 4.1], where Out(AΓ)
is relatively hyperbolic. This occurs when Out(AΓ) is a virtually right-angled Artin
group (RAAG) whose defining graph consists of at least two components.

1. Main statement

We will prove the following revised statement of [2, Theorem 4.1].

THEOREM 1.1. If Out(AΓ) is infinite and not virtually a RAAG whose defining graph is
either a single vertex or disconnected, then Out(AΓ) is not relatively hyperbolic.

Following the notation in [2], let S be the set of all transvections and partial
conjugations in Aut(AΓ), and S′ the set of all the (nontrivial) images of elements of
S in Out(AΓ). Let K′ = K(Out∗(AΓ), S′) be the commutativity graph of Out∗(AΓ) with
respect to S′.

We first consider the case when S′ consists of only partial conjugations. In this case,
Out∗(AΓ) is isomorphic to PSO(AΓ), the pure symmetric outer automorphism group of
AΓ. We complete the proof of Theorem 1.1 by considering the case when S′ has a
transvection.

2. Pure symmetric (outer) automorphism group

The subgroup PSA(AΓ) ≤ Aut(AΓ) generated by partial conjugations is the pure
symmetric automorphism group of AΓ and the subgroup PSO(AΓ) ≤ Out(AΓ) generated
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by partial conjugations is the pure symmetric outer automorphism group of AΓ. Koban
and Piggott showed in [3] that PSA(AΓ) has a group presentation whose generators are
partial conjugations and whose relators are commutators. Moreover, they showed that
PSA(AΓ) is isomorphic to a RAAG if and only if Γ has no SIL-pairs (defined below
Lemma 2.1). With a similar flavour, Day and Wade [1] found the criterion for PSO(AΓ)
to be a RAAG.

In the study of PSA(AΓ) or PSO(AΓ), the most important thing is to know when
two partial conjugations commute, and there is a precise description of this using the
following fact.

LEMMA 2.1 [1, Lemma 2.1]. Let a and b be nonadjacent vertices of Γ. Then the
components of Γ − st(a) consist of A0, . . . , Ak, C1, . . . , Cl, and the components of
Γ − st(b) consist of B0, . . . , Bm, C1, . . . , Cl, where b ∈ A0 and a ∈ B0, A1, . . . , Ak ⊂ B0
and B1, . . . , Bm ⊂ A0.

In this lemma, A0 and B0 are the dominating components, the Ci are the shared
components and the other components are the subordinate components. We say (a, b)
is an SIL-pair if l ≥ 1. Note that any of k, m or l can be zero; for instance, l = 0 implies
that there is no shared component.

LEMMA 2.2 [1, Lemma 2.4]. Let a and b be nonadjacent vertices in Γ such that
there are nontrivial partial conjugations PC

a and PD
b in Out(AΓ). Then [PC

a , PD
b ] � 1

in Out(AΓ) if and only if (a, b) is an SIL-pair and one of the following conditions
holds:

• C and D are the dominating components for the pair (a, b);
• one of C or D is dominating and the other is shared;
• C and D are identical shared components.

Now, we examine the nonrelative hyperbolicity of Out∗(AΓ) when S′ consists of only
partial conjugations, that is, Out∗(AΓ) = PSO(AΓ), by using K′.

PROPOSITION 2.3. Suppose S′ consists of partial conjugations and |S′| ≥ 1. If there is
a vertex v ∈ Γ such that Γ − st(v) has at least three components, then K′ is connected.
Otherwise, Out∗(AΓ) is isomorphic to the RAAG whose defining graph is K′.

PROOF. Obviously, if there is a nontrivial partial conjugation by a vertex v ∈ Γ, then
any two partial conjugations by v commute.

Suppose there is a vertex v such that Γ − st(v) has at least three components, and
there is a nontrivial partial conjugation by w for w � v. By the first paragraph, it
suffices to show that PC

v and PD
w commute for some C and D. If (v, w) is not an SIL-pair,

by Lemma 2.2, any partial conjugation by w commutes with any partial conjugation
by v. Otherwise, there is at least one shared component C1 for the pair (v, w). If there
is one more shared component C2, by Lemma 2.2, we have [PC1

v , PC2
w ] = 1. Otherwise,

there is a subordinate component C′ of Γ − st(v), and by Lemma 2.2, [PC′
v , PC1

w ] = 1.
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In [1, Theorem B], it is shown that PSO(AΓ) is isomorphic to a RAAG if and only
if the support graph of each vertex v ∈ Γ is a forest, where the support graph is a
simplicial graph whose vertices are components of Γ − st(v). If there is no vertex v
such that Γ − st(v) has at least three components, then each support graph is a forest
(either a single vertex or two vertices with or without an edge). Therefore, Out∗(AΓ) is
isomorphic to a RAAG, and by the results in [1], it can easily be seen that the defining
graph of the RAAG is equal to K′. �

Wiedmer showed that any RAAG can be isomorphic to Out∗(AΓ) for some graph Γ
[4]. To completely characterise nonrelative hyperbolicity of Out∗(AΓ) when Out∗(AΓ)
is isomorphic to PSO(AΓ), we need the following fundamental fact.

LEMMA 2.4. A RAAG AΛ is relatively hyperbolic if and only if its defining graph Λ
consists of either a single vertex or at least two components.

PROOF. If Λ is a single vertex, then AΛ is isomorphic to Z and thus (relatively)
hyperbolic. If Λ consists of at least two components, then AΛ is isomorphic to
AΛ1 ∗ · · · ∗ AΛn , where the Λi are components of Λ; in particular, AΛ is relatively
hyperbolic with respect to {AΛ1 , . . . , AΛn}.

If Λ is connected and has at least two vertices, then the commutativity graph
is exactly the same as the defining graph by taking the generating set as the usual
generators of the RAAG. �

3. Proof of Theorem 1.1

If |S′| ≤ 1, then Out(AΓ) is finite or has a finite-index subgroup isomorphic to Z, and
thus, it is (relatively) hyperbolic. If Γ has only one vertex, then Out(AΓ) is obviously
finite. If Γ has only two vertices, then Out(AΓ) is isomorphic to GL2(Z), and thus,
it is virtually the free group of rank 2. Now we examine the commutativity graph
K′ = K(Out∗(AΓ), S′) for the case that |S′| ≥ 2 and Γ has at least three vertices.

If S′ does not have any transvection, by Proposition 2.3 and Lemma 2.4, Out∗(AΓ)
is not relatively hyperbolic if and only if Out∗(AΓ) is isomorphic to a RAAG whose
defining graph is connected.

Now, we assume that there is at least one transvection in S′.

Claim A. As long as they exist, any nontrivial partial conjugation and any transvection
are joined by a path in K′ unless Out∗(AΓ) is isomorphic to Aut∗(F2).

Let Rab be a transvection and suppose that there is a nontrivial partial conjugation
PC

c . Note that [Rab, Lab] = 1 whenever Rab is equal to Lab or not. We will show the
existence of a path joining Rab and PC

c in K′. There are four cases, depending on c and
the adjacency of a and b.

(I) If c = b, then [Rab, PC
c ] = 1 whenever C contains a or not.

(II) Suppose that c is neither a nor b. If a or b is contained in lk(c), then a ≤ b
implies that b ∈ lk(c) and thus [PC

c , Rab] = 1 for any component C. If a and b
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are in the same component C′ of Γ − st(c), then we have [PC′
c , Rab] = 1, which

implies that the claim is true since [PC′
c , PC

c ] = 1. If a and b are contained in
different components of Γ − st(c), then a ≤ b implies that a ≤ c. Since PC

c and
Rac are joined in K′ by an edge by (I) and we have [Rab, Lac] = [Lac, Rac] = 1,
and the claim holds.

(III) Suppose c = a, and a and b are adjacent. If there is a nontrivial element PD
b

in Out(AΓ), then [PC
a , PD

b ] = [PD
b , Rab] = 1, and thus, PC

c and Rab are joined by
a path. Otherwise, there exists a component C′ of Γ − st(a) contained in lk(b),
which implies [Rab, PC′

a ] = 1 and thus the claim holds.
(IV) Suppose c = a but a and b are nonadjacent. Since a ≤ b, there is no subordinate

component of Γ − st(a) for the pair (a, b). If Γ − st(a) has at least three
components, then there are at least two shared components, say C1 and C2. Since
we have [PC1

a , PC2
b ] = [PC2

b , Rab] = 1 by Lemma 2.2 and Case (I), the claim holds.

Now, suppose Γ − st(a) has two components, the shared component C′ and the
dominating component C′′. If Γ − st(b) has a subordinate component D, then the claim
holds since [PC′

a , PD
b ] = [PD

b , Rab] = 1 by Lemma 2.2 and Case (I). Otherwise, there
are two situations depending on the existence of a vertex x ∈ lk(b) − lk(a). If such a
vertex x exists, then x ≤ b and thus the claim holds since [Rab, Rxb] = [Rxb, PC′

a ] = 1.
Otherwise, a ∼ b (in particular, C′′ becomes {b}) and we have two final cases.

(1) Suppose there is a vertex d in C′, which defines a nontrivial partial conjugation
in Out(AΓ). If lk(a) ⊆ lk(d), then a ∼ b ≤ d and thus the claim holds since
[Rab, Lad] = [Lad, Rbd] = 1 and there is a path joining Rbd and PC′

a by Case (II).
Otherwise, C′′ is a subordinate component of Γ − st(a) for the pair (a, d). By
Lemma 2.2, any partial conjugation PD

d by d commute with PC′′
a . Since there is a

path joining PD
d and Rab by Case (II), the claim holds.

(2) Suppose there is no such vertex d. In this case, only a, b and vertices in lk(a)
(= lk(b)) may be able to define nontrivial partial conjugations in Out(AΓ). If
x ∈ lk(a) does, then any nontrivial partial conjugation PX

x commutes with PC
c and

Rab, and thus the claim holds.

Otherwise, we need to see whether there is a transvection Rvw different from Rab or
Rba.

Suppose there is such a transvection Rvw. If {v, w} ∩ {a, b} = ∅, then [Rab, Rvw] = 1.
Since there is a path joining Rvw and PC

a by Case (II), the claim holds. If v is either
a or b (in particular, a ∼ b ≤ w and w � a, b), since w must not define a nontrivial
partial conjugation, w is adjacent to both a and b. Since [Rab, Law] = [Law, Raw] = 1
and there is a path joining Raw and PC

a by Case (III), the claim holds. If w is either a
or b (in particular, v ≤ a ∼ b and v � a, b), by Case (I), there is a path joining Rva and
PC

a . Since [Rva, Lvb] = [Lvb, Rab] = 1, the claim holds.
Finally, if there is no such transvection Rvw, then a and b are the only vertices

defining nontrivial partial conjugations and each of Γ − st(a) and Γ − st(b) has two
components. In particular, S′ consists of two partial conjugations and four (two right
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and two left) transvections. In this case, K′ is discrete and Out∗(AΓ) is isomorphic to
Aut∗(F2).

In summary, we checked that if there are a transvection and a partial conjugation in
S′ which cannot be joined by a path in K′. Thus, Out∗(AΓ) is isomorphic to Aut∗(F2).

Claim B. Every pair of transvections can be joined by a path in K′ unless Out∗(AΓ) is
isomorphic to SL2(Z) or Aut∗(F2).

Since we assumed that Γ has at least three vertices, the existence of a path in
K(Aut∗(AΓ), S) between two transvections (which appeared while proving Claim 1
in [2, the proof of Theorem 3.1]) tells us there is a path in K′ between the two
transvections, except between Rab and Rba; the path joining them in K(Aut∗(AΓ), S)
may use partial conjugations which have trivial images in Out(AΓ).

If there is another transvection Rvw, by Cases 1, 2, 3 and 4 of the proof of Claim 1
in [2, the proof of Theorem 3.1], there is a path joining Rvw to Rab (and Rba) in K′,
and thus Rab and Rba are joined by a path. If there is no other transvection but there
is a nontrivial partial conjugation, by Claim A, there is a path joining Rab to Rba in
K′ except when Out∗(AΓ) is isomorphic to Aut∗(F2). Lastly, if S′ = {Rab, Lab, Rba, Lba},
then any partial conjugation by a or b must be the identity in Out(AΓ), which implies
that Rab = Lab and Rba = Lab. Thus, Out∗(AΓ) is isomorphic to Out∗(F2), which is
SL2(Z).

By these two claims, as long as |S′| > 1 and there is at least one transvection
in S′, K′ is connected and [2, Theorem 2.4] yields the nonrelative hyperbolicity of
Out∗(AΓ) unless Out∗(AΓ) is isomorphic to neither Aut∗(F2) nor SL2(Z). Since Aut∗(F2)
is nonrelative hyperbolic as explained in the paragraph below the proof of [2, Theorem
3.1], we have completed the proof.
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