
IV
Hot hadronic matter

10 Relativistic gas

10.1 Relation of statistical and thermodynamic quantities

The first law of thermodynamics describes the change in energy dE of a
system in terms of a change in volume dV and entropy dS:

dE(V, S)=−P dV + T dS, (10.1)

T =
(
∂E

∂S

)
V

, P = −
(
∂E

∂V

)
S

. (10.2)

The coefficients of the first law are the temperature T and the pressure P .
Both can be introduced as the partial derivatives of the energy E(V, S). E
is a function of the extensive variables V and S, i.e., variables that increase
with the size of the system. Below, we include into this consideration the
baryon number, see Eq. (10.12), which is also an extensive variable.
The free energy,

F (V, T ) ≡ E − TS, (10.3)

is the quantity in which, as indicated, the dependence on the entropy is
replaced by the dependence on temperature, an intensive variable that
does not change with the size of the system. Namely,

dF (V, T ) = dE − T dS − S dT = −P dV − S dT, (10.4)

and, as a consequence of the transformation Eq. (10.3), we obtain in anal-
ogy to Eq. (10.2)

S = −
(
∂F

∂T

)
V

, P = −
(
∂F

∂V

)
T

. (10.5)

For an extensive system with F ∝ V , a very useful relation for the entropy
density σ follows from Eq. (10.5):
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188 Hot hadronic matter

σ ≡ S

V
=

∂P

∂T
. (10.6)

Since the free energy F depends on T = 1/β, we relate it to the sta-
tistical functions introduced in chapter 4. To establish the connection in
a more quantitative manner, we obtain the energy E in terms of the free
energy F . We substitute S into Eq. (10.4), in order to arrive at a relation
for E(V, T ):∗

E = F (V, T ) + TS(V, T ),

= F (V, T )− T
∂

∂T
F (V, T ) ≡ − ∂

∂(1/T )

(
−F
T

)
. (10.7)

This relation has the same form as Eq. (4.13), and we deduce that

F (V, T ) = −β−1[lnZ(V, β) + f ]. (10.8)

The integration constant f could be a function of V . However, by defini-
tion of P , Eq. (10.5), and using Eq. (10.8),

P =
∂

∂V

(
β−1 lnZ

)
+ T

∂f

∂V
. (10.9)

In the definition of the partition function Eq. (4.14), the individual ener-
gies Ei depend on the volume V . We obtain

P =
−
∑
i(∂Ei/∂V )e

−βEi∑
i e

−βEi
+ T

∂f

∂V
= −
〈
∂Ei
∂V

〉
+ T

∂f

∂V
. (10.10)

Only if ∂f/∂V vanishes does the proper relation between work and pres-
sure arise: the work done on the system, when the volume V is decreased
by dV (dV is negative), is equivalent to the mean value of the change of
all the energy levels brought about by a change of the volume. A con-
stant f is a physically irrelevant ambiguity in the relationship Eq. (10.8)
between the free energy F and the canonical partition function Z, and
can be discarded. Thus, Eqs. (10.8) and (10.9) read

F (V, T ) = −β−1 lnZ(V, β), βP =
∂ lnZ
∂V

, β−1 = T. (10.11)

This well-known equation establishes the bridge between the thermal
(T, F, and P ) and statistical (β and lnZ) quantities. The volume V
is present in both formulations, but, in fact, since lnZ and F are exten-
sive in V for infinite volumes, V in general disappears from many further
considerations.

∗ Clearly E(V, S) is not the same function as E(V, T ), which is indicated by stating
the variables on which E depends, rather than introducing a new symbol.
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10 Relativistic gas 189

We now allow for the presence of a conserved (baryon) number b,
i.e., we consider E(V, S, b). This necessitates the introduction of the
(baryo)chemical potential µ. µ is the incremental energy cost required
to change the baryon number at fixed pressure and entropy:

dE(V, S, b) = −P dV + T dS + µdb, (10.12)

P = −
(
∂E

∂V

)
S,b

, T =
(
∂E

∂S

)
V,b

, µ =
(
∂E

∂b

)
V,S

. (10.13)

The coefficients P, T, and µ are, as before, fixed in terms of the partial
differentials of E(V, S, b) with respect to its three variables.
The familiar generalization of the free energy Eq. (10.4), often called the

thermodynamic potential, F(V, T, µ), is defined by the transformation
F(V, T, µ) ≡ E(V, S, b)− ST − µb. (10.14)

On evaluating the differentials as in Eq. (10.4), we indeed see that, as sug-
gested on the left-hand side of Eq. (10.14), the thermodynamic potential
is a function of V, T , and µ,

dF = −P dV − S dT − b dµ, (10.15)

where

P = −
(
∂F
∂V

)
T,µ

, S = −
(
∂F
∂T

)
V,µ

, b = −
(
∂F
∂µ

)
V,T

. (10.16)

A series of arguments that has allowed us to establish Eq. (10.11) fixes a
relation between F(V, T, µ) and the grand partition function Z(V, T, λ):

F(V, T, µ) = −β−1 lnZ(V, β, λ), β = 1/T, λ = eµ/T . (10.17)

The thermodynamic pair of variables (T, µ) is often used for describing
the properties of F , instead of the grand-canonical statistical quantities
(β and λ). To do this, it is quite important that appropriate attention be
paid to the simple relation

µ = µ(λ, β) = β−1 lnλ. (10.18)

Consider, for example, the expression for the energy. With

Z(V, β, λ) = Z̃(V, T, µ), (10.19)

we obtain

E = − d

dβ
lnZ(V, β, λ), (10.20)

= T 2
d

dT
ln Z̃(V, T, µ) + d

dµ
ln Z̃(V, T, µ) dµ(λ, β)

dβ

∣∣∣∣
β=T−1

. (10.21)
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190 Hot hadronic matter

The second form is clearly much different from the simple statistical
relation Eq. (10.20). However, given Eq. (10.18), we have

dµ(λ, β)
dβ

∣∣∣∣
β=T−1

= −Tµ, (10.22)

and thus the last term in Eq. (10.21) is µdF/dµ. We hence obtain a form
of the the important Gibbs–Duham relation, see Eq. (10.26) below,

E(V, T, µ) = F(V, T, µ) + TS(V, T, µ) + µb(V, T, µ), (10.23)

where the baryon number and entropy are

F(V, T, µ) = −P (T, µ)V, (10.24a)

b = − d

dµ
F(V, T, µ) = λ

d

dλ
lnZ(V, β, λ), (10.24b)

S = − d

dT
F(V, T, µ) = d

dT
T ln Z̃(V, T, µ). (10.24c)

The expression for the entropy, Eq. (10.24c), takes a much more com-
plex form in terms of statistical variables. Namely, Eq. (10.23) implies
that

S =
1
T
(E −F − µb) = lnZ − β

∂ lnZ
∂β

− (lnλ)λ ∂ lnZ
∂λ

. (10.25)

In an extensive system, we can greatly simplify Eq. (10.23). We replace
F by −PV , Eq. (10.16), and obtain the usual form of the Gibbs–Duham
relation:

P = Tσ + µν − ε, σ =
S

V
, ν =

b

V
, ε =

E

V
. (10.26)

For completeness of the discussion, we mention now two more quan-
tities, the enthalpy H(P, S, b) and the Gibbs free energy G(P, T, b). To
obtain these two quantities with a new mix of variables, we continue the
process of replacement of variables. We recall that, at first, we moved
from E(V, S) → F (V, T ) and subsequently from E(V, S, b) → F(V, T, µ),
i.e., we replaced the extensive variables by the intensive variables. The
one extensive variable left is the volume itself. Since we address in this
book an isolated system (a fireball) that can expand its volume with en-
tropy and baryon number remaining nearly constant, elimination of V in
favor of P would seem a logical step and indeed the statistical (partition-
function) analog to G(P, T, b) is the recently proposed generalization of
the (grand) canonical partition function to the pressure partition function
Π(P, β, b) [142]. We will not pursue this interesting subject further in this
book.
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However, we note that, for a given pressure, entropy, and baryon num-
ber, it should be convenient to introduce the enthalpy,

H(P, S, b) ≡ E(V, S, b) + PV . (10.27)

The volume occupied by the system is obtained as the change of H with
respect to pressure at fixed S and b:

dH = V dP + T dS + µdb. (10.28)

In thermal physics, a quantity often considered in the study of a freely
expanding isolated system is the specific enthalpy per particle, the so-
called heat function h,

H

b
≡ h =

ε

ν
+
P

ν
. (10.29)

The Gibbs free energy G is introduced to facilitate consideration of evo-
lution, not at a constant entropy, but in a ‘heat bath’, i.e., at a given
temperature, though at a fixed baryon number (not in a ‘baryon bath’):

G(P, T, b) ≡ E + PV − TS = µ(P, T, b) b. (10.30)

Both the enthalpy H(P, S, b) and the Gibbs free energy G(P, T, b) have
not yet been used much in the study of heavy-ion-fireball dynamics.

10.2 Statistical ensembles and fireballs of hadronic matter

We extend the discussion of physical ensembles introduced in chapter 4.
The concept of an ensemble consisting of weakly coupled physical systems,
M = {Mi, i = 1, . . ., N}, was introduced by Gibbs and Boltzmann.
It helped to establish a conceptual foundation of statistical physics. A
large number, N → ∞, of such systems is normally considered. The
otherwise negligible interactions between individual systems Mi are such
that both energy and (conserved) quantum numbers (such as, e.g., the
baryon number) can be exchanged between the systems. This establishes
a ‘bath’ of energy and baryon number, in which each individual system
is immersed, and with which it can equilibrate its properties.
When we examine the microscopic properties in the ensemble, such as

energies of individual members, we speak of a micro-canonical ensem-
ble. Furthermore, we distinguish between the canonical ensemble and
the grand-canonical ensemble: in both cases, we have adopted a statisti-
cal distribution in energy. However, in the canonical ensemble, we still
treat discrete quantum numbers (particle number, baryon number, etc.)
microscopically, whereas in the grand-canonical ensemble, we have also
adapted the statistical-ensemble distribution for the discrete properties
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192 Hot hadronic matter

such as baryon number. Of course, when we have more than one con-
served discrete quantum number, any of these properties can be treated
in ‘canonical’ or ‘grand-canonical’ way.
A colloquial way to explain the difference between the ensembles is

to say that, in the micro-canonical ensemble, we consider each individual
systemMi as being decoupled from the others. In the canonical ensemble,
we allow only for coupling of energy, and in the grand-canonical ensemble,
we allow for exchange of energy and quantum number (particle number).
Practically, we maintain the picture of an ensemble of many weakly cou-
pled systems M in place, but, for describing physical properties within
micro-canonical, canonical, or grand-canonical ensembles, we use different
physical variables.
Said differently, in a theoretical description, it is our choice how we

characterize the properties of the system as long as there is a precise
mathematical transformation we can use to make a transition between
the different descriptions of the same physical situation, and the descrip-
tion of choice is what is most convenient. There is an exception to this
‘convenience principle’: the color-confining nature of strong interactions
imposes color neutrality on all ‘drops’ of QGP we consider, thus, in prin-
ciple, we may not use a color-grand-canonical ensemble, and, if it is used,
the question to consider is that of whether results obtained in this way
make good physical sense.
What is, in our context, the individual ensemble element Mi? Can

we view it as a single hadron, or do we have to take the entire drop of
highly excited hadronic matter formed in the nuclear collision as being the
element in the Gibbs ensemble? In chapter 4, we have wondered if a single
particle can be seen as the element of the ensemble. This is motivated
by the fact that, in our physical environment, the number of particles is
not fixed, and their variable number is an expression of the sharing of the
total energy and baryon number (or other conserved number). In support
of this point of view, we will next show in section 10.3 that, allowing
for a change in numbers of particles, the state of maximum entropy at
fixed energy and baryon number is the conventional statistical-equilibrium
distribution.
We know that there are physical processes of particle production that

allow conversion of energy into particles, such that their yields reach
(chemical) equilibrium. The well-known Boltzmann collision dynamics
assures that the momentum distributions are equilibrated in (binary) col-
lisions. Microscopic processes of particle production and interaction can
establish, in a particle ensemble Mi, a distribution that is normally asso-
ciated with ensemble elements consisting of larger drops of matter.
Each high-energy heavy-ion reaction forms a many-body system, a fire-

ball, which evolves into a final state with thousands of particles. The
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study of the average rather than individual microscopic properties of such
a large system makes sense, if the distribution of individual properties of
the sub-components has a ‘peaked’ shape. What this means is that most
individual objects considered should be found near to their common av-
erage, just a few may be far from it. On intuitive grounds, it seems
that otherwise many-body systems equilibrate exceedingly slowly, if at
all. Since there are many examples of dynamic systems that do not sat-
isfy this criterion, we see that in general there is a priori no guarantee
that strongly interacting confined matter will ever equilibrate. However,
experimental results suggest that strongly interacting particle systems of
practically any size approach statistical equilibrium very rapidly. Why
this is the case remains today an open issue, see section 5.6.
In the following, we develop further the physical properties of ideal

relativistic gases introduced in section 4.4. We assemble useful formulas,
including in the discussion chemically nonequilibrated gases, which have
been treated only sparingly before.

10.3 The ideal gas revisited

The additivity of different gas fractions (i.e., flavors) ‘f’ originates from the
additive property of the logarithm of the partition functions Eq. (4.19):

Z =
∏
f

Zf , lnZ =
∑
f

lnZf . (10.31)

For an ideal Fermi gas, such as a quark gas in the deconfined phase, we
have for each flavor, as seen in Eqs. (4.38) and (4.39),

lnZF = gFV

∫
d3p

(2π)3
[ln(1 + γλe−βε) + ln(1 + γλ−1e−βε)], (10.32)

where the degeneracy factor is, e.g., gF = gsgc and comprises gs = 2 for
spin-12 degeneracy and gc = 3 for color. For bosons with degeneracy gB, in
principle, we must allow for the possibility of condensation (macroscopic
occupancy) in the lowest energy state ε0:

lnZB = −gBV
∫

d3p

(2π)3
[ln(1− γλe−βε) + ln(1− γλ−1e−βε)]

− gB[ln(1− γλe−βε0) + ln(1− γλ−1e−βε0)]. (10.33)

We will not address further in this book the condensation phenomena and
will not pursue further the last term in Eq. (10.33).
Differentiating with respect to the energy of the particle, see Eq. (4.41),

we obtain the single-particle distribution functions. For the fermions and
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antifermions seen in Eq. (4.42), respectively, we have

fF(ε, µ) =
1

γ−1eβ(ε−µ) + 1
, (10.34a)

f̄F(ε, µ) =
1

γ−1eβ(ε+µ) + 1
, (10.34b)

and similarly for bosons and antibosons:

fB(ε, µ) =
1

γ−1eβ(ε−µ) − 1
, (10.35a)

f̄B(ε, µ) =
1

γ−1eβ(ε+µ) − 1
. (10.35b)

We will also use the short-hand notation

f±F,B = fF,B ± f̄F,B, (10.36)

since these combinations occur in evaluations of statistical properties of
gases.
The particle densities are

ρF ≡ NF
V
=
1
V
λ
d

dλ
lnZF = gF

∫
d3p

(2π)3
f−F , (10.37a)

ρB ≡ NB
V
=
1
V
λ
d

dλ
lnZB = gB

∫
d3p

(2π)3
f−B . (10.37b)

These distributions determine the local equilibrium particle densities, for
example, the local density of quarks and antiquarks given by the integral
of the Fermi distribution, Eqs. (10.34a) and (10.34b):

nq =
∫

d3p

(2π)3
1

1 + γ−1i λ−1i eε(p)/T
→ γiλi

∫
d3p

(2π)3
eε(p)/T , (10.38a)

nq̄ =
∫

d3p

(2π)3
1

1 + γ−1i λieε(p)/T
→ γiλ

−1
i

∫
d3p

(2π)3
eε(p)/T . (10.38b)

The Boltzmann limit, which is applicable when the phase-space cells have
small overall occupancy, is also indicated in Eqs. (10.38a) and (10.38b).
In this limit, the chemical-abundance factors enter as coefficients of the
distributions. We note that, while the chemical potential enhances the
abundance of particles, it suppresses the abundance of antiparticles.
In order to obtain other statistical properties, such as, e.g., the en-

ergy content of the system, one can also apply the rule that the occu-
pation functions Eqs. (10.34a)–(10.35b) and Eq. (4.46) can be folded with
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the quantity of interest. To obtain the energy density, we fold with the
single-particle energy ε the sum of particle and antiparticle spectra. The
correctness of this prescription is seen on evaluating the derivative of lnZ
with respect to β, Eq. (10.20):

εB = gB

∫
d3p

(2π)3
εf+B , (10.39a)

εF = gF

∫
d3p

(2π)3
εf+F , (10.39b)

εg = gg

∫
d3p

(2π)3
εfg. (10.39c)

The gluon distribution fg is seen in Eq. (4.46). The total energy density
is the sum of all contributing terms:

ε =
∑
i

εi. (10.40)

10.4 The relativistic phase-space integral

To evaluate the properties of ideal relativistic gases, we need to evalu-
ate the relativistic momentum integral, which appears in all phase-space
integrals in a similar form. To do this we consider the definition of the
Bessel function Kν ,

Kν(z) =
√
π(z/2)ν

Γ(ν + 1
2)

∫ ∞

1
e−zt(t2 − 1)ν− 1

2 dt, - ν > −1
2 , (10.41)

valid for |arg z| < π/2. We used before the case ν = 1, Eq. (8.7), which
arises on substituting in Eq. (10.41) t → cosh t. The connection to the
class of integrals which we now require is obtained by recognizing that
z = βm and substituting into Eq. (10.41):

t →
√
p2 +m2/m. (10.42)

With ε =
√
p2 +m2, we obtain

Kν(βm) =
√
π

Γ(ν + 1
2)

(
β

2m

)ν ∫ ∞

0

p2ν

ε
e−βε dp. (10.43)

On integrating by parts with the relation

∂

∂p
e−βε = −β p

ε
e−βε,
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we obtain (ν > 1
2)

Kν(βm) =
√
π

Γ(ν − 1/2)
1
m

(
β

2m

)ν−1 ∫ ∞

0
p2ν−2e−βε dp. (10.44)

We recall that

Γ(12) =
√
π; Γ(32) =

√
π/2; Γ(52) =

3
2Γ(

3
2); . . ..

Two interesting limits arise from the well known series expansion of the
Bessel function Eq. (10.41).

• The non-relativistic limit in which we use p/m as the small parameter:

Kν(z)→
√

π

2z
e−z
(
1 +

4ν2 − 1
8z

+
(4ν2− 1)(4ν2− 9)

2!(8z)2

+
(4ν2− 1)(4ν2− 9)(4ν2− 25)

3!(8z)3
+ · · ·

)
. (10.45)

We note that this expansion is rather slowly convergent. The special
case of interest to us is

K1(z)
K2(z)

= 1− 3
2
1
z
+
15
8
1
z2

− 15
8
1
z3
+
135
128

1
z4
+O(z−5). (10.46)

• The relativistic limit, in which the mass is negligible relative to the
typical energies, and thus effectively m � 0. For the relevant two cases,
we have, for z → 0,

K1(z)=
1
z
+
[
ln
(z
2

)
+ γE

]z
2
+
[
ln
(z
2

)
+ γE − 5

4

]
z3

16
+ · · ·,

K2(z)=
2
z2

− 1
2
−
[
ln
(z
2

)
+ γE − 3

4

]
z2

8

−
[
ln
(z
2

)
+ γE − 17

12

]
z4

96
+ · · ·,

leading to

K1(z)
K2(z)

=
z

2
+
[
ln
(z
2

)
+ γE

]z3
4
+ · · ·. (10.47)

We recall that

γE = lim
n→∞

n∑
k=1

1
k
− lnn = 0.577 215 664 9 . . .

is the Euler constant.
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Fig. 10.1. The relativistic distribution function W (x) = x2K2.

With this preparation, we are now in a position to study properties of
relativistic gases. Let us first look at the classical limit, the first, ‘classical’
term in the expansion of the partition function Eq. (4.51). For n = 1, we
obtain, from Eq. (4.53),

lnZcl = Z(1) =
∑
f

γf(λf + λ−1f )Z
(1)
f , (10.48)

with

Z
(1)
f = gfV

∫
d3p

(2π)3
e−βε(p) ≡ gf

β−3V
2π2

W (βmf). (10.49)

The sum, in Eq. (10.48), includes all Fermi and Bose particles.
We encounter in Eq. (10.49) the function Eq. (10.44), with ν = 2,

W (βm) ≡ β3
∫
e−βεp2 dp = (βm)2K2(βm), (10.50a)

→ 2, for m → 0, (10.50b)

→
√
πm3

2T 3
e−m/T , for m � T, (10.50c)

where, in the last limit, we exploited the large-argument limit shown in
Eq. (10.45). As can be seen from Fig. 10.1, the change between the two
asymptotic limits occurs near βm = 1.
In the classical (Boltzmann) limit indicated by superscript ‘cl’ the num-

ber of particles of each species, Eq. (4.56), is given by
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N |cl = λ
∂

∂λ
lnZcl = λZ(1) = gλ

β−3V
2π2

W (βm), (10.51)

where we have combined the factors γ±1λ → λ, since, when only one par-
ticle species is considered, one fugacity suffices. The most useful and often
quoted property of a relativistic gas is the average energy per particle:

E

N

∣∣∣∣cl = −(∂/∂β) lnZcl
λ(∂/∂λ)∂lnZcl

= 3T +m
K1(βm)
K2(βm)

. (10.52)

The fugacity coefficients λ for the particles cancel out. To obtain Eq. (10.52),
we exploited the property of the function W = x2K2,

d

dx
W (x) = −x2K1(x), (10.53)

arising from the recursion relation of the K-functions,

d

dx
Kν(x) = −Kν−1(x)−

ν

x
Kν(x), (10.54a)

written in the form

d

dx
(xνKν(x)) = −xνKν−1(x). (10.54b)

• In the relativistic limit βm → 0, we can use Eq. (10.47) and obtain

E

N

∣∣∣∣cl
m=0

= 3T. (10.55)

Equation (10.55) can be improved; see Eq. (10.68). However, further re-
finement in the limit m/T → 0 requires that quantum statistics be con-
sidered.
• In the non-relativistic limit βm � 1, the ratio appearing in Eq. (10.52)
is as given in Eq. (10.46), and we obtain

E

N

∣∣∣∣cl
nr

= m+
3
2
T

(
1 +

5
4
T

m
− 5
4
T 2

m2
+
45
64

T 3

m3
· · ·
)
,
m

T
> 1. (10.56)

Note that, to obtain the correct first 3T/2 term in the non-relativistic
limit, the next-to-leading term in Eq. (10.46) needs to be considered. The
slow convergence of the series, Eq. (10.56), is also to be remembered,
i.e., the non-relativistic limit requires a truly a non-relativistic m � T
condition. For m � T , the relativistic limit offers a better approximation.
We continue with a more thorough discussion of the energy per baryon

in the next subsection, addressing there, in particular, the differences
arising for bosons and fermions.
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10.5 Quark and gluon quantum gases

In the deconfined QGP phase, we have to consider the quantum nature
of the effectively massless, relativistic quark and gluon gases. Many of
the results for quantum gases that we require arise in terms of a series
expansion of which the Boltzmann approximation is the first term. We
are, in particular, interested in the properties of the equation of state, i.e.,
the relation between the energy density ε, Eq. (10.40), and the pressure
P , Eq. (10.11).
Integrating by parts Eqs. (10.32) and (10.33),

±
∫

d3p

(2π)3
ln(1± γλe−βε) =

β

3

∫
d3p

(2π)3
|/p | ∂ε

∂|/p | fF,B (10.57)

=
β

3

∫
d3p

(2π)3
/p2

ε
fF,B,

where the factor 1
3 arises from the p2 dp momentum integral. We have

used the (relativistic-dispersion) relation Eq. (4.31) in the last equality.
We obtain for the pressure Eq. (10.11), noting Eqs. (10.32), (10.33), and
(10.36), and using Eq. (4.31) to eliminate the momentum,

3P = gF

∫
d3p

(2π)3

(
ε−m2

ε

)
f+F + gB

∫
d3p

(2π)3

(
ε−m2

ε

)
f+B ≤ ε. (10.58)

Since the particle-occupation probabilities f+B,F are always positive, the
terms proportional to m2 in Eq. (10.58) always reduce the pressure. For
this reason the maximum absolute value of the ideal-gas pressure, for
given thermal parameters, is subject to the relativistic bound

ε− 3P = gFm

∫
d3p

(2π)3
(m
ε

)
f+F + gBm

∫
d3p

(2π)3
(m
ε

)
f+B ≥ 0. (10.59)

The right-hand side of Eq. (10.59) is cast into the form which is natural
considering the trace of the energy–momentum tensor of quantum fields.
It can be evaluated using Eq. (10.43), when the series expansion of quan-
tum distributions exists. The leading (Boltzmann) term is

ε− 3P = gT 4

2π2
x3K1(x), x = m/T. (10.60)

For high temperatures relative to (vanishingly small) mass, we find the
relativistic equation of state,

3P → ε, for β m → 0, (10.61)

corresponding to the maximum mobility of particles. Massive particles
move slowly relative to the velocity of light and are far away from this
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limit. In fact, the pressure in the normal world around us is vanishingly
small, seen on the scale of energy density comprising the rest mass. This
is expressed in the power of 30 arising in Eq. (1.2), which separates the
pressure on Earth from that in the QGP.
We turn now to consider the energy per particle in relativistic quan-

tum gases in more detail. We employ the series expansion appearing in
Eq. (4.51), and obtain, by expanding Eqs. (10.32) and (10.33) for each
particle species,

lnZ = β−3V
2π2

∞∑
n=1

gn
λn

n4
(nβm)2K2(nβm). (10.62)

We have combined the factor (−)n+1 for fermions with the degeneracy
g to form the factor gn. This expansion Eq. (10.62) can not be used if
the condition m − µ < 0 arises. This happens, in particular, for mass-
less quarks at finite baryon density. We will be able to deal with this
interesting case exactly for m → 0; see Eq. (10.74). In the HG phase,
for a very narrow parameter range, allowing in particular condensation
of kaons, the expression Eq. (10.62) is also not valid. Apart from these
exceptions, Eq. (10.62) can be used as the basis for the evaluation of the
properties of hot, strongly interacting matter.
Using the series expansion Eq. (10.62), the quantum generalization of

the classical particle number, Eq. (10.51), is

N = λ
∂

∂λ
lnZ = β−3V

2π2

∞∑
n=1

gn
λn

n3
(nβm)2K2(nβm). (10.63)

As noted, the masses and fugacities are such that m− µ > 0, so that the
series expansion exists. The relativistic limit m → 0 is now

N

V

∣∣∣∣B
m=0

=
gT 3

π2
ζ(3), (10.64)

N

V

∣∣∣∣F
m=0

=
gT 3

π2
η(3). (10.65)

We have introduced the Riemann zeta function

ζ(k) =
∞∑
n=1

1
nk

. (10.66a)

We note that

ζ(2) =
π2

6
, ζ(3) � 1.202, ζ(4) =

π4

90
. (10.66b)

https://doi.org/10.1017/9781009290753.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290753.015


10 Relativistic gas 201

For a Fermi occupation function, the signs of the terms in the sums in
Eq. (10.63) are alternating, which leads to the eta function

η(k) =
∞∑
n=1

(−1)n−1 1
nk
= (1− 21−k)ζ(k), (10.67a)

and thus

η(3) =
3
4
ζ(3) = 0.901 5, η(4) =

7
8
ζ(4) =

7
720

π4. (10.67b)

The generalization of the energy per particle, Eq. (10.52), to quantum
statistics yields

E

N
= 3T

∞∑
n=1

gn
λn

n4

(
(nx)2K2(nx) +

1
3
(nx)3K1(nx)

)
∞∑
n=1

gn
λn

n3
(nx)2K2(nx)

, (10.68)

where x = mβ. For the non-relativistic limit, the Boltzmann approx-
imation Eq. (10.56) is quite appropriate, resulting in Eq. (10.56). The
ultra-relativistic limit with m → 0 yields

E

N

∣∣∣∣B
m=0

= 3T
ζ(4)
ζ(3)

= 2.70T, (10.69)

E

N

∣∣∣∣F
m=0

= 3T
η(4)
η(3)

= 3.15T. (10.70)

The factor 7
8 seen in Eq. (10.67b) enters Eq. (10.70) and is the source of

the reduction of the number of fermionic degrees of freedom in a Fermi
gas compared with that in a Bose gas. However, we have to allow for the
presence both of quarks and of antiquarks; thus the radiation term in the
quark gas is actually 7

4 times as large as that in the gluon gas, apart from
the other statistical flavor and color multiplication factors.
In Fig. 10.2, we show the variation of the energy per particle in units of

m, as a function of T/m. The solid line depicts the Boltzmann limit; the
long-dashed line, fermions with λ = 1; and the short-dashed line, bosons.
Asymptotic conditions are indicated by dotted lines corresponding to the
limits Eqs. (10.55), (10.69), and (10.70). For finite mass, we see at T → 0
the non-relativistic linear rise common to all three cases, Eq. (10.56). The
transition from non-relativistic to relativistic behavior occurs within the
entire temperature domain shown in Fig. 10.2.
Our discussion of the properties of gases of relativistic particles cannot

be complete without a review of the particularly interesting case of a free
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Fig. 10.2. The energy per particle in units of m, as a function of T/m. Solid
line: Boltzmann limit; long-dashed line: fermions; short-dashed lines: bosons.
Asymptotic conditions are indicated by dotted lines. Quantum gases are evalu-
ated with fugacities γ, λ = 1.

gas of massless quarks. In particular, at finite baryon density, for which we
cannot expand the Fermi distribution function in the presence of strong
quantum degeneracy, this analytically soluble case offers the only practical
method for studying the behavior of an ideal gas of quarks. To see this,
let us assume that we are at a finite positive chemical potential, which
means that there is a net number of quarks present. Fermi distributions
as functions of ε/T both for particles, Eq. (10.34a), and for antiparticles
(dashed), Eq. (10.34b), are shown in Fig. 10.3, for a typical situation of
µ/T = 0.5 (that is, λ = 1.65).
Let us restate the mathematical problem more precisely. The grand

partition function of the Fermi system, Eq. (10.32), can be written, using
Eq. (10.57), in the form

3
T

V
lnZF = gF

∫
d3p

(2π)3
/p 2

ε

(
1

eβ(ε−µ) + 1
+

1
eβ(ε+µ) + 1

)
. (10.71)

Our usual series expansion would work for the momentum range such that
ε > µ. For the massless case, we would have to split the integral into two,
and expand in a slightly different fashion. On approaching this problem
in this way, one actually discovers that, for m = 0, the partition function
can be exactly integrated.
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Fig. 10.3. A comparison of particle (solid) and antiparticle (dashed) Fermi dis-
tribution functions, as functions of ε/T for µ/T = 0.5.

We substitute the arguments of fF and f̄F with x = β(ε± µ):

3
T

V
lnZF=

gF
2π2

T 4
(∫ ∞

β(m−µ)
dx
[(x+ µ/T )2 − (m/T )2]3/2

ex + 1

+
∫ ∞

β(m+µ)
dx
[(x− (µ/T ))2 − (m/T )2]3/2

ex + 1

)
. (10.72)

A systematic expansion in m/T was carried out in [113]. We consider the
leading term for m = 0. For what follows it is important to note that, in
Eq. (10.72), one of the factors under the integral is, for m → 0,

[(x± µ/T )2 − (m/T )2]3/2 → (|x± βµ|)3.

The range of the integrals is now split to be from ±βµ → 0 and from
0→ ∞. The final-range integrals can be recombined to give an elementary
polynomial integral,∫ 0

−βµ
dx

|x+ βµ|3
1 + ex

−
∫ βµ

0
dx
(x− βµ)3

1 + ex

=
∫ βµ

0
dx
(βµ− x)3

1 + e−x
+
∫ βµ

0
dx
(βµ− x)3

1 + ex
,

=
∫ βµ

0
dx (βµ− x)3 =

(βµ)4

4
, (10.73)
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where we have changed variable from x to −x in the first integrand.
This term is the usual Fermi-integral contribution remaining in the limit
T → 0. The remaining infinite-range integral is evaluated by expansion
in power series along the lines of the method shown in section 10.5, and it
leads, in a straightforward way, to the first two terms in large parentheses
in the following final result:

lnZF|m=0 =
gFV β

−3

6π2

(
7π4

60
+
π2

2
ln2 λ+

1
4
ln4 λ
)
. (10.74)

The net quark density follows immediately from Eq. (10.74):

ρq ≡ nq − nq = 3ρq
1
V
λ

∂

∂λ
lnZF|m=0,

ρq =
gFβ

−3

6π2
(
π2 lnλ+ ln3 λ

)
=

gF
6

(
µT 2 +

µ3

π2

)
. (10.75)

At zero temperature, the second term is the well-known expression for the
degenerate Fermi gas. However, already at a modestly high temperature
T > µ/π, the first term dominates. In the range of parameters of interest
to us, when λq � 1.2–2.5 and T > 140 MeV this is always the case. The
resulting proportionality of the quark (i.e., baryon) density to the chemi-
cal potential, and the accompanying quadratic temperature dependence,
offer a very counterintuitive environment for a reader used to working
with cold Fermi gases.
We refer to section 4.6 for the energy and pressure of the quark and

gluon gases, and a more thorough discussion the properties of a QGP is
given in chapter 16.

10.6 Entropy of classical and quantum gases

We consider next the single-particle entropy associated with hadrons.
We recall the expressions for entropy presented in section 7.1, Eq. (7.1)
for a Fermi–Bose gases and Eq. (7.2) for a Boltzmann gas. We use the
Gibbs–Duham relation Eq. (10.26) as well as the statistical-physics ana-
log, Eq. (10.25) and obtain

S

N
=

PV + E

TN
− µ

T
=
lnZ − β

∂

∂β
lnZ

λ
∂

∂λ
lnZ

− lnλ. (10.76)

We will consider several cases of physical interest and note that, for
pions, even at a temperature m/T � 1, the relativistic Boltzmann limit
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is of interest, while the non-relativistic limit is of interest primarily for
understanding the entropy of the baryon contribution.
• The classical-gas case: the partition function is, in the Boltzmann ap-
proximation, proportional to the fugacity; see, e.g., Eq. (4.40). Thus
Eq. (10.76) simplifies to

S

N

∣∣∣∣cl = 1 + E

TN
− µ

T
= 1−

β
∂

∂β
lnZ

λ
∂

∂λ
lnZ

− lnλ. (10.77)

Here, lnλ = µ/T , with the understanding that λ, in the present context,
is synonymous with the abundance fugacity γ, and in what follows for the
pion gas µ ≡ T ln γ.
By inserting Eq. (10.52) into Eq. (10.77), we obtain

S

N

∣∣∣∣cl= 4 + βm
K1

K2
− µ

T
. (10.78)

We consider first the limit m/T → 0, Eq. (10.47):

S

N

∣∣∣∣cl� 4 + m2

2T 2
+
[
ln
( m
2T

)
+ γE

) m4

4T 4
− µ

T
+ · · ·, m

T
→ 0. (10.79)

An expansion suitable for the non-relativistic case, m/T � 1, can also be
obtained using Eq. (10.46):

S

N

∣∣∣∣cl� 5
2
+
m

T
+
15
8
T

m
− 15
8
T 2

m2
+
135
128

T 3

m3
− µ

T
+ · · ·, m

T
�1. (10.80)

Numerical calculation shows that the Boltzmann specific entropy is
monotonically falling, as shown in Fig. 10.4 by the solid line, toward
the asymptotic value S/N = 4 (dashed line), Eq. (10.78). The two ap-
proximants, Eqs. (10.79) and (10.80), are depicted as dotted lines. Both
fourth-order approximants describe the exact result well in general, except
near to the physically interesting case m/T � 1, for which the entropy
per particle is S/N = 4.4, in the absence of a chemical potential, i.e., for
a chemically equilibrated classical (Boltzmann) gas.
• The low-density nucleon gas case: we consider the non-relativistic ex-
pansion, m/T > 1, but we need to retain in our consideration the baryon
number fugacity. Moreover, it is the entropy per baryon rather than the
entropy per particle which is of interest. Recalling that in the Boltzmann
approximation lnZcl ∝ (λ+λ−1) = 2 cosh(µ/T ), and b = λ(d/dλ) lnZcl ∝
(λ− λ−1) = 2 sinh(µ/T ), Eq. (10.77) now implies that

S

b

∣∣∣∣cl
N

=
(
4 + βm

K1(βm)
K2(βm)

)
coth
(µ
T

)
− µ

T
. (10.81)
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Fig. 10.4. The entropy per particle of a classical (Boltzmann) gas. Dashed line,
asymptotic value S/N = 4; dotted line, fourth-order approximants, Eqs. (10.79)
and (10.80).

Using the asymptotic expansion Eq. (10.46), we obtain

S

b

∣∣∣∣cl
N

=
5
2

(
1 +

3
4
T

m
− 3
4
T 2

m2
+
27
64

T 3

m3
+ · · ·

)
coth
(µ
T

)
−µ−m coth(µ/T )

T
. (10.82)

•We find the entropy for quantum quark and gluon gases using the Gibbs–
Duham relation in the form Eq. (10.76) and the relativistic equation of
state Eq. (10.61). The entropy is

S|m=0 =
4PV
T

−
∑
f

µf
T
Nf =

4E
3T

−
∑
f

µf
T
Nf , (10.83)

where the sum over different kinds of component f is implied, E =
∑
f Ef ,

etc. For each component, we obtain in the relativistic limit m/T 	 1,
and, for µ = 0, dividing by N , and using Eqs. (10.69) and (10.70),

S

N

∣∣∣∣B
m=0

= 4
ζ(4)
ζ(3)

= 3.61, (10.84)

S

N

∣∣∣∣F
m=0

= 4
η(4)
η(3)

= 4.20. (10.85)
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To obtain the complete dependence on m/T , we use Eq. (10.68). For
each particle species, subject to the existence of the series representation
of the integral, as addressed earlier, the result is

S

N
= 4

∞∑
n=1

(uλ)n

n4

(
(nx)2K2(nx) +

1
4
(nx)3K1(nx)

)
∞∑
n=1

(uλ)n

n3
(nx)2K2(nx),

− lnλ, (10.86)

where x = mβ. u = −1 for fermions and u = 1 otherwise. For the non-
relativistic limit x > 1, one can use Eq. (10.46) in Eq. (10.86) to obtain

S

N
=

∞∑
n=1

(uλ)n

n4
(nx)2K2(nx)I(nx)

∞∑
n=1

(uλ)n

n3
(nx)2K2(nx)

− lnλ, (10.87)

I(nx) =
5
2
+ nx+

15
8
1
nx

− 15
8

1
(nx)2

+
135
128

1
(nx)3

+ · · · , (10.88)

which, for n = 1, yields the result Eq. (10.82), once we rearrange terms of
two components to include particles and antiparticles and divide by the
baryon number (particle–antiparticle difference).
For the case of a vanishing chemical potential, the non-relativistic Boltz-

mann approximation, Eq. (10.80), is quite appropriate. In Fig. 10.5, we
compare the entropy per particle, evaluated at zero chemical potential
(λ = 1), for the Fermi (long-dashed line), Bose (short-dashed line) and
Boltzmann (solid line, see Fig. 10.4) particles.

11 Hadronic gas

11.1 Pressure and energy density in a hadronic resonance gas

We now consider the physical properties of a hadronic, confined phase,
such as energy density, pressure, and abundances of various particles,
assuming that we have a locally thermally and chemically equilibrated
phase. Although full chemical equilibrium is most certainly not attain-
able in the short time of the nuclear-collision interaction, see chapter 5,
this study provides very useful guidance and a reference point for under-
standing the properties of hadronic matter out of chemical equilibrium.
There are two ways to look at a hadronic gas: the first is that we can

study its properties using the known hadronic states. This approach will
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