ON AN INTEGRAL EQUATION OF ŠUB-SIZONENKO

by P. G. ROONEY

(Received 2 June, 1982)

The integral equation of the title is

$$h(x) = \pi^{-1/2} \int_{x}^{\infty} (\log t/x)^{-1/2} f(t) \, dt/t + f(x), \qquad (x > 0).$$
(1)

It was studied in [4], though h(x) was written as $x^{-1}g(x^{-1})$ there, and using a method involving orthogonal Watson transformations, it was shown there that if $h \in L_2(0, \infty)$, then the equation has a solution $f \in L_2(0, \infty)$, and that f is given by

$$f(x) = \frac{d}{dx} \int_{x}^{\infty} \left\{ \int_{\log t/x}^{\infty} \operatorname{erfc}(u^{1/2}) \, du - \operatorname{erfc}\left((\log t/x)^{1/2}\right) \right\} h(t) \, dt + \frac{1}{2}h(x).$$
(2)

In this paper, using the techniques of [3], we shall show that the equation can be solved for h in the space $\mathscr{L}_{\mu,p}$ of [3] for $1 \le p < \infty$, $\mu > 0$, and that for these spaces, which include $L_2(0,\infty)$, f is given by the simpler formula

$$f(x) = \int_{x}^{\infty} ((t/x)\operatorname{erfc}((\log t/x)^{1/2}) - \pi^{-1/2}(\log t/x)^{-1/2})h(t) \, dt/t + h(x) \qquad (x > 0).$$
(3)

We shall further show that these results can be extended to the spaces $\mathscr{L}_{w,\mu,p}$ of [3]. This forms the content of our theorem below.

Our notation in this paper will be that of [3]; particular notations from [3] that we use frequently are $\mathscr{L}_{\mu,p}$, $\mathscr{L}_{w,\mu,p}$, \mathscr{A} , \mathfrak{A}_p , \mathscr{M} and [X]. We shall also use some results from [2], and it must be noted that the spaces $L_{\mu,p}$ of [2] are slightly different from the spaces $\mathscr{L}_{\mu,p}$ of [3], and the results adjusted accordingly.

We shall write (1) as

$$h = Kf, \tag{4}$$

where

$$K = K_0 + I, \tag{5}$$

and

$$(K_0 f)(x) = \int_x^\infty (\log t/x)^{-1/2} f(t) \, dt/t \qquad (x > 0), \tag{6}$$

and similarly we shall write (3) as

$$f = Lh, \tag{7}$$

where

$$L = L_0 + I, \tag{8}$$

Glasgow Math. J. 24 (1983) 207-210.

and

$$(L_0h)(x) = \int_x^\infty ((t/x)\operatorname{erfc}((\log t/x)^{1/2}) - \pi^{-1/2}(\log t/x)^{-1/2})h(t) \, dt/t, \qquad (x > 0). \tag{9}$$

First we need a lemma.

LEMMA. If $1 \le p < \infty$, $\mu > 0$, K_0 and $L_0 \in [L_{\mu,p}]$ and if $f \in L_{\mu,p}$, where $1 \le p \le 2$, $\mu > 0$, then

$$(\mathcal{M}K_0 f)(s) = s^{-1/2} (\mathcal{M}f)(s), \qquad \text{Re } s = \mu, \tag{10}$$

and

$$(\mathcal{M}L_0f)(s) = -(1+s^{1/2})^{-1}(\mathcal{M}f)(s), \quad \text{Re } s = \mu.$$
 (11)

Proof. Clearly

$$(K_0f)(x) = \int_0^\infty k(x/t)f(t) dt/t,$$

where

$$k(x) = \begin{cases} \pi^{-1/2} (\log(x^{-1}))^{-1/2} & (0 < x < 1), \\ 0 & (x > 1). \end{cases}$$

Thus, if $\mu > 0$,

$$\int_0^\infty x^{\mu-1} |k(x)| \, dx = \pi^{-1/2} \int_0^1 x^{\mu-1} (\log(x^{-1}))^{-1/2} \, dx = \pi^{-1/2} \int_0^\infty e^{-\mu t} t^{-1/2} \, dt = \mu^{-1/2}.$$
 (12)

Hence, by [2, Lemma 3.1], $K_0 \in [\mathcal{L}_{\mu,p}]$, $(1 \le p \le \infty)$. Also, by the same calculation as (12) with μ replaced by s, if Re s > 0

$$(\mathcal{M}k)(s) = \int_0^\infty x^{s-1}k(x) \, dx = s^{-1/2},$$

and thus, by [2, Lemma 4.1], (10) holds.

Similarly

$$(L_0f)(x) = \int_0^\infty l(x/t)f(t) dt/t,$$

where

$$l(x) \begin{cases} x^{-1} \operatorname{erfc}((\log(x^{-1}))^{1/2}) - \pi^{-1/2}(\log(x^{-1}))^{-1/2} & (0 < x < 1), \\ 0 & (x > 1). \end{cases}$$

Now, integrating by parts, if u > 0

erfc
$$u = 2\pi^{-1/2} \int_{u}^{\infty} e^{-t^{2}} dt = 2\pi^{-1/2} \left\{ -\frac{1}{2} t^{-1} e^{-t^{2}} \Big|_{u}^{\infty} -\frac{1}{2} \int_{u}^{\infty} e^{-t^{2}} dt/t^{2} \right\}$$

= $\pi^{-1/2} \left\{ u^{-1} e^{-u^{2}} - \int_{u}^{\infty} e^{-t^{2}} dt/t^{2} \right\},$

208

so that

$$x^{-1}\operatorname{erfc}((\log(x^{-1}))^{1/2}) - \pi^{-1/2}(\log(x^{-1}))^{-1/2} = -x^{-1}\pi^{-1/2}\int_{u}^{\infty} e^{-t^{2}} dt/t^{2},$$

where $u = (\log(x^{-1}))^{1/2}$, and thus $l(x) \le 0$, x > 0. Hence if $\mu > 0$

$$\int_{0}^{\infty} x^{\mu-1} |l(x)| dx = -\int_{0}^{1} x^{\mu-1} (x^{-1} \operatorname{erfc}((\log x^{-1})^{1/2}) - \pi^{-1/2} (\log(x^{-1}))^{-1/2}) dx$$
$$= -\int_{0}^{\infty} e^{-\mu t} e^{t} \operatorname{erfc} t^{1/2} dt + \pi^{-1/2} \int_{0}^{1} x^{\mu-1} (\log(x^{-1}))^{-1/2} dx$$
$$= -\mu^{-1/2} (\mu^{1/2} + 1)^{-1} + \mu^{-1/2} = (\mu^{1/2} + 1)^{-1}$$
(13)

from [1, 4.12(10)] and (12). Hence, by [2; Lemma 3.1], $L_0 \in [\mathscr{L}_{\mu,p}]$, $(1 \le p \le \infty)$. Also, by a similar calculation as (13), if Re s > 0, then

$$(\mathcal{M}l)(s) = -(1+s^{1/2})^{-1}$$

and thus, by [2, Lemma 4.1], (11) follows.

We can now state our Theorem.

THEOREM. If $1 \le p \le \infty$, $\mu > 0$, then K and $L \in [\mathcal{L}_{\mu,p}]$; K and L map $\mathcal{L}_{\mu,p}$ one-to-one onto itself; and

$$KL = LK = I. \tag{14}$$

Further, if $1 , <math>\mu > 0$ and $w \in \mathfrak{A}_p$, then K and L can be extended to $\mathscr{L}_{w,\mu,p}$ and if their extensions are still denoted by K and L respectively, then K and $L \in [\mathscr{L}_{w,\mu,p}]$, K and L map $\mathscr{L}_{w,\mu,p}$ one-to-one onto itself; and (14) continues to hold.

Proof. Since K_0 and $L_0 \in [\mathscr{L}_{\mu,p}]$ for $1 \le p < \infty$, $\mu > 0$, so are K and L. If $\mu > 0$ and $f \in \mathscr{L}_{\mu,2}$, then from (10) and (11), if Re $s = \mu$

$$(\mathcal{M}KLf)(s) = (s^{-1/2} + 1)(\mathcal{M}Lf)(s) = (s^{-1/2} + 1)(1 - (s^{1/2} + 1)^{-1})(\mathcal{M}f)(s)$$

= $(\mathcal{M}f)(s)$,

so that KLf = f, and similarly LKf = f. Hence, on $\mathcal{L}_{\mu,2}$ (14) holds. But from [2, Lemma 2.2], $\mathcal{L}_{\mu,2} \cap \mathcal{L}_{\mu,2} \cap \mathcal{L}_{\mu,p}$ is dense in $\mathcal{L}_{\mu,p}$, $(1 \le p < \infty)$, and thus since both sides of (14) are operators in $[\mathcal{L}_{\mu,p}]$, (14) holds on $\mathcal{L}_{\mu,p}$. It follows from this that K and L are one-to-one onto on $\mathcal{L}_{\mu,p}$. For if $g \in \mathcal{L}_{\mu,p}$, $(1 \le p < \infty, \mu > 0)$, and we let f = Lg, then Kf = KLg = g, so that K is onto, and if $Kf_1 = Kf_2$, $f_i \in L_{\mu,p}$, (i = 1, 2), then $f_1 = LKf_1 = LKf_2 = f_2$; similarly for L.

From (10), if $f \in \mathcal{L}_{\mu,p}$, $(1 \le p \le 2, \mu > 0)$, then

$$(\mathcal{M}Kf)(s) = m(s)(\mathcal{M}f)(s) \quad \text{and} \quad (\mathcal{M}Lf)(s) = (1/m(s))(\mathcal{M}f)(s), \tag{15}$$

where $m(s) = s^{-1/2} + 1$. Clearly m is holomorphic in $0 = \alpha(m) < \text{Re } s < \beta(m) = \infty$. Also if

P. G. ROONEY

 $0 < \sigma_1 \le \sigma_2$, then in $\sigma_1 \le \operatorname{Re} s \le \sigma_2$, m(s) is bounded. Further $|m'(\sigma + it)| = \frac{1}{2} |\sigma + it|^{-3/2} = O(|t|^{-1})$ as $|t| \to \infty$. Thus $m \in \mathcal{A}$, with $\alpha(m) = 0$, $\beta(m) = \infty$. In an exactly similar way $1/m \in \mathcal{A}$ with $\alpha(m) = 0$, $\beta(m) = \infty$. Hence by [3, Theorem 1], there are operators H_m and $H_{1/m} \in [\mathcal{L}_{w,\mu,p}]$ for $1 , <math>\mu > 0$, $w \in \mathfrak{A}_p$ and such that for $f \in \mathcal{L}_{\mu,p}$, with $\mu > 0$, 1

$$(\mathcal{M}H_m f)(s) = m(s)(\mathcal{M}f)(s) \quad \text{and} \quad (\mathcal{M}H_{1/m}f)(s) = (1/m(s))(\mathcal{M}f)(s). \tag{16}$$

Comparing (15) and (16), it is clear that on $\mathscr{L}_{\mu,p}$, (1 0), $H_m = K$ and $H_{1/m} = L$, and this must hold on all $\mathscr{L}_{\mu,p}$, $(\mu > 0, 1 , since <math>\mathscr{L}_{\mu,2} \cap \mathscr{L}_{\mu,p}$ is dense in $\mathscr{L}_{\mu,p}$ and all operators in question are in $[\mathscr{L}_{\mu,p}]$. Thus we can extend K and L to $\mathscr{L}_{w,\mu,p}$ for 1 , $<math>\mu > 0$, $w \in \mathfrak{A}_p$ as members of $[\mathscr{L}_{w,\mu,p}]$ by defining them to be H_m and $H_{1/m}$ respectively, and then by [3, Theorem 1], K and L are one-to-one onto. $KL = H_m H_{1/m} = H_m (H_m)^{-1} = I$ and similarly LK = I. Thus the theorem is proved.

COROLLARY. If $h \in \mathcal{L}_{\mu,p}$, where $1 \le p < \infty$, $\mu > 0$, equation (1) has a unique solution $f \in \mathcal{L}_{\mu,p}$ given by (3); if $f \in \mathcal{L}_{\mu,p}$, where $1 \le p < \infty$, $\mu > 0$, equation (3) has a unique solution $h \in \mathcal{L}_{\mu,p}$ given by (1). If $1 , <math>\mu > 0$, $w \in \mathfrak{A}_p$, and $h \in \mathcal{L}_{w,\mu,p}$, the equations h = Kf and h = Lf have unique solutions $f \in \mathcal{L}_{w,\mu,p}$ given by f = Lh and f = Kh respectively.

We conclude by remarking that when K and L are extended to $\mathscr{L}_{w,\mu,p}$, then Kf for $f \in \mathscr{L}_{w,\mu,p}$ is not necessarily represented by equation (1), and similarly Lh for $h \in \mathscr{L}_{w,\mu,p}$ is not necessarily represented by equation (3). By examining the adjoint of K representations of K can be found on $\mathscr{L}_{w,\mu,p}$ and similarly for L.

REFERENCES

1. A. Erdélyi et al., Tables of integral transforms I, (McGraw-Hill, 1954).

2. P. G. Rooney, On the ranges of certain fractional integrals, Canad. J. Math. 24 (1952), 1198-1216.

3. P. G. Rooney, Multipliers for the Mellin transformation, Canad. Math. Bull., (to appear).

4. J. A. Šub-Sizonenko, Inversion of an integral operator by the method of expansion with respect to orthogonal Watson operators, Siberian Math. J. 20 (1979), 318-321. (Also Sibirsk. Mat. Z. 20 (1979), 445-448.)

UNIVERSITY OF TORONTO, TORONTO, CANADA, M5S 1A1.

210