ON AN INTEGRAL EQUATION OF ŠUB-SIZONENKO

by P. G. ROONEY

(Received 2 June, 1982)
The integral equation of the title is

$$
\begin{equation*}
h(x)=\pi^{-1 / 2} \int_{x}^{\infty}(\log t / x)^{-1 / 2} f(t) d t / t+f(x), \quad(x>0) \tag{1}
\end{equation*}
$$

It was studied in [4], though $h(x)$ was written as $x^{-1} g\left(x^{-1}\right)$ there, and using a method involving orthogonal Watson transformations, it was shown there that if $h \in L_{2}(0, \infty)$, then the equation has a solution $f \in L_{2}(0, \infty)$, and that f is given by

$$
\begin{equation*}
f(x)=\frac{d}{d x} \int_{x}^{\infty}\left\{\int_{\log t / x}^{\infty} \operatorname{erfc}\left(u^{1 / 2}\right) d u-\operatorname{erfc}\left((\log t / x)^{1 / 2}\right)\right\} h(t) d t+\frac{1}{2} h(x) \tag{2}
\end{equation*}
$$

In this paper, using the techniques of [3], we shall show that the equation can be solved for h in the space $\mathscr{L}_{\mu, \mathrm{p}}$ of [3] for $1 \leq p<\infty, \mu>0$, and that for these spaces, which include $L_{2}(0, \infty), f$ is given by the simpler formula

$$
\begin{equation*}
f(x)=\int_{x}^{\infty}\left((t / x) \operatorname{erfc}\left((\log t / x)^{1 / 2}\right)-\pi^{-1 / 2}(\log t / x)^{-1 / 2}\right) h(t) d t / t+h(x) \quad(x>0) \tag{3}
\end{equation*}
$$

We shall further show that these results can be extended to the spaces $\mathscr{L}_{w, \mu, p}$ of [3]. This forms the content of our theorem below.

Our notation in this paper will be that of [3]; particular notations from [3] that we use frequently are $\mathscr{L}_{\mu, p}, \mathscr{L}_{w, \mu, p}, \mathscr{A}, \mathfrak{A}_{p}, \mathscr{M}$ and [X]. We shall also use some results from [2], and it must be noted that the spaces $L_{\mu, p}$ of [2] are slightly different from the spaces $\mathscr{L}_{\mu, p}$ of [3], and the results adjusted accordingly.

We shall write (1) as

$$
\begin{equation*}
h=K f \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
K=K_{0}+I, \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(K_{0} f\right)(x)=\int_{x}^{\infty}(\log t / x)^{-1 / 2} f(t) d t / t \quad(x>0) \tag{6}
\end{equation*}
$$

and similarly we shall write (3) as

$$
\begin{equation*}
f=L h, \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
L=L_{0}+I \tag{8}
\end{equation*}
$$

Glasgow Math. J. 24 (1983) 207-210.
and

$$
\begin{equation*}
\left(L_{0} h\right)(x)=\int_{x}^{\infty}\left((t / x) \operatorname{erfc}\left((\log t / x)^{1 / 2}\right)-\pi^{-1 / 2}(\log t / x)^{-1 / 2}\right) h(t) d t / t, \quad(x>0) \tag{9}
\end{equation*}
$$

First we need a lemma.
Lemma. If $1 \leq p<\infty, \mu>0, K_{0}$ and $L_{0} \in\left[L_{\mu, p}\right]$ and if $f \in L_{\mu, p}$, where $1 \leq p \leq 2, \mu>0$, then

$$
\begin{equation*}
\left(\mu K_{0} f\right)(s)=s^{-1 / 2}(\mu f)(s), \quad \operatorname{Re} s=\mu \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\mathcal{M} L_{0} f\right)(s)=-\left(1+s^{1 / 2}\right)^{-1}(\mu f)(s), \quad \operatorname{Re} s=\mu \tag{11}
\end{equation*}
$$

Proof. Clearly

$$
\left(K_{0} f\right)(x)=\int_{0}^{\infty} k(x / t) f(t) d t / t
$$

where

$$
k(x)=\left\{\begin{array}{cl}
\pi^{-1 / 2}\left(\log \left(x^{-1}\right)\right)^{-1 / 2} & (0<x<1) \\
0 & (x>1)
\end{array}\right.
$$

Thus, if $\mu>0$,

$$
\begin{equation*}
\int_{0}^{\infty} x^{\mu-1}|k(x)| d x=\pi^{-1 / 2} \int_{0}^{1} x^{\mu-1}\left(\log \left(x^{-1}\right)\right)^{-1 / 2} d x=\pi^{-1 / 2} \int_{0}^{\infty} e^{-\mu t} t^{-1 / 2} d t=\mu^{-1 / 2} \tag{12}
\end{equation*}
$$

Hence, by [2, Lemma 3.1], $K_{0} \in\left[\mathscr{L}_{\mu, p}\right],(1 \leq p<\infty)$. Also, by the same calculation as (12) with μ replaced by s, if $\operatorname{Re} s>0$

$$
(\mu k)(s)=\int_{0}^{\infty} x^{s-1} k(x) d x=s^{-1 / 2}
$$

and thus, by [2, Lemma 4.1], (10) holds.
Similarly

$$
\left(L_{0} f\right)(x)=\int_{0}^{\infty} l(x / t) f(t) d t / t
$$

where

$$
l(x)\left\{\begin{array}{cl}
x^{-1} \operatorname{erfc}\left(\left(\log \left(x^{-1}\right)\right)^{1 / 2}\right)-\pi^{-1 / 2}\left(\log \left(x^{-1}\right)\right)^{-1 / 2} & (0<x<1) \\
0 & (x>1)
\end{array}\right.
$$

Now, integrating by parts, if $u>0$

$$
\begin{aligned}
\operatorname{erfc} u & =2 \pi^{-1 / 2} \int_{u}^{\infty} e^{-t^{2}} d t=2 \pi^{-1 / 2}\left\{-\left.\frac{1}{2} t^{-1} e^{-t^{2}}\right|_{u} ^{\infty}-\frac{1}{2} \int_{u}^{\infty} e^{-t^{2}} d t / t^{2}\right\} \\
& =\pi^{-1 / 2}\left\{u^{-1} e^{-u^{2}}-\int_{u}^{\infty} e^{-t^{2}} d t / t^{2}\right\}
\end{aligned}
$$

so that

$$
x^{-1} \operatorname{erfc}\left(\left(\log \left(x^{-1}\right)\right)^{1 / 2}\right)-\pi^{-1 / 2}\left(\log \left(x^{-1}\right)\right)^{-1 / 2}=-x^{-1} \pi^{-1 / 2} \int_{u}^{\infty} e^{-t^{2}} d t / t^{2}
$$

where $u=\left(\log \left(x^{-1}\right)\right)^{1 / 2}$, and thus $l(x) \leq 0, x>0$. Hence if $\mu>0$

$$
\begin{align*}
\int_{0}^{\infty} x^{\mu-1}|l(x)| d x & =-\int_{0}^{1} x^{\mu-1}\left(x^{-1} \operatorname{erfc}\left(\left(\log x^{-1}\right)^{1 / 2}\right)-\pi^{-1 / 2}\left(\log \left(x^{-1}\right)\right)^{-1 / 2}\right) d x \\
& =-\int_{0}^{\infty} e^{-\mu t} e^{t} \operatorname{erfc} t^{1 / 2} d t+\pi^{-1 / 2} \int_{0}^{1} x^{\mu-1}\left(\log \left(x^{-1}\right)\right)^{-1 / 2} d x \\
& =-\mu^{-1 / 2}\left(\mu^{1 / 2}+1\right)^{-1}+\mu^{-1 / 2}=\left(\mu^{1 / 2}+1\right)^{-1} \tag{13}
\end{align*}
$$

from [1, 4.12(10)] and (12). Hence, by [2; Lemma 3.1], $L_{0} \in\left[\mathscr{L}_{\mu, p}\right],(1 \leq p<\infty)$. Also, by a similar calculation as (13), if $\operatorname{Re} s>0$, then

$$
(\mu l)(s)=-\left(1+s^{1 / 2}\right)^{-1}
$$

and thus, by [2, Lemma 4.1], (11) follows.
We can now state our Theorem.
Theorem. If $1 \leq p<\infty, \mu>0$, then K and $L \in\left[\mathscr{L}_{\mu, p}\right] ; K$ and L map $\mathscr{L}_{\mu, p}$ one-to-one onto itself; and

$$
\begin{equation*}
K L=L K=I . \tag{14}
\end{equation*}
$$

Further, if $1<p<\infty, \mu>0$ and $w \in \mathfrak{Q}_{p}$, then K and L can be extended to $\mathscr{L}_{w, \mu, p}$ and if their extensions are still denoted by K and L respectively, then K and $L \in\left[\mathscr{L}_{w, \mu, p}\right], K$ and L map $\mathscr{L}_{w, \mu, \mathrm{p}}$ one-to-one onto itself; and (14) continues to hold.

Proof. Since K_{0} and $L_{0} \in\left[\mathscr{L}_{\mu, p}\right]$ for $1 \leq p<\infty, \mu>0$, so are K and L. If $\mu>0$ and $f \in \mathscr{L}_{\mu, 2}$, then from (10) and (11), if $\operatorname{Re} s=\mu$

$$
\begin{aligned}
(\mathcal{M} K L f)(s) & =\left(s^{-1 / 2}+1\right)(\mathcal{M} L f)(s)=\left(s^{-1 / 2}+1\right)\left(1-\left(s^{1 / 2}+1\right)^{-1}\right)(\mathcal{M} f)(s) \\
& =(\mathcal{M} f)(s)
\end{aligned}
$$

so that $K L f=f$, and similarly $L K f=f$. Hence, on $\mathscr{L}_{\mu, 2}$ (14) holds. But from [2, Lemma 2.2], $\mathscr{L}_{\mu, 2} \cap \mathscr{L}_{\mu, 2} \cap \mathscr{L}_{\mu, p}$ is dense in $\mathscr{L}_{\mu, p},(1 \leq p<\infty)$, and thus since both sides of (14) are operators in $\left[\mathscr{L}_{\mu, p}\right],(14)$ holds on $\mathscr{L}_{\mu, p}$. It follows from this that K and L are one-to-one onto on $\mathscr{L}_{\mu, p}$. For if $g \in \mathscr{L}_{\mu, p},(1 \leq p<\infty, \mu>0)$, and we let $f=L g$, then $K f=K L g=g$, so that K is onto, and if $K f_{1}=K f_{2}, f_{i} \in L_{\mu, p},(i=1,2)$, then $f_{1}=L K f_{1}=L K f_{2}=f_{2}$; similarly for L.

From (10), if $f \in \mathscr{L}_{\mu, p},(1 \leq p \leq 2, \mu>0)$, then

$$
\begin{equation*}
(\mu K f)(s)=m(s)(\mu f)(s) \quad \text { and } \quad(\mu L f)(s)=(1 / m(s))(\mu f)(s) \tag{15}
\end{equation*}
$$

where $m(s)=s^{-1 / 2}+1$. Clearly m is holomorphic in $0=\alpha(m)<\operatorname{Re} s<\beta(m)=\infty$. Also if
$0<\sigma_{1} \leq \sigma_{2}$, then in $\sigma_{1} \leq \operatorname{Re} s \leq \sigma_{2}, m(s)$ is bounded. Further $\left|m^{\prime}(\sigma+i t)\right|=\frac{1}{2}|\sigma+i t|^{-3 / 2}=$ $O\left(|t|^{-1}\right)$ as $|t| \rightarrow \infty$. Thus $m \in \mathscr{A}$, with $\alpha(m)=0, \beta(m)=\infty$. In an exactly similar way $1 / m \in \mathscr{A}$ with $\alpha(m)=0, \beta(m)=\infty$. Hence by [3, Theorem 1], there are operators H_{m} and $H_{1 / m} \in\left[\mathscr{L}_{w, \mu, p}\right]$ for $1<p<\infty, \mu>0, w \in \mathfrak{A}_{p}$ and such that for $f \in \mathscr{L}_{\mu, p}$, with $\mu>0,1<p \leq 2$

$$
\begin{equation*}
\left(\mathcal{M} H_{m} f\right)(s)=m(s)(\mathcal{M} f)(s) \quad \text { and } \quad\left(\mathcal{M} H_{1 / m} f\right)(s)=(1 / m(s))(\mathcal{M} f)(s) \tag{16}
\end{equation*}
$$

Comparing (15) and (16), it is clear that on $\mathscr{L}_{\mu, p},(1<p \leq 2, \mu>0), H_{m}=K$ and $H_{1 / m}=L$, and this must hold on all $\mathscr{L}_{\mu, \mathrm{p}},(\mu>0,1<p<\infty)$, since $\mathscr{L}_{\mu, 2} \cap \mathscr{L}_{\mu, \mathrm{p}}$ is dense in $\mathscr{L}_{\mu, \mathrm{p}}$ and all operators in question are in [$\mathscr{L}_{\mu, \mathrm{p}}$]. Thus we can extend K and L to $\mathscr{L}_{w, \mu, \mathrm{p}}$ for $1<p<\infty$, $\mu>0, w \in \mathfrak{A}_{p}$ as members of [$\mathscr{L}_{w, \mu, p}$] by defining them to be H_{m} and $H_{1 / m}$ respectively, and then by [3, Theorem 1], K and L are one-to-one onto. $K L=H_{m} H_{1 / m}=H_{m}\left(H_{m}\right)^{-1}=I$ and similarly $L K=I$. Thus the theorem is proved.

Corollary. If $h \in \mathscr{L}_{\mu, p}$, where $1 \leq p<\infty, \mu>0$, equation (1) has a unique solution $f \in \mathscr{L}_{\mu, p}$ given by (3); if $f \in \mathscr{L}_{\mu, p}$, where $1 \leq p<\infty, \mu>0$, equation (3) has a unique solution $h \in \mathscr{L}_{\mu . p}$ given by (1). If $1<p<\infty, \mu>0, w \in \mathfrak{A}_{p}$, and $h \in \mathscr{L}_{w, \mu . p}$, the equations $h=K f$ and $h=L f$ have unique solutions $f \in \mathscr{L}_{w, \mu, p}$ given by $f=L h$ and $f=K h$ respectively.

We conclude by remarking that when K and L are extended to $\mathscr{L}_{w, \mu, p}$, then $K f$ for $f \in \mathscr{L}_{w, \mu, p}$ is not necessarily represented by equation (1), and similarly $L h$ for $h \in \mathscr{L}_{w, \mu, p}$ is not necessarily represented by equation (3). By examining the adjoint of K representations of K can be found on $\mathscr{L}_{w, \mu, p}$ and similarly for L.

REFERENCES

1. A. Erdélyi et al., Tables of integral transforms I, (McGraw-Hill, 1954).
2. P. G. Rooney, On the ranges of certain fractional integrals, Canad. J. Math. 24 (1952), 1198-1216.
3. P. G. Rooney, Multipliers for the Mellin transformation, Canad. Math. Bull., (to appear).
4. J. A. Šub-Sizonenko, Inversion of an integral operator by the method of expansion with respect to orthogonal Watson operators, Siberian Math. J. 20 (1979), 318-321. (Also Sibirsk. Mat. Z.. 20 (1979), 445-448.)

University of Toronto, Toronto, Canada, M5S 1A1.

