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Abstract
In recent years, there has been significant growth in the sales of plant-based alternatives to
meat and dairy products. However, it remains unclear whether these alternatives are actu-
ally reducing sales of livestock-derived products. This paper examines the relationship
between the sales of one particular livestock-derived product – unflavored dairy milk –
and its plant-based alternative – nondairy milk. Using data from a panel of US consumers
between 2004 and 2018, I find that a 1-gallon increase in nondairy milk sales is associated
with a 0.43–0.60 gallon reduction in dairy milk sales. The inverse relationship between
dairy and nondairy milk purchases is strongest among households with high initial expen-
diture on dairy milk. Despite the inverse relationship between dairy and nondairy milk
purchases, the rapid increase in nondairy milk sales between 2009 and 2018 explains little
of the concomitant decline in dairy milk sales.
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Introduction

Over the past several years, there has been growing interest in plant-based alternatives to
meat and dairy products from academics, policymakers, and food companies. Sales of
plant-based alternatives are increasing as grocery stores and restaurants offer a wider vari-
ety of plant-based products, including vegetarian burgers, synthetic chicken, and almond
milk (Roenick 2020; Stewart et al. 2020). Furthermore, companies that produce plant-
based alternatives have attracted significant public and private investment, suggesting that
investors see the potential for additional growth in this category.1

© The Author(s), 2023. Published by Cambridge University Press on behalf of the Northeastern Agricultural and Resource
Economics Association. This is an Open Access article, distributed under the terms of the Creative Commons Attribution
licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction,
provided the original article is properly cited.

1Chasan (2020) details recent private investments in companies that produce plant-based products. One
of the most successful plant-based companies, BeyondMeat, was listed on the NASDAQ inMay 2019 – as of
November 2021, its market capitalization was over $4.8 billion. A number of other public companies, such
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While there is a vigorous debate about the merits of animal agriculture, many academ-
ics, opinion writers, and investors argue that substituting meat and dairy with plant-based
alternatives reduces animal suffering, lowers greenhouse gas emissions, and improves
other environmental outcomes (De Boer and Aiking 2011; De Boer, Schösler, and
Boersema 2013; Egan 2020; Friend 2019; Hedenus, Wirsenius, and Johansson 2014;
Monbiot 2018). Consumers also cite environmental and animal welfare concerns, along-
side other motivations such as health and curiosity, as their primary reasons for eating
plant-based alternatives (International Food Information Council 2019; Onwezen
et al. 2020).

However, despite the burgeoning sales of plant-based alternatives, it is unclear the
extent to which these products are, in fact, reducing livestock production. It could be
the case that plant-based alternatives are primarily purchased by vegans, vegetarians, or
flexitarians (i.e., individuals that eat a mostly vegetarian diet with small amounts of meat),
who would not buy a livestock-derived product even if plant-based substitutes did not
exist. Or, plant-based alternatives may be consumed by omnivores in place of other
plant-based products. It is difficult to observe any relationship between the sales of
livestock-derived products and plant-based alternatives using aggregate data, as sales of
plant-based alternatives remain small relative to sales of livestock-derived products.

This paper uses consumer panel data to examine the extent to which one particular
plant-based alternative – nondairy milk – reduces sales of the analogous livestock-derived
product – unflavored dairy milk. Throughout the paper, the terms “nondairy milk” are
used to refer to products such as almond and soy milk. Using the term “milk” to denote
plant-based products is not without controversy, though it appears to be the standard
practice in the academic literature (Dharmasena and Capps 2014; Slade and
Markevych 2020; Stewart et al. 2020).

Nondairy milk makes for an interesting case study, as sales of nondairy milk increased
rapidly between 2009 and 2014, before leveling off in subsequent years at about 7% of dairy
milk sales. This growth is almost entirely fuelled by almond milk, which was introduced in
most markets around 2009. In contrast, plant-based meat substitutes (i.e., products that
emulate the taste and texture of meat) appear to be at an earlier point on the adoption
curve: Roenick (2020) documents that sales of meat substitutes are less than 1% of the
sales of meat products, though growing rapidly.

I use dynamic panel data methods to identify how plausibly exogenous changes in non-
dairy milk consumption impact the consumption of dairy milk. The estimates show that a
1-gallon increase in nondairy milk consumption is associated with a 0.43–0.60 gallon
reduction in dairy milk consumption. This relationship is strongest in households that
had initially purchased more dairy milk. Despite the inverse relationship between nondairy
and dairy milk, the increased consumption of nondairy milk explains less than 4% of the
decline in dairy milk consumption between 2009 and 2018.2

To my knowledge, this is the first paper that examines the impact of plant-based sub-
stitutes on livestock purchases using household-level data – previous work on this topic
employs hypothetical choice experiments (Slade 2018; Van Loo, Caputo, and Lusk 2020)
or aggregate data (Stewart et al. 2020). Although caution should be taken when mapping
the conclusions of this paper to other markets, the results suggest that plant-based

as Tyson Foods, Kellogg’s, and Maple Leaf, have made significant investments in plant-based products or
acquired smaller plant-based companies (Gasparro, 2020; Min, 2019).

2Throughout the paper, I use the term dairy milk to refer to fluid milk sales. Total dairy milk consump-
tion, including fluid milk and milk that is processed into dairy products, has slightly increased over this time
period (United States Department of Agriculture, 2022).
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products can impact sales of livestock-derived products, especially if they are successful in
moving beyond their initial consumer base. However, the relationship between livestock-
derived products and plant-based alternatives is unlikely to be one-to-one.

Related literature

Demand for dairy milk
In the past 40 years, annual per capita consumption of fluid dairy milk has steadily
declined from 27.7 gallons in 1979 to 16.4 gallons in 2019.3 The literature on dairy milk
demand has largely focused on explaining this multi-decade decline in consumption.
Stewart et al. (2020) note that one cause of declining milk consumption is the aging of
the population, as children consume more milk than adults. However, this is only a partial
explanation, as milk demand has fallen across generations, holding age constant (Stewart,
Dong, and Carlson 2012).

The reduction in fluid milk sales does not appear to be due to a general aversion to dairy
products. Consumption of processed dairy products, such as cheese and yogurt, has
increased over the past 40 years. This increase was more than enough to offset reductions
in fluid milk consumption – per capita use of dairy milk in the United States was 19%
higher in 2019 compared to 1979 (United States Department of Agriculture 2022).

Another potential explanation for declining dairy milk sales is the introduction of new
substitute products. Yen et al. (2004) and Dharmasena and Capps (2012) estimate demand
systems with multiple beverages: both of these papers find that milk and soft drinks are
price substitutes, while milk and fruit juices are price complements. However, sales of soft
drinks and other beverages have also declined in recent years (Bleich et al. 2018), casting
doubt on whether substitution to other aggregate beverage categories is driving decreased
demand for fluid dairy milk.

Demand for nondairy milk
In contrast to the decline in per capita dairy milk consumption, nondairy milk sales have
grown considerably between 2009 and 2018, fuelled almost entirely by almond milk. This
increase in demand has been explored in just a handful of papers. Bus and Worsley (2003)
and Villegas, Carbonell, and Costell (2009) examine consumer perceptions of dairy and
soy milk, finding that soy milk received lower ratings on sensory quality compared to dairy
milk. In part, the growth of nondairy milk may simply have come from the introduction of
a tastier product. In 2012, almond milk replaced soy as the best-selling nondairy milk and
now accounts for over two-thirds of nondairy milk sales. Slade and Markevych (2020) find
that consumers rate almond milk as significantly tastier than soy milk.

The increased consumption of nondairy milk also appears to be rooted in ethical moti-
vations. Using qualitative interviews, McCarthy et al. (2017) find that concerns about ani-
mal welfare and the environment often guide nondairy milk purchases. Clay et al. (2020)
reach the same conclusion after analyzing the market positioning of nondairy milk.

Slade and Markevych (2020) note that the adoption of nondairy milk does not appear
to be an all-or-nothing phenomenon. Using a survey of Canadian consumers, they find
that 33% of respondents consume nondairy milk sometimes or more frequently, but
almost all of these individuals also consume dairy milk. They also show that consumption
of nondairy milk differs across contexts: individuals are more likely to prefer nondairy

3Data are available at: https://www. ers.usda.gov/data-products/dairy-data/, accessed on August 25, 2020.

114 Peter Slade

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/a

ge
.2

02
2.

22
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://www
https://doi.org/10.1017/age.2022.22


milk to dairy milk when they are consuming cold drinks or smoothies, compared to when
they consume milk by itself or in hot drinks.

Dharmasena and Capps (2014) and Copeland (2016) examine consumer demand for
dairy and nondairy milk using Tobit demand systems. Both studies find that dairy and soy
milk are price substitutes, though Copeland (2016) finds mixed results for the relationship
between dairy and almond milk. They also report that demand for nondairy milk is higher
among younger, female, and more educated households.

In a closely related paper, Stewart et al. (2020) estimate the relationship between aggre-
gate demand for dairy and nondairy milk using a vector autoregressive (VAR) model. In
their data set, nondairy milk sales increased by 0.01 gallons per household per week
between 2013 and 2017. They predict that if nondairy milk sales had stayed constant over
this period, households would have purchased 0.014 additional gallons of dairy milk in
2017, with a 95% confidence interval spanning from 0.0002 to 0.0264 gallons.

Although there is a limited understanding of the relationship between nondairy and
dairy milk consumption, the American dairy industry appears concerned that the rise
of nondairy milk will eat into dairy sales. One response to this perceived threat is an
attempt to restrict the use of the term “milk” through legal, regulatory, and legislative
actions. Two prominent legal challenges sought to prevent plant-based milks from using
the term “milk” (Ang v. Whitewave Foods Company Case No. 13-cv-1953 – decided in
2013, and Painter v. Blue Diamond Growers Case No. 17-55901 – decided in 2018).
Both cases were dismissed because the plaintiffs were unable to demonstrate that a rea-
sonable consumer would be misled if plant-based products were labeled as soy or almond
“milk.”

At the regulatory level, the Food and Drug Administration (FDA) is responsible for
regulating standards of identity for interstate commerce. Standards of identity prescribe
the ingredients that a product marketed under a particular name must (or must not) con-
tain. In September 2018, the FDA solicited public comments on the use of the term milk in
marketing plant-based products but has not yet issued guidance (see 83 FR 49103 in the
Federal Register). At the same time, the US Senate is currently debating the Defending
Against Imitations and Replacements of Yogurt, Milk, and Cheese to Promote Regular
Intake of Dairy Everyday (DAIRY PRIDE) Act (S.1346). This act would force the FDA
to issue guidance preventing plant-based products from being labeled as milk. Many states
have passed similar laws that would restrict the marketing of plant-based alternatives,
though these laws generally only take effect if a critical number of neighboring states pass
similar legislation.4

Demand for plant-based alternatives
This paper also contributes to the broader literature on plant-based alternatives that has
primarily focused on meat analogues. A general finding of this literature is that consumer
acceptance of meat substitutes is predicated on emulating the appearance, taste, and tex-
ture of meat products (Elzerman et al. 2011; Fenko, Backhaus, and van Hoof 2015; Hoek
et al. 2011; Michel, Hartmann, and Siegrist 2021). This suggests that the new generation of
plant-based products, which comes closer to simulating the taste experience of common
meat products, may be more effective in reducing livestock production than the previous
generation of plant-based products, such as tofu or Quorn, which do not have the same
verisimilitude.

4Examples of these states include Wisconsin (2021 Senate bill 83), Maryland (2019 Senate Bill 922), and
North Carolina (2018 Senate Bill 711).
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Consumers’ willingness to substitute meat with plant-based products was previously
analyzed by Slade (2018) and Van Loo, Caputo, and Lusk (2020). These two studies
use hypothetical choice experiments to estimate demand for plant-based, lab-grown
(cultured meat), and beef burgers. Both papers found that a sizeable minority of consumers
are willing to adopt plant-based or lab-grown burgers, though the market share of beef
burgers (conditional on purchase) remains between 68% and 80%.

Methods

The canonical method to address the substitutability of dairy and nondairy milk is to esti-
mate a demand system that contains a set of own- and cross-price elasticities. These elas-
ticities could be used to analyze the impact of nondairy milk on dairy milk sales by
calculating the difference between (a) the actual level of dairy milk consumption and
(b) the level of dairy milk consumption in a counterfactual without nondairy milk.
This counterfactual could be predicted by setting the price of nondairy milk at a level that
no household would actually consume it.

However, there are a number of challenges with estimating such a demand system.
Notably, prices are fairly consistent over the course of the sample. This lack of variation
makes identification difficult. Furthermore, the estimated elasticities are only valid in the
relatively narrow band of prices that are actually observed and could not be used to make
predictions at prices high enough to ensure there are no purchases of nondairy milk.

An additional challenge in estimating a demand system is that prices in the household-
level data used in this paper are either unobserved or observed with considerable error.
In the analysis, household purchases are aggregated to the annual level. However, over
79% of households in the data do not purchase any nondairy milk in a given year.
Furthermore, many households that purchase nondairy milk do so infrequently. Hence,
the average price of nondairy milk purchased by these households does not necessarily
reflect the prices that they face over the course of the entire year.5

Instead of using a demand system, I directly estimate how changes in nondairy milk
consumption impact dairy milk consumption. An ideal data set for answering this
question would contain data on households over multiple periods. Across these periods,
everything would be held constant, except for a subset of parameters that influence
nondairy milk consumption but do not, in the absence of nondairy milk, impact dairy
milk consumption. These parameters might include the availability of certain nondairy
milks or changes in consumer preferences towards plant-based alternatives. Given
this data, one could estimate the impact of increased nondairy milk consumption by
simply regressing household changes in dairy milk consumption on household changes
in nondairy milk consumption using first differences or fixed effects.

The data used in the paper (discussed in the subsequent section) does contain obser-
vations on households in multiple periods. Across these periods, there are exogenous
changes in the availability of nondairy milk, with almond milk being introduced in most
markets after 2009. Furthermore, changes in the marketing of nondairy milk (e.g., placing
it in refrigerated displays near dairy milk) appear to have increased consumer acceptance
of these products (Franklin-Willis 2019). However, unlike the ideal data set, over the

5Previous work has imputed missing prices using regressions that predict household-level prices with
observed household characteristics. These regressions often have low explanatory power, resulting in little
variation in imputed prices. For example, in Dharmasena and Capps (2014), the standard deviation of
observed soymilk prices is six times higher than the standard deviation of imputed prices.
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course of the sample, there have also been considerable changes in demand for dairy milk
that are likely unrelated to nondairy milk consumption.

If changes in the unobservable factors that impact dairy milk consumption also impact
nondairy milk consumption, then a simple regression of differences in dairy milk sales on
differences in nondairy milk sales would create biased results. To avoid this bias, I use a
panel data estimator that employs lagged sales of nondairy milk as instruments. This
instrumental variables approach identifies variation in nondairy milk sales that is plausibly
independent of the unobserved factors that impact dairy milk sales.

To frame the empirical issue more clearly, consider a household, denoted by i, that
maximizes utility through purchases of dairy milk (d), nondairy milk (nd), and a compos-
ite of all other goods (o):

ui � max
qdi ; q

nd
i ; qoi

vi�qdi ; qndi ; qoi ; Xi; ei� (1)

where X and e are observable and unobservable household characteristics,
respectively. The utility maximization problem is subject to the typical budget constraint:
yi � qdi p

d
i � qndi pndi � qoi p

o
i , where yi denotes household income.

One can solve this maximization problem to obtain the Marshallian demand for
nondairy milk:

q�;ndi �yi; pdi ; pndi ; poi ; Xi; endi �; (2)

where endi refers to the subset of the unobservables (ei) that impact nondairy milk. Totally
differentiating this equation yields an expression of how demand for nondairy milk will
change when income, prices, the observable characteristics (X), and the unobservable char-
acteristics (e) change:

dq�;ndi � @q�;nd

@y
dyi �

@q�;nd

@pd
dpdi �

@q�;nd

@pnd
dpndi � @q�;nd

@po
dpoi �

@q�;nd

@X
dXi �

@q�;d

@end
dendi :

(3)

One could likewise solve for the Marshallian demands of dairy and other products.
Instead of doing this, consider restating the consumer’s problem by substituting the
optimal solution for nondairy milk, q�;ndi , into the utility and budget constraint. With
this substitution, the household’s maximization problem is to choose the quantity of dairy
milk (qdi ) and the outside good (qoi ) to maximize vi�qdi ; q�;ndi ; qoi ;Xi; ei� subject to
yi � q�;ndi pndi � qdi p

d
i � qoi p

o
i . This yields the optimal quantity of dairy milk as

q�;di �yi; pdi ; pndi ; poi ;Xi; q
�;nd
i ; edi �; (4)

where edi refers to the subset of the unobservables that impact demand for dairy milk.
Totally differentiating equation 4 yields

dq�;di � @q�;d

@y
dyi �

@q�;d

@pd
dpdi �

@q�;d

@pnd
dpndi � @q�;d

@po
dpoi �

@q�;d

@X
dXi

� @q�;d

@q�;nd
dq�;ndi � @q�;d

@ed
dedi :

(5)

The term dq�;ndi refers to total changes in the quantity of nondairy milk consumed, which
is given in equation 3. The variable of interest, @q�;d

@q�;nd , captures how the consumption of
dairy milk is impacted by changes in the consumption of nondairy milk. Note that the
partial derivatives with respect to prices do not capture the full impact of price changes,
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as they do not account for the indirect effect of prices through changes in qnd . In particular,
@q�;d

@pnd
will capture only the income effect of a change in pnd not the substitution effect.

With minimal changes to notation, equation 5 serves as an empirical equation to be
estimated using first differences:

Δqdi;t � β1Δyi;t � β2Δpdi;t � β3Δpndi;t � β4Δpoi;t � β5ΔXi;t � β6Δqndi;t �Δedi;t : (6)

As mentioned above, the coefficient on nondairy milk, β6, will only be unbiased if the
changes in the unobservables that impact nondairy milk sales (dendi in equation 3) are inde-
pendent of changes in the unobservables that impact dairy milk sales (dedi in equation 5).6

This assumption is not altogether implausible: much of the variation in nondairy milk
consumption appears to come through the introduction of almond milk, which is unlikely
to be related to the unobservables that impact dairy milk demand. However, there may be
changes in unobservable household characteristics that impact demand for both nondairy
and dairy milk. For example, some households may have members who became lactose
intolerant or vegan over the course of the sample. These households might increase their
consumption of nondairy milk and reduce their consumption of dairy milk; however,
they likely would have reduced their dairy milk consumption regardless of the presence
of nondairy milk.

The panel nature of the data provides another approach to identification. As opposed to
assuming independence between contemporaneous changes in the unobservables that
impact nondairy and dairy milk, one could instead adopt the weaker assumption that
Δedi;t is unrelated to past purchases of nondairy milk. This assumption allows the lagged
values of nondairy milk purchases to be used as instruments when estimating the model
with first differences. Lagged values are conceivably strong instruments because past
consumption of nondairy milk may make an individual more (or less) susceptible to
change their nondairy milk purchases in the future. Lagged values also appear to be valid
instruments: while past levels of nondairy milk consumption may be correlated with the
current levels of the unobservables (edi ), there is no reason to suspect that previous levels of
consumption are related to differences in unobservables across years. The instrumental
variables approach identifies a local effect, as it estimates the impact of changes in nondairy
milk purchases that are correlated with past purchases of nondairy milk. When instru-
menting with past lagged values, I estimate the model using the two-step generalized
method of moments estimator described in Baum, Schaffer, and Stillman (2003).

Data

I use data from Nielsen’s Homescan consumer panel between 2004 and 2018. During these
years, almond milk sales increased from virtually zero to an average of over one gallon per
household per year (with considerable heterogeneity across households). The Homescan
panel includes roughly 60,000 American households per year. Each year some households
leave the panel and are replaced. However, over 40% of the observations are from

6Past work on demand estimation has attempted to control for endogeneity in prices. One source of
endogeneity is local demand shocks that would impact both quantity and prices. Another source of endo-
geneity is that households who buy more of a product might systematically face higher or lower prices
(e.g., households who consume more of a product may be more motivated to shop for better prices).
However, neither of these sources of endogeneity appear salient in this application. Milk is a staple product
with relatively constant demand, hence local demand shocks are unlikely. Furthermore, using first differ-
ences or fixed effects would control for household differences in prices (assuming that households persis-
tently purchase higher or lower priced milks).
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households who remain in the panel for 10 years or more. Panelists record all of their
household purchases with a scanner or a mobile application. This data set is frequently
used to study the demand for food and beverage products (Alviola and Capps 2010;
Dharmasena and Capps 2012; Zhen et al. 2014).

Household purchases are aggregated into annual observations. Dairy and nondairy
milks are identified using the product categories in the Nielsen data, universal product
code (UPC) descriptions, and ingredient lists. I only include dairy milks that are unfla-
vored and nondairy milks that are either unsweetened, sweetened, or vanilla-flavored
(other flavors of nondairy milk, primarily chocolate, are excluded). I do not include dairy
or nondairy creamers in the analysis. The supplementary appendix contains additional
details about how products are identified.

Products with fewer than 28 ounces are excluded from the analysis. There are two rea-
sons for removing smaller containers: first, the Homescan panel does not include products
that are purchased and consumed away from home; hence, most single-serve products are
not included in the data.7 Furthermore, small containers of nondairy milk may be func-
tionally different than small containers of dairy milk. For example, it isn’t clear whether a
can of coconut milk could functionally replace a shelf-stable dairy milkshake.

Some households report unrealistically high expense shares for milk. I follow Zhen et al.
(2014) in dropping any observations where the combined expense shares on dairy and
nondairy milk are greater than five standard deviations from the mean in the original data
set (equivalent to a 0.19 expense share). This procedure removes 0.3% of the original
observations.

Prices
The subsequent analysis requires annual prices for dairy and nondairy milk. The raw data
contains the price of each product that is purchased, which could be used to generate an
average annual price for each household.8 However, there are two issues with using the
simple average of prices paid by households. First, 7% of households in the sample do
not purchase any dairy milk in a given year, and 79% do not purchase any nondairy milk.
Second, the prices in the data are a function of the specific brands that households
consume.

To circumvent the issues with average household prices, I create a price index using a
procedure similar to Zhen et al. (2014). This procedure is detailed in the supplementary
appendix. In brief, each milk product is classified by brand and size. I then impute an
annual household price for each brand–size that accounts for more than 0.5% of dairy
or nondairy milk sales. These brand–size prices are aggregated using a Fisher price index.
Prices are expressed in real terms after deflating by the consumer price index (CPI) for
food at home from the Bureau of Labor Statistics. The real price of the outside good is
assumed to be constant after deflating by the CPI.

As discussed in the previous section, imputation typically reduces the variation in
prices. In this case, the coefficient of variation of the annual observed household dairy milk

7In the Homescan data, containers with less than 28 ounces account for 0.18% of the volume of unfla-
vored dairy milk sales and 0.7% of total milk sales (including flavored milk). According to the United States
Department of Agriculture (2019), single-serve containers account for 14.7% of milk sales (including fla-
vored milk) in the USA.

8These reported prices contain some error. To save panelists the burden of reporting the price, Nielsen
automatically includes the average weekly price of the product at the retail location in which a panelist
purchased the product. The only exception are stores for which Nielsen does not have price data.
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prices is 0.62, while the coefficient of variation of the price index is 0.23. To some extent,
this reduction in variation is desirable, as the price index removes heterogeneity that stems
from households endogenously selecting higher or lower priced products. However, impu-
tation may also remove some of the true variation in the price of milk products that result
from differences in geography and the specific stores that households visit.

Descriptive statistics
Table 1 contains the descriptive statistics of the data set. These descriptive statistics and the
subsequent analysis are weighted by projection factors (sample weights), which make the
sample representative of the US population along a number of demographic dimensions.
None of the results are qualitatively different without the projection factors.

The first column of Table 1 includes all households. The second column includes
households that purchase any amount of nondairy milk in a given year. The third column
contains households that purchase more nondairy milk than dairy milk in a given year.
The prices in the table reflect the average price paid by households and, therefore, exclude
households who do not purchase a particular product.

At the household level, consumption of nondairy milk does not appear to be an all-or-
nothing phenomenon. Households who purchase some amount of nondairy milk still buy
a significant amount of dairy milk – in aggregate, these households purchase just 15% less
dairy milk than the average household. Furthermore, 73% of households who buy some
nondairy milk actually purchase more dairy than nondairy milk. One might wonder the
extent to which these expenditure patterns are due to heterogeneous preferences within
multi-person households. To address this concern, in the supplementary appendix, I rec-
reate Table 1 using only single-person households. Even at the individual level, nondairy
milk consumers purchase a substantial amount of dairy milk. Single-person households
who consume some nondairy milk purchase 33% less dairy milk than average, and
46% of these single-person households purchase more dairy milk than nondairy milk.

Households who purchase more nondairy than dairy milk pay prices for dairy milk that
are 50% above the sample average. However, this difference appears to be a function of
certain households selecting more expensive products – the average value of the milk price
index is fairly similar for the three sets of households listed in Table 1.

Households in the data are defined as having only a female head, only a male
head, or both a male and female head (same-sex heads are not identified in the data).
The entire household is also categorized as either white, black, Asian, or other.
Regardless of race, the household can identify as being of Hispanic origin. Households
who purchase more nondairy than dairy milk are more likely to be single, female, young,
educated, high income, childless, and identify as black, Asian, or Hispanic. However, larger
households and households with children are more likely to purchase some amount of
nondairy milk, which likely reflects the fact that larger households buy a wider variety
of products.

Figure 1 illustrates dairy and nondairy milk consumption between 2004 and 2018. Two
trends are evident in the figure: first, consistent with the discussion in Section 2.1, dairy
milk consumption is declining over time. Second, almond milk consumption increased
dramatically between 2009 and 2014. Even with a decline in soy milk sales over the same
period, aggregate nondairy milk consumption doubled. Notably, the decrease in dairy milk
sales between 2009 and 2018 was 12 times the increase in nondairy milk sales.

Throughout the sample, there appears to have been significant changes in the type of
households that purchase nondairy milk, which is illustrated in Table 2. The table sorts
households into four groups based on the household’s dairy milk expense share in
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2004. For each group, the table presents the average expense share on almond and non-
dairy milk between 2005 and 2018. Not surprisingly, households whose consumption of
dairy milk was below the first quartile in 2004 have the highest consumption of nondairy
milk across the whole period. However, for these households, the share of expenses
devoted to nondairy milk increased by just 0.43 percentage points across the four time
periods in the table, with greater almond milk consumption coming at the expense of other
nondairy milks.

Table 1. Descriptive statistics of sociodemographic and expense variables

All
households

Nondairy milk purchases

Positive
Greater than dairy

milk

Quantity (gallons)

Dairy milk 22.2 (25.9) 18.2 (23.2)*** 1.98 (4.16)***

Almond milk 0.440 (2.45) 2.31 (5.21)*** 4.92 (8.33)***

All nondairy milk 0.836 (3.54) 4.39 (7.09)*** 9.11 (10.6)***

Price (per gallon)

Dairy milk 3.76 (1.50) 3.96 (1.74)*** 4.77 (2.04)***

Almond milk 5.81 (1.85) 5.81 (1.85) 5.87 (1.88)***

All nondairy milk 6.27 (2.12) 6.27 (2.12) 6.25 (2.00)***

Sociodemographics

Female head only 0.297 0.305*** 0.384***

Male head only 0.205 0.158*** 0.241***

Average age of household headsa 6.34 (2.18) 5.99 (2.25)*** 6.22 (2.30)***

Highest education of household
headsb

2.20 (1.00) 2.39 (1.00)*** 2.47 (1.01)***

Black 0.121 0.155*** 0.206***

Hispanic 0.116 0.161*** 0.133***

Asian 0.032 0.048*** 0.051***

Household incomec 9.43 (4.02) 10.1 (3.89)*** 9.69 (4.09)***

Household size 2.56 (1.45) 2.73 (1.48)*** 2.12 (1.24)***

Children in household 0.327 (0.469) 0.367 (0.482)*** 0.204 (0.403)***

Total household expenses 2,371 (1,393) 2,584 (1,446)*** 2,145 (1,286)***

Data size

Number of households 185,936 66,732 18,397

Number of observations 852,906 165,579 45,990

Weighted means with weighted standard deviations are in parentheses. *, **, *** represent statistical significance at the
10%, 5%, and 1% levels.
a1 = Less than 25 (years); 2= 25–29; 3= 30–34; 4= 35–39; 5= 40–44, 6= 45–49; 7= 50–54; 8= 55–64; 9 = Over 65.
b1 = No post-secondary; 2 = Some college; 3 = College degree; 4 = Graduate degree.
c1 = Less than 5; 2= 5–10; 3= 10–15; 4= 15–20; 5= 20–25; 6= 25–30; 7= 30–35; 8= 35–40; 9= 40–50; 10= 50–60;
11= 60–70; 12= 70–80; 13= 80–100; 14 = Over 100 (in $000s).
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Conversely, households who spent the most on dairy milk in 2004 increased the share
of their expenses devoted to nondairy milk by 0.9 percentage points over the course of the
sample. The set of households in Table 1 changes across time periods as households drop
out of the panel. In the supplementary appendix, I show that the same pattern holds when
the data is restricted to households who remain in the panel between 2004 and 2018. The
result is also robust to restricting the data to the years 2009–2018 and categorizing house-
holds based on their dairy milk expense share in 2008.

Results

Table 3 contains the results from estimating equation 1 under three different approaches.
The first model uses first differences to remove the time-invariant individual-specific error
term from equation 1. In this model, a 1-gallon increase in nondairy milk consumption is

Table 2. Almond milk and nondairy milk expenses

Dairy milk expense share (2004) 2005–2009 2010–2012 2013–2015 2016–2018

Average expense share: almond milk

Less than the first quartile 0.004 0.363 0.885 1.09

Between the first and second quartiles 0.002 0.237 0.656 0.636

Between the second and third quartiles 0.003 0.201 0.734 0.817

Greater than the third quartile 0.002 0.190 0.680 0.946

Average expense share: nondairy milk

Less than the first quartile 1.04 1.15 1.33 1.47

Between the first and second quartiles 0.456 0.649 0.933 0.827

Between the second and third quartiles 0.447 0.524 0.997 1.09

Greater than the third quartile 0.387 0.524 0.991 1.29

Observations

Number of households 34,001 20,515 15,941 11,875

The table only includes households who were in the sample in 2004. The number of households changes over time due to
attrition.
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Figure 1. Dairy milk and nondairy milk consumption (2004–2018).
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associated with a 0.43 gallon reduction in dairy milk consumption. However, as mentioned
in Section 3, nondairy milk consumption is potentially correlated with the unobserved
factors that impact dairy milk consumption.

The second model instruments differences in nondairy milk purchases with lagged
nondairy milk purchases. The data contains 15 periods resulting in 14 differences and
14 lagged values. Where a lagged value is not available it is replaced with a zero value,
which preserves the exogeneity of the instrument set. I begin by using all available lag
lengths as instruments. However, a Hansen test rejects the exogeneity of the instrument
set when all lagged levels are included (p-value= 0.00). This result is not particularly
surprising as the first lag is also included in the calculation of the first difference, which
could create a correlation between the lagged value and the first difference of the unob-
servables. After dropping the first lag, the Hansen test no longer rejects the exogeneity of
the instruments.9

To test for weak instruments in the case of non-iid errors, Baum, Schaffer, and Stillman
(2007) suggest using a robust Wald F-statistic based on the rk-statistic of Kleibergen and
Paap (2006). This statistic is 57.3, which exceeds the typical rule of thumb that the F-
statistic should be at least 10.

The coefficient on nondairy milk in model 2 is quite similar to the estimate without
instrumentation, and the equality of these two sets of estimates cannot be rejected. The
equivalence of these estimates suggests that changes in nondairy milk consumption are
uncorrelated with changes in the unobservables that impact dairy milk consumption.
One potential explanation for the equality of these two sets of estimates is that changes
in nondairy milk consumption are primarily driven by the exogenous introduction of
almond milk, rather than changes in unobservables that might impact both dairy and non-
dairy milk.

Finally, the third model uses fixed effects as opposed to first differences. In this model,
the relationship between dairy and nondairy milk is stronger than in the first two models: a
1-gallon increase in nondairy milk consumption corresponds to a 0.60 gallon reduction in
dairy milk consumption.10

The coefficient on milk price in Table 3 is negative and statistically significant.
However, price appears to be of limited economic significance: in the first model, a stan-
dard deviation increase in the price index would reduce dairy milk consumption by 0.58
gallons per household – equivalent to 1.8% of average household consumption. The coef-
ficient on the price of nondairy milk is also negative. This accords with the discussion of
the model in Section 3; given that the regression controls for the quantity of nondairy milk,
the coefficient on the nondairy milk price only captures the income effect of a price change.

Consistent with past research, larger households and households with children con-
sume more dairy milk (Cornick, Cox, and Gould 1994; Dharmasena and Capps 2014).
Income is negatively associated with milk consumption, though the coefficient is only sig-
nificant at the 5% level in the fixed effects model. Conversely, the coefficient on total

9Roodman (2009) notes that multiple instruments reduce the power of the Hansen test. I, therefore, also
run the model using only the second, third, and fourth lags – neither the p-value from the Hansen test nor
the estimated coefficients are markedly different when using the smaller instrument set.

10Assuming that the variation in nondairy milk consumption is exogenous, the estimates using fixed-
effects and first differences are both consistent, though they differ in their efficiency. The fixed-effects esti-
mator is more efficient under the assumption of serially uncorrelated errors, while the first differences esti-
mator is more efficient if the errors follow a random walk. To help choose between the two estimators,
Wooldridge (2002, p. 282) suggests regressing the errors from the first differences model on their lagged
values. A coefficient of zero implies a random walk process, while a coefficient of −0.5 implies uncorrelated
errors. Based on the estimated coefficient (−0.10), both of these hypotheses can be rejected.

Agricultural and Resource Economics Review 123

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/a

ge
.2

02
2.

22
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/age.2022.22


household expenses is positive and statistically significant across all regressions. The other
sociodemographic variables that were listed in Table 1 (age, gender, education, and race)
were not included in the analysis as they had little or no within-household variation.

The supplementary appendix contains the results of several robustness checks. First,
I run regressions using only observations between 2009 and 2018 – the years when non-
dairy milk consumption increased precipitously. Second, I repeat the analysis using only
single-person households. Single-person households are not representative of the popula-
tion. However, the data from these households may be less noisy, as there is a unique and
consistent decision-maker in these households. Finally, I repeat all the preceding analysis
using almond milk as the explanatory variable, instead of nondairy milk.11 Across all these
models, the coefficient on nondairy or almond milk is similar to those in Table 3.12

As a final robustness check, I reduce the data to observations from 2 years: 2009
(the year before almond milk sales begin to grow rapidly) and 2018 (the final year in
the sample). This regression captures long-run differences in dairy milk consumption,

Table 3. Regression results

First differences First differences IVa Fixed effects

Coefficients

Nondairy milk (quantity) −0.430 (0.025)*** −0.443 (0.046)*** −0.605 (0.026)***

Milk price (log) −2.458 (0.190)*** −2.747 (0.210)*** −4.205 (0.333)***

Nondairy milk price (log) −1.405 (0.369)*** −1.298 (0.450)** −3.949 (0.650)***

Household income −0.009 (0.007) −0.018 (0.009)* −0.100 (0.015)***

Household size 0.229 (0.050)*** 0.206 (0.055)*** 0.739 (0.086)***

Children 0.994 (0.146)*** 1.084 (0.159)*** 3.494 (0.227)***

Total household expenses 0.007 (0.000)*** 0.007 (0.000)*** 0.008 (0.000)***

Model information

Number of observations 637,763 637,763 796,133

Number of households 126,589 126,589 129,160

R-squared 0.147 0.164 0.246

Standard errors, clustered on the household, are in parentheses. *, **, *** represent statistical significance at the 10%,
5%, and 1% levels. The model also includes year dummies.
aRobust F-statistic (strength of instruments): 57.3. Hansen J-statistic (overidentification test): 12.2 (p-value= 0.432).
Difference-in-Sargan test statistic (test of exogeniety of nondairy milk): 0.169 (p-value = 0.681).

11It is conceivable that almondmilk would have a weaker relationship with dairy milk compared to aggre-
gate sales of non-dairy milk, as some of the growth in almond milk may have come at the expense of other
nondairy milks. On the other hand, almond milk may be viewed as more milk-like, making it a closer
substitute for dairy milk.

12The coefficients on non-dairy milk quantity range from −0.591 to −0.401, and the coefficients on
almond milk quantity range from −0.653 to −0.381. The diagnostic tests do not point to any issues of weak
or invalid instruments in these alternative models. The only exception is the model using single-person
households with almond milk as the explanatory variable. In this model, the first-stage robust F-statistic
is 4.17, hinting at a weak instrument problem, and the Hansen test rejects the exogeneity of the instrument
set. Across all models, I cannot reject the hypothesis that results with instrumentation are equal to those
without.
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which could differ from the short-run changes identified in the previous regressions.
Between these 2 years, there was a stark exogenous change in the availability of nondairy
milks: almond milk was not available for purchase in most stores in 2009 but was widely
available in 2018.

Obviously, this subsample removes households who did not remain in the panel for 10
years, potentially making it unrepresentative of the overall population. To test the repre-
sentativeness of the subsample, I re-run the models in Table 1 using the sample to those
households who are in the data in 2009 and 2018. The results are not substantially different
when the restricted sample is used.13

The results using data from 2009 and 2018 are displayed in Table 4. In the model with-
out instrumentation, the coefficient on nondairy milk is larger than the coefficients on
nondairy milk in Table 3, but the coefficient is not statistically different from the coeffi-
cient in the fixed effects model (when using data from 2009 and 2018, fixed effects esti-
mates are equivalent to first differences). The coefficient on nondairy milk in the model
with instrumentation is somewhat greater than the coefficient in Table 3, although the
differences are not statistically significant.

In every model that has been presented, including those in Table 4, the equality of the
results with and without instrumentation cannot be rejected. The equality of these esti-
mates suggests that demand for nondairy milk is unrelated to the unobservables that
impact demand for dairy milk. To further investigate this relationship, the final column
in Table 4 contains the results of a falsification test in which changes in dairy milk con-
sumption between 2004 and 2009 are regressed on changes in nondairy milk consumption
between 2009 and 2018 (the model also includes changes in the other explanatory variables
between 2004 and 2009).

If the changes in the unobservables that impact dairy milk consumption were related to
nondairy milk consumption, then one might expect that declines in dairy milk consump-
tion prior to 2009 (when sales of almond milk were nil and nondairy milk sales were con-
stant) would also be related to increases in nondairy milk consumption after 2009 (when
almond milk was introduced in the market and nondairy milk consumption increased

Table 4. Estimation results (2009–2018 differences)

First differences First differences IVa First differences

Dependent variable ΔDairy milk
(2009–2018)

ΔDairy milk
(2009–2018)

ΔDairy milk
(2004–2009)

ΔNondairy milk
(2009–2018)

−0.649 (0.059)*** −0.514 (0.178)** −0.011 (0.077)

Number of observations 22,174 22,174 9,116

R-squared 0.190 0.189 0.170

All models include the same explanatory variables in Table 2. Standard errors are in parentheses. *, **, *** represent
statistical significance at the 10%, 5%, and 1% levels. Full results are contained in the supplementary appendix
(Table SA.13).
aThe instrument set includes all levels of nondairy milk prior to 2009 (missing values are replaced with zero). Robust
F-statistic (strength of instruments): 28.9. Hansen J-statistic (overidentification test): 6.46 (p-value= 0.167).
Difference-in-Sargan test statistic (test of exogeniety of nondairy milk): 0.589 (p-value= 0.443).

13Using first differences, the coefficient on nondairy milk is −0.439 when using the restricted sample,
compared to −0.430 when using the full sample. However, a Hausman test does find statistically significant
differences between these two sets of estimates at the 5% level.
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markedly). However, this does not appear to be the case. According to Table 4, changes in
nondairy milk consumption between 2009 and 2018 are not related to prior changes in
dairy milk consumption. Although not definitive, the results of this falsification test
add credibility to the idea that nondairy milk consumption is unrelated to the unobserv-
ables in the dairy milk equation.

All of the models agree that nondairy milk displaces dairy milk, though this displace-
ment is far from one-to-one. This result differs from Stewart et al. (2020) both in terms of
magnitude and precision. Stewart et al. (2020) use a VAR model to estimate a relationship
between aggregate purchases, finding that nondairy milk sales reduced dairy milk sales at
close to a one-to-one ratio. However, they have a fairly wide 95% confidence interval that
includes the estimates in Table 3.

To contextualize the impact of nondairy milk on dairy milk sales, consider that the
annual consumption of nondairy milk products grew by 0.95 gallons per household
between 2009 and 2018. Based on the estimates in model 1, this increase in nondairy milk
consumption is associated with a reduction in dairy milk sales of 0.41 gallons per house-
hold. Yet, annual dairy milk consumption declined by 7.88 gallons over this period. Hence,
nondairy milk is only capable of explaining a small fraction of the decline in dairy milk
consumption.

Heterogeneity across households
The relationship between dairy and nondairy milk might be surprising, given that dairy
milk can be substituted with nondairy milk on a one-to-one basis in most contexts. One
explanation for the results is that households consume nondairy milk in contexts where
they had not consumed dairy milk in the past instead of using non-dairy milk as a one-to-
one replacement for dairy milk. This phenomenon might be particularly true for house-
holds that did not initially drink a large amount of dairy milk. To examine this possibility, I
sorted households into four groups based on their dairy milk expense share in 2004 (the
same grouping was used in Table 1). I then examine if the impact of nondairy milk con-
sumption varies across these four groups.

The estimates, contained in Table 5, demonstrate that nondairy milk has a stronger
association with dairy milk purchases in households who initially had higher dairy milk
expenses. In the first model, a 1-gallon increase in nondairy milk consumption is associ-
ated with a 0.31 gallon reduction in dairy milk consumption for households that purchased
the least amount of dairy milk in 2004. Conversely, for households whose dairy milk con-
sumption was above the fourth quartile, the reduction in dairy milk purchases is 0.63 gal-
lons. An F-test finds that the differences in coefficients across household groups are
statistically significant (p-value< 0.01).

The second model uses lagged values of nondairy milk consumption as instruments.
However, a simple instrumental variables approach is no longer valid as there are now
four potentially endogenous regressors in the model. I, therefore, use a control function
approach to account for the potential endogeneity of nondairy milk consumption. In the
first step of this procedure, nondairy milk is regressed on the instrument set and the exog-
enous instruments. In the second step, equation 1 is estimated with the addition of the
first-stage residuals. Wooldridge (2015) provides more detail on control function methods.
Statistical inference is conducted by bootstrapping the entire procedure. The estimates
using instrumentation follow a similar pattern across quartiles. The third model employs
fixed effects as opposed to first differences. In this model, there are even greater differences
across households based on their prior consumption of dairy milk.
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Table 5. Interaction between nondairy milk and previous dairy milk expense share

First differences First differences (control function) Fixed effects First differences (2009–2018)

Nondairy milk coefficient by dairy milk expense share in 2004 or 2008a

Less than the first quartile −0.308 (0.039)*** −0.236 (0.094)* −0.324 (0.073)*** −0.301 (0.024)***

Between the first and second quartiles −0.413 (0.032)*** −0.384 (0.101)*** −0.412 (0.076)*** −0.407 (0.045)***

Between the second and third quartiles −0.492 (0.032)*** −0.565 (0.092)*** −0.687 (0.066)*** −0.428 (0.040)***

Greater than the third quartile −0.629 (0.050)*** −0.582 (0.099)*** −1.072 (0.114)*** −0.694 (0.086)***

Model information

Number of households 33,403 33,403 34,046 50,169

Number of observations 245,385 245,385 257,559 297,331

R-squared 0.142 0.140 0.251 0.156

Standard errors, clustered on the household, are in parentheses. In the second model, standard errors are bootstrapped using 500 iterations. *, **, *** represent statistical significance at the 10%,
5%, and 1% levels. The model also includes year dummies.
aRefers to dairy milk expense share in 2004 (models 1–3) or dairy milk expense share in 2008 (model 4).
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The first three models of Table 5 only include households that were in the panel in
2004. Due to attrition, many of these households were not present in the data in 2009 when
nondairy milk sales began to increase substantially. To test the robustness of the results, the
fourth model contains observations from the years 2009 to 2018 and conditions the impact
of nondairy milk consumption on dairy milk expenses in 2008. The estimates are similar to
the first model. An F-test rejects the equality of the coefficients in all models with a p-value
below 0.01.

In the supplementary appendix, the analysis is repeated with almond milk as the
explanatory variable, as opposed to nondairy milk. The coefficients follow a similar pattern
across the quartiles.

Conclusion

This paper examines the relationship between dairy milk and nondairy milk consumption.
Notably, the paper focuses only on unflavored fluid dairy milk that is purchased for home
consumption. The analysis does not consider milk purchased and consumed away from
home or processed dairy products, such as butter, cheese, ice cream, and yogurt. As more
plant-based and lab-grown dairy alternatives enter the market, it will be interesting to
examine how the consumption patterns of nondairy milk compare to those of other
plant-based dairy substitutes.

The results show that increases in nondairy milk consumption are related to concomi-
tant decreases in dairy milk purchases. However, the relationship between dairy and non-
dairy milk is far from one-to-one: a 1-gallon increase in nondairy milk consumption is
associated with a 0.43–0.60 gallon decrease in fluid dairy milk consumption. These base-
line results hide considerable heterogeneity across households. Generally, there is a stron-
ger relationship between nondairy and dairy milk consumption in households that had
previously purchased more dairy milk. This difference is notable, as households with high
initial expenditure on dairy milk have increased their nondairy milk purchases more than
households with low initial expenditures on dairy milk.

Despite the negative relationship between dairy and nondairy milk sales, the rapid
growth in nondairy milk explains only a small share of the decline in dairy milk consump-
tion. Between 2009 and 2018, milk sales fell by almost eight gallons per household, while
sales of nondairy milk increased by 0.95 gallons. Based on the estimates of the base model,
only 5.1% of the decline in dairy milk consumption can be attributed to increased nondairy
milk consumption. It is, therefore, unlikely that government policies restricting the mar-
keting of nondairy alternatives (e.g., precluding nondairy beverages from using the term
“milk”) would reverse the declining trend in dairy milk consumption.

The results of this paper are also helpful in guiding future research into the impact of
other plant-based alternatives. The market for nondairy milk expanded rapidly with the
introduction of almond and other nut milks, which are seen as tastier and more “milk-like”
than previous nondairy milks (Slade and Markevych 2020). Similarly, recent products such
as Beyond Meat and Impossible burgers tout themselves as tastier and “meatier” than the
previous generation of plant-based products. While caution should be taken in applying
the results in this paper to the market for other plant-based alternatives, the findings do
provide a number of hypotheses that could be tested as the market for meat alternatives
matures. Notably, it will be interesting to identify whether meat alternatives are able to
expand their customer base to include individuals with high meat consumption, and
whether such individuals are more likely to forgo meat when they choose plant-based
alternatives.
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Finally, the findings suggest that reductions in livestock consumption are not necessar-
ily predicated on the development of plant-based substitutes. Almost 95% of the decrease
in dairy milk consumption over the past 10 years is attributable to causes other than plant-
based milk. Further reductions in consumption of livestock-derived products might rely
more on changes in consumer preferences towards livestock-derived products rather than
the development of more palatable substitutes.
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